1
|
Wu Y, Gao L, Hu Y, He X, Ye W, Long Y, Li X, Deng J, Ma Y, Feng H, Liu H, Wu Q, Li N. NaturalEssential Oils: A Promising Therapy Way for Treating Ischemic Stroke. J Oleo Sci 2024; 73:1377-1396. [PMID: 39414458 DOI: 10.5650/jos.ess24125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024] Open
Abstract
Stroke is an acute cerebrovascular disease with high morbidity, mortality, and disability, making it the second leading cause of death worldwide. Ischemic stroke (IS) accounts for the majority of strokes, and its pathogenesis is complex, often involving complications and sequelae. Currently, conventional clinical approaches are ineffective, with few drugs available for intravenous thrombolysis and mechanical thrombolysis limited by a short time window. With the poor efficacy of monotherapy, the search for new complementary or alternative therapies has become the focus of researchers. In traditional medicine, Chinese aromatherapy has a long history of using aromatic medicines to treat IS. Natural essential oils (EOs), as the main pharmacological substances in aromatic drugs, are composed of different ratios of active metabolites with multi-targets and multi-components, which makes EOs have a wide range of pharmacological effects. Modern studies have also shown that EOs extracts and isolated monomers are beneficial for pathologically complex CIS. Therefore, this paper summarizes the EOs and monomers obtained from EOs that can prevent and treat IS in the last 20 years, and finds that EOs exert their anti-CIS effects mainly through anti-oxidative stress, anti-inflammation, anti-apoptosis, and inhibition of excitotoxicity. The amelioration of IS complications by natural EOs and their active monomer components for the treatment of IS are further discussed.
Collapse
Affiliation(s)
- Yuanyuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | - Leying Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | - Yue Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | - Xiaofang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | - Wenli Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | - Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | - Yin Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | - Huiyi Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | - Haolin Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | - Qianqian Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| |
Collapse
|
2
|
Chen J, Bao J, Jiang X, Yu W, Han Y, Zhang X, Zhang Y, Deng G. Astragaloside IV protects brain cells from ischemia-reperfusion injury by inhibiting ryanodine receptor expression and reducing the expression of P-Src and P-GRK2. Sci Rep 2024; 14:17497. [PMID: 39080440 PMCID: PMC11289356 DOI: 10.1038/s41598-024-68462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
Astragaloside IV, a prime active component of Astragalus membranaceus, has potential as a neuroprotectant. We aimed to identify the active ingredients in A. membranaceus and assess if Astragaloside IV can improve cerebral ischemia-reperfusion injury (CIRI) cell apoptosis by reducing P-Src and P-GRK2 via ryanodine receptor (RyR) expression inhibition. We used bioinformatics analysis to examine the effects of A. membranaceus on ischemic stroke. We studied brain samples from middle cerebral artery occlusion (MCAO) mice treated with normal saline, Astragaloside IV, and sham mice for pathology and Western blot tests. We also tested PC12 cells in vitro with or without Astragaloside IV or GSK180736A using Western blotting and fluorescence assays. Our bioinformatics analysis suggested a possible association between A. membranaceus, calcium ion pathways, and apoptosis pathways. Western blot data indicated Astragaloside IV significantly decreased RyR, p-Src, and downstream phosphorylated GRK2, PLC, CaMKII, and IP3R levels in MCAO mice brains. Astragaloside IV also considerably inhibited pro-apoptotic and oxidative stress-associated proteins' expression while boosting anti-apoptotic protein expression. The results suggest Astragaloside IV can inhibit RyR expression, subsequently reducing brain cell apoptosis.
Collapse
Affiliation(s)
- Juan Chen
- College of Basic Medicine, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518034, Guangdong, China
| | - Jun Bao
- College of Basic Medicine, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Xiujuan Jiang
- College of Basic Medicine, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Wentao Yu
- College of Basic Medicine, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Yunpeng Han
- College of Basic Medicine, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Xia Zhang
- College of Basic Medicine, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Ying Zhang
- College of Nursing, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China.
- Hebei Key Laboratory of Health Care with Traditional Chinese Medicine, Shijiazhuang, 050200, Hebei, China.
| | - Guoxing Deng
- College of Basic Medicine, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China.
| |
Collapse
|
3
|
Peng Y, Yang Z, Li J, Liu S. Research progress on nanotechnology of traditional Chinese medicine to enhance the therapeutic effect of osteoarthritis. Drug Deliv Transl Res 2024; 14:1517-1534. [PMID: 38225521 DOI: 10.1007/s13346-024-01517-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2023] [Indexed: 01/17/2024]
Abstract
Osteoarthritis (OA) is a prevalent chronic condition that primarily impacts the articular cartilage and surrounding bone tissue, resulting in joint inflammation and structural deterioration. The etiology of OA is multifaceted and intricately linked to the oxidative stress response of joint tissue. Oxidative stress (OS) in OA leads to the creation of reactive oxygen species (ROS) and other oxidizing agents, resulting in detrimental effects on chondrocytes. This oxidative damage diminishes the flexibility and robustness of cartilage, thereby expediting the progression of joint deterioration. Therefore, the antioxidant effect is crucial in the treatment of OA. Currently, a considerable number of components found in traditional Chinese medicine (TCM) have been scientifically demonstrated to exhibit remarkable antioxidant and anti-inflammatory properties. Nevertheless, the utilization of this program is considerably constrained as a result of intrinsic deficiencies, notably stability concerns. The successful amalgamation of TCM components with nanotechnology has properly tackled these concerns and enhanced the efficacy of therapeutic results. The objective of this study is to delineate the antioxidant characteristics of nano-TCM and assess the current inventory of literature pertaining to the application of nano-TCM in the treatment of OA. In conclusion, this paper will now turn to the constraints and potential avenues for the advancement of nano-TCM within the realm of OA therapy.
Collapse
Affiliation(s)
- Yue Peng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
| | - Zhengshuang Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
| | - Jinling Li
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
- Laboratory of Basic Medicine Center, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
4
|
Qi J, Han B, Wang Z, Jing L, Tian X, Sun J. Chuanzhitongluo Inhibits Neuronal Apoptosis in Mice with Acute Ischemic Stroke by Regulating the PI3K/AKT Signaling Pathway. Neuroscience 2024; 537:21-31. [PMID: 38040086 DOI: 10.1016/j.neuroscience.2023.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND AND PURPOSE Apoptosis is involved in the occurrence and development of acute ischemic stroke (AIS). This study aimed to assess whether Chuanzhitongluo (CZTL), a multi-target and multi-pathway compound preparation, plays a neuroprotective role in AIS by modulating neuronal apoptosis via the PI3K/AKT signaling pathway. METHODS A mouse model of AIS was established by photochemical processes. Cerebral infarction volume was measured by 2% staining with 2, 3, and 5-triphenyl tetrazole chloride (TTC). Neuron apoptosis was assessed by TUNEL staining. Apoptosis RNA arrays were used to detect changes in apoptosis-related gene expression profiles. Western blotting was used to detect proteins involved in the PI3K/AKT signaling pathway. RESULTS The study demonstrated that CZTL could potentially mitigate neuronal apoptosis in AIS mice. This appears to be achieved via the up-regulation of certain genes such as BCL-2, Birc6, and others, coupled with the down-regulation of genes like BAX, Bid, and Casp3. Further validation revealed that CZTL could enhance the expression of BCL-2 and reduce the expression of Cleaved Caspase-3 and BAX at both the gene and protein levels. The study also found that CZTL can enhance the phosphorylation level of the PI3K/AKT signaling pathway. In contrast to these findings, the PI3K inhibitor LY294002 notably amplified neuronal apoptosis in AIS mice. CONCLUSIONS These findings imply that CZTL's ability to inhibit neuronal apoptosis may be linked to the activation of AIS's PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Jianjiao Qi
- Department of Emergency Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Bin Han
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhiyuan Wang
- Department of Integrated Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lihong Jing
- Department of Emergency Internal Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xintao Tian
- Department of Emergency Internal Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Jinping Sun
- Department of Emergency Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
5
|
Longevity OMAC. Retracted: Inhibition of Oxidative Stress: An Important Molecular Mechanism of Chinese Herbal Medicine (Astragalus membranaceus, Carthamus tinctorius L., Radix Salvia Miltiorrhizae, etc.) in the Treatment of Ischemic Stroke by Regulating the Antioxidant System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:9790615. [PMID: 38234548 PMCID: PMC10791477 DOI: 10.1155/2024/9790615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
[This retracts the article DOI: 10.1155/2022/1425369.].
Collapse
|
6
|
Scotti L, da Silva PR, Monteiro AFM, de Araújo RSA, do Nascimento VL, Monteiro KLC, de Aquino TM, Dos Santos Silva WF, da Silva Junior EF, Scotti MT, Mendonça Junior FJB. The Multitarget Action of Vitamins in the Ischemic Stroke. Curr Top Med Chem 2024; 24:2465-2488. [PMID: 39301898 DOI: 10.2174/0115680266316939240909070627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
A stroke, also known as a cerebral hemorrhage, occurs when there is an interruption in the blood supply to a part of the brain, resulting in damage to brain cells. This issue is one of the leading causes of death in developed countries, currently killing about 5 million people annually. Individuals who survive ischemic stroke often face serious vision problems, paralysis, dementia, and other sequelae. The numerous efforts to prevent and/or treat stroke sequelae seem insufficient, which is concerning given the increasing global elderly population and the well-known association between aging and stroke risk. In this review, we aim to present and discuss the importance of vitamins in stroke prevention and/or incidence. Vitamins from diet or dietary supplements influence the body at various levels; they are a relevant factor but are reported only in isolated articles. This review reports and updates the multitarget role of vitamins involved in reducing stroke risk.
Collapse
Affiliation(s)
- Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Compounds, Federal University of Paraíba (UFPB), João Pessoa, Paraiba, Brazil
| | - Pablo Rayff da Silva
- Postgraduate Program in Dentistry, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Alex France M Monteiro
- Post-Graduate Program in Natural and Synthetic Bioactive Compounds, Federal University of Paraíba (UFPB), João Pessoa, Paraiba, Brazil
- Postgraduate Program in Chemistry, Department of Chemistry, Federal Rural University of Pernambuco, Campus I-Recife/PE, Brazil
| | | | - Vanessa Lima do Nascimento
- Research Group on Therapeutic Strategies - GPET, Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Kadja Luana Chagas Monteiro
- Research Group on Therapeutic Strategies - GPET, Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies - GPET, Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Wadja Feitosa Dos Santos Silva
- Research Group on Therapeutic Strategies - GPET, Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Edeildo Ferreira da Silva Junior
- Research Group on Therapeutic Strategies - GPET, Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Marcus T Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Compounds, Federal University of Paraíba (UFPB), João Pessoa, Paraiba, Brazil
| | - Francisco Jaime Bezerra Mendonça Junior
- Post-Graduate Program in Natural and Synthetic Bioactive Compounds, Federal University of Paraíba (UFPB), João Pessoa, Paraiba, Brazil
- Laboratory of Synthesys and Drug Delivery - LSVM, State University of Paraíba (UEPB), João Pessoa, Brazil
| |
Collapse
|
7
|
Zhang X, Shao C, Jin L, Wan H, He Y. Optimized Separation of Carthamin from Safflower by Macroporous Adsorption Resins and Its Protective Effects on PC12 Cells Injured by OGD/R via Nrf2 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18986-18998. [PMID: 37997370 DOI: 10.1021/acs.jafc.3c05285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The growing demand for safe natural products has reignited people's interest in natural food pigments. Here, we proposed the use of macroporous adsorption resins (MARs) to separate and purify carthamin from safflower. The optimal parameters for carthamin purification with HPD400 MAR were determined as follows: a mass ratio of crude carthamin in sample solution to wet resin of 0.3, a crude carthamin solution concentration of 0.125 g·mL-1, a pH of 6.00, a sample volume flow rate of 0.5 mL·min-1, an ethanol volume fraction of 58%, an elution volume of 4 BV, and an elution volume flow rate of 1.0 mL·min-1. Under the above purification conditions, the recovery rate of carthamin was above 96%. Carthamin dramatically improved the survival rate of PC12 cells damaged by oxygen-glucose deprivation/reoxygenation and protected them from oxidative stress by inhibiting the generation of reactive oxygen species and increasing the total antioxidant capacity and glutathione (GSH) levels. Carthamin promoted extracellularly regulated protein kinase phosphorylation into the nucleus, permitting Nrf2 nuclear translocation and upregulating the gene expression of the rate-limiting enzymes glutamate-cysteine ligase catalytic subunit and glutamate-cysteine ligase regulatory subunit of GSH synthesis to obliterate free radicals and exert antioxidant effects. This study revealed the purification method of carthamin and its antioxidant protective effects, providing important insights into the application of carthamin in functional foods.
Collapse
Affiliation(s)
- Xian Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Chongyu Shao
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Lei Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Haitong Wan
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| |
Collapse
|
8
|
Zhou L, Jin Y, Wu D, Cun Y, Zhang C, Peng Y, Chen N, Yang X, Zhang S, Ning R, Kuang P, Wang Z, Zhang P. Current evidence, clinical applications, and future directions of transcranial magnetic stimulation as a treatment for ischemic stroke. Front Neurosci 2023; 17:1177283. [PMID: 37534033 PMCID: PMC10390744 DOI: 10.3389/fnins.2023.1177283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive brain neurostimulation technique that can be used as one of the adjunctive treatment techniques for neurological recovery after stroke. Animal studies have shown that TMS treatment of rats with middle cerebral artery occlusion (MCAO) model reduced cerebral infarct volume and improved neurological dysfunction in model rats. In addition, clinical case reports have also shown that TMS treatment has positive neuroprotective effects in stroke patients, improving a variety of post-stroke neurological deficits such as motor function, swallowing, cognitive function, speech function, central post-stroke pain, spasticity, and other post-stroke sequelae. However, even though numerous studies have shown a neuroprotective effect of TMS in stroke patients, its possible neuroprotective mechanism is not clear. Therefore, in this review, we describe the potential mechanisms of TMS to improve neurological function in terms of neurogenesis, angiogenesis, anti-inflammation, antioxidant, and anti-apoptosis, and provide insight into the current clinical application of TMS in multiple neurological dysfunctions in stroke. Finally, some of the current challenges faced by TMS are summarized and some suggestions for its future research directions are made.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yaju Jin
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Danli Wu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yongdan Cun
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Chengcai Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yicheng Peng
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Na Chen
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xichen Yang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Simei Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Rong Ning
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Peng Kuang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zuhong Wang
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Pengyue Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
9
|
Jiao L, Sun C, Yan N, Yan C, Qu L, Wang Q, Zhang S, Ma L. Discrimination of Salvia miltiorrhiza from Different Geographical Origins by Laser-Induced Breakdown Spectroscopy (LIBS) with Convolutional Neural Network (CNN). ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2180515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Long Jiao
- College of Chemistry and Chemical Engineering, Xi’an Shiyou University, Xi’an, Shaanxi, China
| | - Chengyu Sun
- College of Chemistry and Chemical Engineering, Xi’an Shiyou University, Xi’an, Shaanxi, China
| | - Naying Yan
- College of Chemistry and Chemical Engineering, Xi’an Shiyou University, Xi’an, Shaanxi, China
| | - Chunhua Yan
- College of Chemistry and Chemical Engineering, Xi’an Shiyou University, Xi’an, Shaanxi, China
| | - Le Qu
- Cooperative Innovation Center of Unconventional Oil and Gas Exploration and Development in Shaanxi Province, Xi’an, Shaanxi, China
| | - Qin Wang
- School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Shengrui Zhang
- School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Ling Ma
- College of Chemistry and Chemical Engineering, Xi’an Shiyou University, Xi’an, Shaanxi, China
| |
Collapse
|
10
|
Tang C, Deng L, Luo Q, He G. Identification of oxidative stress-related genes and potential mechanisms in atherosclerosis. Front Genet 2023; 13:998954. [PMID: 36685865 PMCID: PMC9845256 DOI: 10.3389/fgene.2022.998954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Atherosclerosis (AS) is the main cause of death in individuals with cardiovascular and cerebrovascular diseases. A growing body of evidence suggests that oxidative stress plays an essential role in Atherosclerosis pathology. The aim of this study was to determine genetic mechanisms associated with Atherosclerosis and oxidative stress, as well as to construct a diagnostic model and to investigate its immune microenvironment. Seventeen oxidative stress-related genes were identified. A four-gene diagnostic model was constructed using the least absolute shrinkage and selection operator (LASSO) algorithm based on these 17 genes. The area under the Receiver Operating Characteristic (ROC) curve (AUC) was 0.967. Based on the GO analysis, cell-substrate adherens junction and focal adhesion were the most enriched terms. KEGG analysis revealed that these overlapping genes were enriched in pathways associated with Alzheimer's disease and Parkinson's disease, as well as with prion disease pathways and ribosomes. Immune cell infiltration correlation analysis showed that the immune cells with significant differences were CD4 memory activated T cells and follicular helper T cells in the GSE43292 dataset and CD4 naïve T cells and CD4 memory resting T cells in the GSE57691 dataset. We identified 17 hub genes that were closely associated with oxidative stress in AS and constructed a four-gene (aldehyde dehydrogenase six family member A1 (ALDH6A1), eukaryotic elongation factor 2 kinase (EEF2K), glutaredoxin (GLRX) and l-lactate dehydrogenase B (LDHB)) diagnostic model with good accuracy. The four-gene diagnostic model was also found to have good discriminatory efficacy for the immune cell infiltration microenvironment of AS. Overall, these findings provide valuable information and directions for future research into Atherosclerosis diagnosis and aid in the discovery of biological mechanisms underlying AS with oxidative stress.
Collapse
Affiliation(s)
- Chao Tang
- Department of Cardiology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China,*Correspondence: Chao Tang,
| | - Lingchen Deng
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Luo
- Department of Cardiology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Guijun He
- Department of Cardiology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
11
|
Gao L, Xia X, Shuai Y, Zhang H, Jin W, Zhang X, Zhang Y. Gut microbiota, a hidden protagonist of traditional Chinese medicine for acute ischemic stroke. Front Pharmacol 2023; 14:1164150. [PMID: 37124192 PMCID: PMC10133705 DOI: 10.3389/fphar.2023.1164150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Acute ischemic stroke (AIS) is one of the leading diseases causing death and disability worldwide, and treatment options remain very limited. Traditional Chinese Medicine (TCM) has been used for thousands of years to treat ischemic stroke and has been proven to have significant efficacy, but its mechanism of action is still unclear. As research related to the brain-gut-microbe axis progresses, there is increasing evidence that the gut microbiota plays an important role during AIS. The interaction between TCM and the gut microbiota has been suggested as a possible key link to the therapeutic effects of TCM. We have compiled and reviewed recent studies on the relationship between AIS, TCM, and gut microbiota, with the expectation of providing more ideas to elucidate the mechanism of action of TCM in the treatment of AIS.
Collapse
Affiliation(s)
- Lin Gao
- Emergency Department, Chengdu University of Traditional Chinese Medicine Affiliated Hospital, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiuwen Xia
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yinqi Shuai
- Emergency Department, Chengdu University of Traditional Chinese Medicine Affiliated Hospital, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hong Zhang
- Emergency Department, Chengdu University of Traditional Chinese Medicine Affiliated Hospital, Chengdu, Sichuan, China
| | - Wei Jin
- Emergency Department, Chengdu University of Traditional Chinese Medicine Affiliated Hospital, Chengdu, Sichuan, China
| | - Xiaoyun Zhang
- Emergency Department, Chengdu University of Traditional Chinese Medicine Affiliated Hospital, Chengdu, Sichuan, China
- *Correspondence: Yi Zhang, ; Xiaoyun Zhang,
| | - Yi Zhang
- Geriatric Department, Chengdu University of Traditional Chinese Medicine Affiliated Hospital, Chengdu, Sichuan, China
- *Correspondence: Yi Zhang, ; Xiaoyun Zhang,
| |
Collapse
|
12
|
Huajuan J, Xulong H, Bin X, Yue W, Yongfeng Z, Chaoxiang R, Jin P. Chinese herbal injection for cardio-cerebrovascular disease: Overview and challenges. Front Pharmacol 2023; 14:1038906. [PMID: 36909150 PMCID: PMC9998719 DOI: 10.3389/fphar.2023.1038906] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Cardio-cerebrovascular diseases are the leading cause of death worldwide and there is currently no optimal treatment plan. Chinese herbal medicine injection (CHI) is obtained by combining traditional Chinese medicine (TCM) theory and modern production technology. It retains some characteristics of TCM while adding injection characteristics. CHI has played an important role in the treatment of critical diseases, especially cardio-cerebrovascular diseases, and has shown unique therapeutic advantages. TCMs that promote blood circulation and remove blood stasis, such as Salvia miltiorrhiza, Carthami flos, Panax notoginseng, and Chuanxiong rhizoma, account for a large proportion of CHIs of cardio-cerebrovascular disease. CHI is used to treat cardio-cerebrovascular diseases and has potential pharmacological activities such as anti-platelet aggregation, anti-inflammatory, anti-fibrosis, and anti-apoptosis. However, CHIs have changed the traditional method of administering TCMs, and the drugs directly enter the bloodstream, which may produce new pharmacological effects or adverse reactions. This article summarizes the clinical application, pharmacological effects, and mechanism of action of different varieties of CHIs commonly used in the treatment of cardio-cerebrovascular diseases, analyzes the causes of adverse reactions, and proposes suggestions for rational drug use and pharmaceutical care methods to provide a reference for the rational application of CHIs for cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Jiang Huajuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huang Xulong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian Bin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wang Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhou Yongfeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ren Chaoxiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pei Jin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Wiklund L, Sharma A, Muresanu DF, Zhang Z, Li C, Tian ZR, Buzoianu AD, Lafuente JV, Nozari A, Feng L, Sharma HS. TiO 2-Nanowired Delivery of Chinese Extract of Ginkgo biloba EGb-761 and Bilobalide BN-52021 Enhanced Neuroprotective Effects of Cerebrolysin Following Spinal Cord Injury at Cold Environment. ADVANCES IN NEUROBIOLOGY 2023; 32:353-384. [PMID: 37480466 DOI: 10.1007/978-3-031-32997-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Military personnel during combat or peacekeeping operations are exposed to extreme climates of hot or cold environments for longer durations. Spinal cord injury is quite common in military personnel following central nervous system (CNS) trauma indicating a possibility of altered pathophysiological responses at different ambient temperatures. Our previous studies show that the pathophysiology of brain injury is exacerbated in animals acclimated to cold (5 °C) or hot (30 °C) environments. In these diverse ambient temperature zones, trauma exacerbated oxidative stress generation inducing greater blood-brain barrier (BBB) permeability and cell damage. Extracts of Ginkgo biloba EGb-761 and BN-52021 treatment reduces brain pathology following heat stress. This effect is further improved following TiO2 nanowired delivery in heat stress in animal models. Several studies indicate the role of EGb-761 in attenuating spinal cord induced neuronal damages and improved functional deficit. This is quite likely that these effects are further improved following nanowired delivery of EGb-761 and BN-52021 with cerebrolysin-a balanced composition of several neurotrophic factors and peptide fragments in spinal cord trauma. In this review, TiO2 nanowired delivery of EGb-761 and BN-52021 with nanowired cerebrolysin is examined in a rat model of spinal cord injury at cold environment. Our results show that spinal cord injury aggravates cord pathology in cold-acclimated rats and nanowired delivery of EGb-761 and BN-52021 with cerebrolysin significantly induced superior neuroprotection, not reported earlier.
Collapse
Affiliation(s)
- Lars Wiklund
- Department of Surgical Sciences, International Experimental Central Nervous System Injury & Repair (IECNSIR), Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- Department of Surgical Sciences, International Experimental Central Nervous System Injury & Repair (IECNSIR), Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Zhiqiang Zhang
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Yuexiu District, China
| | - Cong Li
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Yuexiu District, China
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, China
| | - Hari Shanker Sharma
- Department of Surgical Sciences, International Experimental Central Nervous System Injury & Repair (IECNSIR), Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
Wei S, Hao M, Tang Z, Zhou T, Zhao F, Wang Y. Non-medicinal parts of safflower (bud and stem) mediated sustainable green synthesis of silver nanoparticles under ultrasonication: optimization, characterization, antioxidant, antibacterial and anticancer potential. RSC Adv 2022; 12:36115-36125. [PMID: 36545083 PMCID: PMC9756757 DOI: 10.1039/d2ra06414f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The flower of safflower is widely used in Chinese herbal preparations and the non-medicinal parts have been applied to develop a sustainable green method, where AgNPs were generated using a mixture of leaf and stem after 12 h of incubation in the dark. In this study, we intend to improve the efficiency of the reduction reaction and optimize this green method by selecting other non-medicinal parts, such as the bud and the pure stem, evaluating the biosynthesis parameters and harnessing the assistance of ultrasonication. Visual observation and UV-vis spectroscopy confirmed that both safflower stem (SS) and bud (SB) mediated AgNPs (SS-AgNPs and SB-AgNPs, respectively) could be produced rapidly over time under ultrasonication. An alkaline solution could accelerate the formation of SS-AgNPs and SB-AgNPs with greater surface loads. SS-AgNPs and SB-AgNPs of small size could be obtained at pH 8.0 and 10.0, respectively. Large concentrations of SS and SB extract are also beneficial for forming AgNPs of small size. It is in acid and neutral solutions that monodispersed SS-AgNPs and SB-AgNPs can be generated. Characterization of selectively synthesized SS-AgNPs and SB-AgNPs demonstrated their spherical shape with the actual size below 30 nm covered by anions. Both SS-AgNPs and SB-AgNPs exhibited potent antioxidant and antibacterial activity. The MIC values of SS-AgNPs for S. aureus and E. coli were 12.5 and 25.0 μg mL-1, respectively, slightly superior to SB-AgNPs. In an in vitro anticancer assay, both kinds of AgNPs show potent toxicity action against the SW620 cell line with IC50 values of 5.4 and 10.6 μg mL-1, respectively. However, only SS-AgNPs reveal an inhibitory action against the HeLa cell line, where the IC50 is found to be 26.8 μg mL-1. These results provide experimental proof that the assistance of ultrasonication and adjusting the process parameters are efficient methods for promoting the reduction reaction, and both SS and SB mediated AgNPs could serve as a promising antioxidant, antibacterial and anticancer agents.
Collapse
Affiliation(s)
- Simin Wei
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese MedicineXianyang 712083China
| | - Mengke Hao
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese MedicineXianyang 712083China
| | - Zhishu Tang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese MedicineXianyang 712083China
| | - Tuan Zhou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese MedicineXianyang 712083China
| | - Fei Zhao
- College of Basic Medical Sciences, Shaanxi University of Chinese MedicineXianyang 712046China
| | - Yinghui Wang
- College of Science, Chang'an UniversityXi'an 710064China
| |
Collapse
|
15
|
Yu S, Peng W, Qiu F, Zhang G. Research progress of astragaloside IV in the treatment of atopic diseases. Biomed Pharmacother 2022; 156:113989. [DOI: 10.1016/j.biopha.2022.113989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
|