1
|
Ding Y. Histone deacetylases: the critical enzymes for microglial activation involved in neuropathic pain. Front Pharmacol 2025; 16:1515787. [PMID: 40115267 PMCID: PMC11922887 DOI: 10.3389/fphar.2025.1515787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/17/2025] [Indexed: 03/23/2025] Open
Abstract
Neuropathic pain is a common health problem in clinical practice that can be caused by many different factors, including infection, ischemia, trauma, diabetes mellitus, nerve compression, autoimmune disorders, cancer, trigeminal neuralgia, and abuse of certain drugs. This type of pain can persistently affect patients for a long time, even after the rehabilitation of their damaged tissues. Researchers have identified the crucial role of microglial activation in the pathogenesis of neuropathic pain. Furthermore, emerging evidence has shown that the expression and/or activities of different histone deacetylases (HDACs) can modulate microglial function and neuropathic pain. In this review, we will summarize and discuss the functions and mechanisms of HDACs in microglial activation and neuropathic pain development. Additionally, we will also list the emerging HDAC inhibitors or activators that may contribute to therapeutic advancement in alleviating neuropathic pain.
Collapse
Affiliation(s)
- Yi Ding
- Department of Anesthesiology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Haghani V, Goyal A, Zhang A, Sharifi O, Mariano N, Yasui D, Korf I, LaSalle J. Improving rigor and reproducibility in chromatin immunoprecipitation assay data analysis workflows with Rocketchip. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602975. [PMID: 39071274 PMCID: PMC11275724 DOI: 10.1101/2024.07.10.602975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
As genome sequencing technologies advance, the accumulation of sequencing data in public databases necessitates more robust and adaptable data analysis workflows. Here, we present Rocketchip, which aims to offer a solution to this problem by allowing researchers to easily compare and swap out different components of ChIP-seq, CUT&RUN, and CUT&Tag data analysis, thereby facilitating the identification of reliable analysis methodologies. Rocketchip enables researchers to efficiently process large datasets while ensuring reproducibility and allowing for the reanalysis of existing data. By supporting comparative analyses across different datasets and methodologies, Rocketchip contributes to the rigor and reproducibility of scientific findings. Furthermore, Rocketchip serves as a platform for benchmarking algorithms, allowing researchers to identify the most accurate and efficient analytical approaches to be applied to their data. In emphasizing reproducibility and adaptability, Rocketchip represents a significant step towards fostering robust scientific research practices.
Collapse
Affiliation(s)
- Viktoria Haghani
- Department of Medical Microbiology and Immunology, Genome Center, University of California, Davis. Davis, CA, USA
- Department of Molecular and Cellular Biology, Genome Center, University of California, Davis. Davis, CA, USA
| | - Aditi Goyal
- Department of Molecular and Cellular Biology, Genome Center, University of California, Davis. Davis, CA, USA
| | - Alan Zhang
- Department of Molecular and Cellular Biology, Genome Center, University of California, Davis. Davis, CA, USA
| | - Osman Sharifi
- Department of Medical Microbiology and Immunology, Genome Center, University of California, Davis. Davis, CA, USA
- Department of Molecular and Cellular Biology, Genome Center, University of California, Davis. Davis, CA, USA
| | - Natasha Mariano
- Department of Molecular and Cellular Biology, Genome Center, University of California, Davis. Davis, CA, USA
| | - Dag Yasui
- Department of Medical Microbiology and Immunology, Genome Center, University of California, Davis. Davis, CA, USA
| | - Ian Korf
- Department of Molecular and Cellular Biology, Genome Center, University of California, Davis. Davis, CA, USA
| | - Janine LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, University of California, Davis. Davis, CA, USA
| |
Collapse
|
3
|
Hui SE, Westlund KN. Role of HDAC5 Epigenetics in Chronic Craniofacial Neuropathic Pain. Int J Mol Sci 2024; 25:6889. [PMID: 38999998 PMCID: PMC11241576 DOI: 10.3390/ijms25136889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 07/14/2024] Open
Abstract
The information provided from the papers reviewed here about the role of epigenetics in chronic craniofacial neuropathic pain is critically important because epigenetic dysregulation during the development and maintenance of chronic neuropathic pain is not yet well characterized, particularly for craniofacial pain. We have noted that gene expression changes reported vary depending on the nerve injury model and the reported sample collection time point. At a truly chronic timepoint of 10 weeks in our model of chronic neuropathic pain, functional groupings of genes examined include those potentially contributing to anti-inflammation, nerve repair/regeneration, and nociception. Genes altered after treatment with the epigenetic modulator LMK235 are discussed. All of these differentials are key in working toward the development of diagnosis-targeted therapeutics and likely for the timing of when the treatment is provided. The emphasis on the relevance of time post-injury is reiterated here.
Collapse
Affiliation(s)
| | - Karin N. Westlund
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
4
|
Yang J, Huang J, Pan Z, Wang X. Therapeutic potential of trazodone in trigeminal neuralgia based on inflammation and oxidative stress: an in vitro experimental study. J Oral Facial Pain Headache 2024; 38:119-125. [PMID: 39801102 PMCID: PMC11810673 DOI: 10.22514/jofph.2024.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/20/2024] [Indexed: 02/16/2025]
Abstract
Trigeminal neuralgia (TN) is a debilitating condition affecting the patients' life quality. New therapeutic approaches and novel drugs are required to treat TN. Trazodone being a serotonin antagonist and reuptake inhibitor (SARI) provides neuroprotection, however its role and underlying mechanism in TN in vitro or in vivo are not clear. This study was aimed to investigate the trazodone impact on glial BV-2 cells regarding TN. It was found that trazodone inhibited the BV-2 cells growth and suppressed the inflammation and oxidative stress in Lipopolysaccharide (LPS)-treated BV-2 cells. Trazodone treatment specifically decreased the levels of Tumor Necrosis Factor-alpha (TNF-α), Interleukin-6 (IL-6), Interleukin-1 beta (IL-1β) (p < 0.05), and Reactive Oxygen Species (ROS) (p < 0.01). Moreover, trazodone suppressed the Mitogen-Activated Protein Kinase (MAPK) pathway in LPS-treated BV-2 cells. These outcomes demonstrate that trazodone suppressed glial cell hyperproliferation, inflammation, and oxidative stress through MAPK pathway activation.
Collapse
Affiliation(s)
- Jun Yang
- Department of Geriatrics, The First
Affiliated Hospital of Zhejiang Chinese
Medical University (Zhejiang Provincial
Hospital of Chinese Medicine), 310003
Hangzhou, Zhejiang, China
| | - Junling Huang
- Department of Geriatrics, Tongji
Hospital, School of Medicine Tongji
University, 200065 Shanghai, China
| | - Zhimin Pan
- Department of Geriatrics, The First
Affiliated Hospital of Zhejiang Chinese
Medical University (Zhejiang Provincial
Hospital of Chinese Medicine), 310003
Hangzhou, Zhejiang, China
| | - Xiao Wang
- Department of Geriatrics, The First
Affiliated Hospital of Zhejiang Chinese
Medical University (Zhejiang Provincial
Hospital of Chinese Medicine), 310003
Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Wei W, Liu Y, Shen Y, Yang T, Dong Y, Han Z, Wang Y, Liu Z, Chai Y, Zhang M, Wang H, Shen H, Shen Y, Chen M. In situ tissue profile of rat trigeminal nerve in trigeminal neuralgia using spatial transcriptome sequencing. Int J Surg 2024; 110:1463-1474. [PMID: 38270619 PMCID: PMC10942187 DOI: 10.1097/js9.0000000000001110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Trigeminal neuralgia (TN) is the most common neuropathic disorder in the maxillofacial region. The etiology and pathogenesis of TN have not been clearly determined to date, although there are many hypotheses. OBJECTIVE The goal of this study was to investigate the interactions between different types of cells in TN, particularly the impact and intrinsic mechanism of demyelination on the trigeminal ganglion, and to identify new important target genes and regulatory pathways in TN. METHODS TN rat models were prepared by trigeminal root compression, and trigeminal nerve tissues were isolated for spatial transcriptome sequencing. The gene expression matrix was reduced dimensionally by PCA and presented by UMAP. Gene function annotation was analyzed by Metascape. The progression of certain clusters and the developmental pseudotime were analyzed using the Monocle package. Modules of the gene coexpression network between different groups were analyzed based on weighted gene coexpression network analysis and assigned AddModuleScore values. The intercellular communication of genes in these networks via ligand-receptor interactions was analyzed using CellPhoneDB analysis. RESULTS The results suggested that the trigeminal ganglion could affect Schwann cell demyelination and remyelination responses through many ligand-receptor interactions, while the effect of Schwann cells on the trigeminal ganglion was much weaker. Additionally, ferroptosis may be involved in the demyelination of Schwann cells. CONCLUSIONS This study provides spatial transcriptomics sequencing data on TN, reveals new markers, and redefines the relationship between the ganglion and myelin sheath, providing a theoretical basis and supporting data for future mechanistic research and drug development.
Collapse
Affiliation(s)
- Wenbin Wei
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai
| | - Yuemin Liu
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai
| | | | - Tao Yang
- Department of Medical Cosmetology, Suzhou, Jiangsu, People’s Republic of China
| | - Yabing Dong
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai
| | - Zixiang Han
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai
| | - Yiwen Wang
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai
| | - Zhiyang Liu
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai
| | - Ying Chai
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai
| | - Mengjie Zhang
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai
| | - Hanshao Wang
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai
| | - Hao Shen
- Clinical Laboratory, Suzhou Ninth People’s Hospital
| | | | - Minjie Chen
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai
| |
Collapse
|
6
|
Huang Z, Zhang Y, Wang S, Qi R, Tao Y, Sun Y, Jiang D, Jiang X, Tao J. FOXD3-mediated transactivation of ALKBH5 promotes neuropathic pain via m 6A-dependent stabilization of 5-HT3A mRNA in sensory neurons. Proc Natl Acad Sci U S A 2024; 121:e2312861121. [PMID: 38285939 PMCID: PMC10861880 DOI: 10.1073/pnas.2312861121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/11/2023] [Indexed: 01/31/2024] Open
Abstract
The N6-methyladenosine (m6A) modification of RNA is an emerging epigenetic regulatory mechanism that has been shown to participate in various pathophysiological processes. However, its involvement in modulating neuropathic pain is still poorly understood. In this study, we elucidate a functional role of the m6A demethylase alkylation repair homolog 5 (ALKBH5) in modulating trigeminal-mediated neuropathic pain. Peripheral nerve injury selectively upregulated the expression level of ALKBH5 in the injured trigeminal ganglion (TG) of rats. Blocking this upregulation in injured TGs alleviated trigeminal neuropathic pain, while mimicking the upregulation of ALKBH5 in intact TG neurons sufficiently induced pain-related behaviors. Mechanistically, histone deacetylase 11 downregulation induced by nerve injury increases histone H3 lysine 27 acetylation (H3K27ac), facilitating the binding of the transcription factor forkhead box protein D3 (FOXD3) to the Alkbh5 promoter and promoting Alkbh5 transcription. The increased ALKBH5 erases m6A sites in Htr3a messenger RNA (mRNA), resulting in an inability of YT521-B homology domain 2 (YTHDF2) to bind to Htr3a mRNA, thus causing an increase in 5-HT3A protein expression and 5-HT3 channel currents. Conversely, blocking the increased expression of ALKBH5 in the injured TG destabilizes nerve injury-induced 5-HT3A upregulation and reverses mechanical allodynia, and the effect can be blocked by 5-HT3A knockdown. Together, FOXD3-mediated transactivation of ALKBH5 promotes neuropathic pain through m6A-dependent stabilization of Htr3a mRNA in TG neurons. This mechanistic understanding may advance the discovery of new therapeutic targets for neuropathic pain management.
Collapse
Affiliation(s)
- Zitong Huang
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou215123, People’s Republic of China
- Centre for Ion Channelopathy, Soochow University, Suzhou215123, People’s Republic of China
| | - Yuan Zhang
- Clinical Research Center of Neurological Disease, Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou215004, People’s Republic of China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou215123, People’s Republic of China
| | - Shoupeng Wang
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou215123, People’s Republic of China
- Centre for Ion Channelopathy, Soochow University, Suzhou215123, People’s Republic of China
| | - Renfei Qi
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou215123, People’s Republic of China
- Centre for Ion Channelopathy, Soochow University, Suzhou215123, People’s Republic of China
| | - Yu Tao
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou215123, People’s Republic of China
- Centre for Ion Channelopathy, Soochow University, Suzhou215123, People’s Republic of China
| | - Yufang Sun
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou215123, People’s Republic of China
- Centre for Ion Channelopathy, Soochow University, Suzhou215123, People’s Republic of China
| | - Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich81377, Germany
| | - Xinghong Jiang
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou215123, People’s Republic of China
- Centre for Ion Channelopathy, Soochow University, Suzhou215123, People’s Republic of China
| | - Jin Tao
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou215123, People’s Republic of China
- Centre for Ion Channelopathy, Soochow University, Suzhou215123, People’s Republic of China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou215123, People’s Republic of China
- Ministry of Education (MOE) Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou215123, People’s Republic of China
| |
Collapse
|
7
|
Tao Y, Zhang Y, Jin X, Hua N, Liu H, Qi R, Huang Z, Sun Y, Jiang D, Snutch TP, Jiang X, Tao J. Epigenetic regulation of beta-endorphin synthesis in hypothalamic arcuate nucleus neurons modulates neuropathic pain in a rodent pain model. Nat Commun 2023; 14:7234. [PMID: 37945654 PMCID: PMC10636187 DOI: 10.1038/s41467-023-43022-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Although beta-endorphinergic neurons in the hypothalamic arcuate nucleus (ARC) synthesize beta-endorphin (β-EP) to alleviate nociceptive behaviors, the underlying regulatory mechanisms remain unknown. Here, we elucidated an epigenetic pathway driven by microRNA regulation of β-EP synthesis in ARC neurons to control neuropathic pain. In pain-injured rats miR-203a-3p was the most highly upregulated miRNA in the ARC. A similar increase was identified in the cerebrospinal fluid of trigeminal neuralgia patients. Mechanistically, we found histone deacetylase 9 was downregulated following nerve injury, which decreased deacetylation of histone H3 lysine-18, facilitating the binding of NR4A2 transcription factor to the miR-203a-3p gene promoter, thereby upregulating miR-203a-3p expression. Further, increased miR-203a-3p was found to maintain neuropathic pain by targeting proprotein convertase 1, an endopeptidase necessary for the cleavage of proopiomelanocortin, the precursor of β-EP. The identified mechanism may provide an avenue for the development of new therapeutic targets for neuropathic pain treatment.
Collapse
Affiliation(s)
- Yu Tao
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou, 215123, PR China
| | - Yuan Zhang
- Department of Geriatrics & Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, PR China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, PR China
| | - Xiaohong Jin
- Department of Pain Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, PR China
| | - Nan Hua
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou, 215123, PR China
| | - Hong Liu
- Department of Pain Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, PR China
| | - Renfei Qi
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou, 215123, PR China
| | - Zitong Huang
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou, 215123, PR China
| | - Yufang Sun
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou, 215123, PR China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, PR China
| | - Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, 81377, Germany
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xinghong Jiang
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou, 215123, PR China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, PR China
| | - Jin Tao
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou, 215123, PR China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|