1
|
Xue J, Liu Y, Liu B, Jia X, Fang X, Qin S, Zhang Y. Celastrus orbiculatus Thunb. extracts and celastrol alleviate NAFLD by preserving mitochondrial function through activating the FGF21/AMPK/PGC-1α pathway. Front Pharmacol 2024; 15:1444117. [PMID: 39161898 PMCID: PMC11330833 DOI: 10.3389/fphar.2024.1444117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease globally, characterized by the accumulation of lipids, oxidative stress, and mitochondrial dysfunction in the liver. Celastrus orbiculatus Thunb. (COT) and its active compound celastrol (CEL) have demonstrated antioxidant and anti-inflammatory properties. Our prior research has shown the beneficial effects of COT in mitigating NAFLD induced by a high-fat diet (HFD) in guinea pigs by reducing hepatic lipid levels and inhibiting oxidative stress. This study further assessed the effects of COT on NAFLD and explored its underlying mitochondria-related mechanisms. Methods COT extract or CEL was administered as an intervention in C57BL/6J mice fed a HFD or in HepG2 cells treated with sodium oleate. Oral glucose tolerance test, biochemical parameters including liver enzymes, blood lipid, and pro-inflammatory factors, and steatosis were evaluated. Meanwhile, mitochondrial ultrastructure and indicators related to oxidative stress were tested. Furthermore, regulators of mitochondrial function were measured using RT-qPCR and Western blot. Results The findings demonstrated significant reductions in hepatic steatosis, oxidative stress, and inflammation associated with NAFLD in both experimental models following treatment with COT extract or CEL. Additionally, improvements were observed in mitochondrial structure, ATP content, and ATPase activity. This improvement can be attributed to the significant upregulation of mRNA and protein expression levels of key regulators including FGF21, AMPK, PGC-1α, PPARγ, and SIRT3. Conclusion These findings suggest that COT may enhance mitochondrial function by activating the FGF21/AMPK/PGC-1α signaling pathway to mitigate NAFLD, which indicated that COT has the potential to target mitochondria and serve as a novel therapeutic option for NAFLD.
Collapse
Affiliation(s)
- Junli Xue
- Taishan Institute for Hydrogen Biomedicine, The Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Yunchao Liu
- School of Pharmaceutical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Boyan Liu
- Taishan Institute for Hydrogen Biomedicine, The Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Xiubin Jia
- School of Pharmaceutical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Xinsheng Fang
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Shucun Qin
- Taishan Institute for Hydrogen Biomedicine, The Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| |
Collapse
|
2
|
Xiao Y, Wang R, Kong S, Zhao T, Situ Y, Nie H. Comparison of Protective Effect of Tri-circulator and Coenzyme Q10 on Myocardial Injury and the Mechanism Study by Zebrafish Model. Cardiovasc Toxicol 2024; 24:258-265. [PMID: 38316695 DOI: 10.1007/s12012-024-09828-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
Tri-Circulator (TC) is a product comprising coenzyme Q10 (CoQ10), Salvia miltiorrhiza, and Panax notoginseng. Individually, each of these constituents has demonstrated protective effects on myocardial injury. The purpose of this study is to evaluate the protective efficacy of TC on heart function and compare the differential effects between CoQ10 and TC. Two myocardial injury models of zebrafish, the hypoxia-reoxygenation model (H/R) and the isoproterenol (ISO, a β-receptor agonist) model, were used in this experiment. The zebrafish subjects were divided into 4 groups: control, H/R, TC, and CoQ10. Heart rate, stroke volume (SV), cardiac output (CO), ejection fraction (EF), fractional area change (FAC), and pericardial height were monitored to assess changes in heart function. The gene expression of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) was studied as markers of injury/stress. TC significantly suppresses elevated heart rate induced by H/R and prevents the decrease of heart rate induced by ISO. It alleviates the pericardial infusion induced by ISO, whereas CoQ10 does not possess a similar effect. Both TC and CoQ10 significantly inhibit the decline in SV, CO, EF, and FAC induced by H/R and ISO, and suppress the expression of ANP and BNP in cardiomyocytes induced by ISO. It is noteworthy that TC demonstrates a more pronounced effect on EF, FAC, ANP, and BNP gene expression compared to CoQ10. Both TC and CoQ10 have a protective effect on myocardial injury of zebrafish. However, TC exhibits a greater efficacy compared to CoQ10 alone in mitigating myocardial injury.
Collapse
Affiliation(s)
- Yuan Xiao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Ranjing Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Shang Kong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Tingting Zhao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Yongli Situ
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Hong Nie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| |
Collapse
|
3
|
Ma L, Shao M, Cheng W, Jiang J, Chen X, Tan N, Ling G, Yang Y, Wang Q, Yang R, Li C, Wang Y. Neocryptotanshinone ameliorates insufficient energy production in heart failure by targeting retinoid X receptor alpha. Biomed Pharmacother 2023; 163:114868. [PMID: 37201263 DOI: 10.1016/j.biopha.2023.114868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023] Open
Abstract
Retinoid X receptor alpha (RXRα) is a nuclear transcription factor that extensively regulates energy metabolism in cardiovascular diseases. Identification of targeted RXRα drugs for heart failure (HF) therapy is urgently needed. Neocryptotanshinone (NCTS) is a component derived from Salvia miltiorrhiza Bunge, the effect and mechanism of which for treating HF have not been reported. The goal of this study was to explore the pharmacological effects of NCTS on energy metabolism to protect against HF post-acute myocardial infarction (AMI) via RXRα. We established a left anterior descending artery ligation-induced HF post-AMI model in mice and an oxygen-glucose deprivation-reperfusion-induced H9c2 cell model to investigate the cardioprotective effect of NCTS. Component-target binding techniques, surface plasmon resonance (SPR), microscale thermophoresis (MST) and small interfering RNA (siRNA) transfection were applied to explore the potential mechanism by which NCTS targets RXRα. The results showed that NCTS protects the heart against ischaemic damage, evidenced by improvement of cardiac dysfunction and attenuation of cellular hypoxic injury. Importantly, the SPR and MST results showed that NCTS has a high binding affinity for RXRα. Meanwhile, the critical downstream target genes of RXRα/PPARα, which are involved in fatty acid metabolism, including Cd36 and Cpt1a, were upregulated under NCTS treatment. Moreover, NCTS enhanced TFAM levels, promoted mitochondrial biogenesis and increased myocardial adenosine triphosphate levels by activating RXRα. In conclusion, we confirmed that NCTS improves myocardial energy metabolism, including fatty acid oxidation and mitochondrial biogenesis, by regulating the RXRα/PPARα pathway in mice with HF post-AMI.
Collapse
Affiliation(s)
- Lin Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingyan Shao
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenkun Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinchi Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nannan Tan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guanjing Ling
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ye Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ran Yang
- Guang'anmen Hospital China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Chun Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing 100029, China; Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing 100029, China.
| |
Collapse
|
4
|
Cui J, Shi Y, Xu X, Zhao F, Zhang J, Wei B. Identifying the cardioprotective mechanism of Danyu Tongmai Granules against myocardial infarction by targeted metabolomics combined with network pharmacology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153829. [PMID: 35104768 DOI: 10.1016/j.phymed.2021.153829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Danyu Tongmai Granules (DY), the commercial Chinese medicine, was well-accepted cardiovascular protective actions in clinic. However, the mechanisms underlying the beneficial effects of DY on cardiovascular disease still need largely to be clarified. PURPOSE Therefore, this study was designed to explore potential mechanisms of DY in myocardial infarction (MI) by integrated strategy of metabolomics and network pharmacology. METHODS Cardiomyocytes were subjected to H2O2 induced myocardial injury and rats were induced MI via isoproterenol (ISO) injection. The entire metabolic alterations in serum and heart tissues of experimental rats were profiled by UPLC-MS/MS. Based on the identified differential metabolites, the pathway analysis results were obtained and further validated using the network pharmacology approach. RESULTS We found that DY exerted significant cardioprotective effects in vitro and in vivo, and ameliorated inflammatory cell infiltration and cardiomyocyte apoptosis induced by ISO. The metabolomics data suggested that DY mainly affected the amino acid metabolism (i.e., valine, leucine and isoleucine biosynthesis, arginine biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, arginine biosynthesis, glycine, serine, as well as the alanine metabolism, aspartate and glutamate metabolism, etc.). Simultaneously, DY participated in the regulation of the biosynthesis of bile acids and biosynthesis of unsaturated fatty acids. Notably, DY significantly reduced the biosynthesis of valine, leucine and isoleucine to regulating the metabolism of branched chain amino acids (BCAAs) in infarcted myocardium, thus blocking the inflammation via inhibiting the expression of NLRP3 inflammasome in ISO-induced rats. The anti-inflammatory system of DY was further validated with the results of network pharmacology. CONCLUSION Our study, for the first time, confirmed that DY inhibited inflammation and further exerted significant anti-myocardial infarction effect. Additionally, our work further demonstrated that the myocardial protective effect of DY was contributed to the inhibition of the NLRP3 inflammasome activation by regulating BCAAs in infarcted myocardium using the comprehensive metabolomics, molecular biology and network analysis. Overall, our study gained new insights into the role of the relationship between the metabolic regulation of BCAAs and the NLRP3 inflammasome against MI.
Collapse
Affiliation(s)
- Jing Cui
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yangyang Shi
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xueli Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Fei Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ji Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
5
|
Corrigendum to “Salvia miltiorrhiza and the Volatile of Dalbergia odorifera Attenuate Chronic Myocardial Ischemia Injury in a Pig Model: A Metabonomic Approach for the Mechanism Study”. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9763253. [PMID: 35368877 PMCID: PMC8967562 DOI: 10.1155/2022/9763253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022]
|
6
|
Targeting AMPK signaling in ischemic/reperfusion injury: From molecular mechanism to pharmacological interventions. Cell Signal 2022; 94:110323. [DOI: 10.1016/j.cellsig.2022.110323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
|