1
|
Seo CS. Simultaneous Quantification of Nine Target Compounds in Traditional Korean Medicine, Bopyeo-Tang, Using High-Performance Liquid Chromatography-Photodiode Array Detector and Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2024; 29:1171. [PMID: 38474683 DOI: 10.3390/molecules29051171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
Bopyeo-tang (BPT) is composed of six medicinal herbs (Morus alba L., Rehmannia glutinosa (Gaertn.) DC., Panax ginseng C.A.Mey., Aster tataricus L.f., Astragalus propinquus Schischkin, and Schisandra chinensis (Turcz.) Baill.) and has been used for the treatment of lung diseases. This study focused on establishing an analytical method that can simultaneously quantify nine target compounds (i.e., hydroxymethylfurfural, mulberroside A, chlorogenic acid, calycosin-7-O-glucoside, 3,5-dicaffeoylquinic acid, quercetin, kaempferol, schizandrin, and gomisin A) from a BPT sample using high-performance liquid chromatography with a photodiode array detector (HPLC-PDA) and ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS). The separation of compounds in both analyses was performed on a C18 reversed-phase column using the gradient elution of water-acetonitrile as the mobile phase. In particular, the multiple reaction monitoring mode was applied for quick and accurate detection in UPLC-MS/MS analysis. As a result of analyzing the two methods, HPLC-PDA and UPLC-MS/MS, the coefficient of determination of the regression equation for each compound was ≥0.9952, and recovery was 85.99-106.40% (relative standard deviation (RSD) < 9.58%). Precision testing of the nine compounds was verified (RSD < 10.0%). The application of these analytical assays under optimized conditions for quantitative analysis of the BPT sample gave 0.01-4.70 mg/g. Therefore, these two assays could be used successfully to gather basic data for clinical research and the quality control of BPT.
Collapse
Affiliation(s)
- Chang-Seob Seo
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
2
|
and Alternative Medicine EBC. Retracted: Bufei Decoction Improves Lung-Qi Deficiency Syndrome of Chronic Obstructive Pulmonary Disease in Rats by Regulating the Balance of Th17/Treg Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:9841968. [PMID: 38125115 PMCID: PMC10732750 DOI: 10.1155/2023/9841968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
[This retracts the article DOI: 10.1155/2022/1459232.].
Collapse
|
3
|
Li G, Wang X, Luo L, Zhang H, Song X, Zhang J, Liu D. Identification of chemical constituents of Qingjin Yiqi granules and comparative study on pharmacokinetics of 23 main bioactive components in normal and Lung-Qi deficiency rats by UPLC-MS/MS method. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1226:123802. [PMID: 37385125 DOI: 10.1016/j.jchromb.2023.123802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Qingjin Yiqi granules (QJYQ granules) are hospital preparations derived from ancient prescriptions under the guidance of academician Zhang Boli; they have the effect of invigorating qi and nourishing yin, strengthening the spleen and harmonizing the middle, clearing heat, and drying dampness, and are mainly used for patients with coronavirus disease 2019 (COVID-19) during the recovery period. However, their chemical constituents and pharmacokinetic characteristics in vivo have not been systematically investigated. In this study, 110 chemical constituents of QJYQ granules were identified using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), and a fast and sensitive ultra-high-performance liquid chromatography-mass spectrometry method was developed and validated for the target analytes. A rat model of lung-qi deficiency was established by subjecting mice to passive smoking combined with cold baths, and 23 main bioactive components of QJYQ granules were analyzed in normal and model rats after oral administration. The results showed that, compared to the normal group, there were significant differences in the pharmacokinetics of baicalin, schisandrin, ginsenoside Rb1, naringin, hesperidin, liquiritin, liquiritigenin, glycyrrhizic acid, and hastatoside in the model rats (P < 0.05), indicating that the in vivo processes of the above components changed under pathological conditions, suggesting that they may have pharmacological effects as active components. This study has helped identify QJYQ particulate substances and further supports their clinical application..
Collapse
Affiliation(s)
- Guotong Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Xinrui Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Lifei Luo
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinbo Song
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Jingze Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China.
| | - Dailin Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China.
| |
Collapse
|