1
|
Roy D, Bhattacharya B, Chakravarti R, Singh P, Arya M, Kundu A, Patil A, Siva B, Mehta S, Kazi TA, Ghosh D. LncRNAs in oncogenic microenvironment: from threat to therapy. Front Cell Dev Biol 2025; 12:1423279. [PMID: 40176927 PMCID: PMC11962222 DOI: 10.3389/fcell.2024.1423279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/09/2024] [Indexed: 04/05/2025] Open
Abstract
LncRNAs are RNA molecules of more than 200 nucleotides in length and participate in cellular metabolism and cellular responses through their diverse interactomedespite having no protein-coding capabilities. Such significant interactions also implicate the presence of lncRNAs in complex pathobiological pathways of various diseases, affecting cellular survival by modulating autophagy, inflammation and apoptosis. Proliferating cells harbour a complex microenvironment that mainly stimulate growth-specific activities such as DNA replication, repair, and protein synthesis. They also recognise damages at the macromolecular level, preventing them from reaching the next-generation. LncRNAs have shown significant association with the events occurring towards proliferation, regulating key events in dividing cells, and dysregulation of lncRNA transcriptome affects normal cellular life-cycle, promoting the development of cancer. Furthermore, lncRNAs also demonstrated an association with cancer growth and progression by regulating key pathways governing cell growth, epithelial-mesenchymal transition and metastasis. This makes lncRNAs an attractive target for the treatment of cancer and can also be used as a marker for the diagnosis and prognosis of diseases due to their differential expression in diseased samples. This review delves into the correlation of the lncRNA transcriptome with the fundamental cellular signalling and how this crosstalk shapes the complexity of the oncogenic microhabitat.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Kolkata, Kolkata, India
| |
Collapse
|
2
|
Hussen BM, Othman DI, Abdullah SR, Khudhur ZO, Samsami M, Taheri M. New insights of LncRNAs fingerprints in breast cancer progression: Tumorigenesis, drug resistance, and therapeutic opportunities. Int J Biol Macromol 2025; 287:138589. [PMID: 39662549 DOI: 10.1016/j.ijbiomac.2024.138589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Breast cancer (BC) is one of the common female cancers and it is characterized by considerable problems regarding its development and therapy. Long non-coding RNAs (lncRNAs) have been identified as significant modulators in BC development, especially, in tumorigenicity and chemoresistance. We therefore endeavor to present an up-to-date understanding of lncRNAs and their impact on BC progression and treatment, concerning molecular processes, treatment options, and use as a therapeutic opportunity. LncRNAs are novel regulators of genes that cause therapeutic resistance and directly impact the functioning of both coding and non-coding genes in BC patients, but little is known about their mechanisms of actions. Thus, additional study is required to have a deeper understanding of their modes of action and possible roles in BC disease. This study aims to investigate the functions of lncRNAs in the development of BC, with particular attention to their role in tumorigenesis, drug resistance mechanisms, and therapeutic targets. This will help to identify novel therapeutic targets and improve the effectiveness of BC treatment.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq; Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Diyar Idris Othman
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Zhikal Omar Khudhur
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Yi D, Wang Z, Yang H, Wang R, Shi X, Liu Z, Xu F, Lu Q, Chu X, Sang J. Long non-coding RNA MEG3 acts as a suppressor in breast cancer by regulating miR-330/CNN1. Aging (Albany NY) 2024; 16:1318-1335. [PMID: 38240701 PMCID: PMC10866439 DOI: 10.18632/aging.205419] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/10/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND The current study aimed to investigate the molecular mechanism of long non-coding RNA (lncRNA) MEG3 in the development of breast cancer. METHODS The regulating relationships among lncRNA MEG3, miRNA-330 and CNN1 were predicted by bioinformatics analysis of breast cancer samples in the Cancer Genome Atlas database. The differential expression of lncRNA MEG3, miRNA-330 and CNN1 was first validated in breast cancer tissues and cells. The effects of lncRNA MEG3 on breast cancer malignant properties were evaluated by manipulating its expression in MCF-7 and BT-474 cells. Rescue experiments, dual-luciferase assays, and RNA immunoprecipitation (RIP) experiments were further used to validate the relationships among lncRNA MEG3, miRNA-330 and CNN1. RESULTS Bioinformatics analysis showed that lncRNA MEGs and CNN1 were significantly downregulated in breast cancer tissues, while miR-330 was upregulated. These differential expressions were further validated in our cohort of breast cancer samples. High expression levels of lncRNA MEG3 and CNN1 as well as low expression of miR-330 were significantly associated with favorable overall survival. Overexpression of lncRNA MEG3 significantly inhibited cell viability, migration and invasion, decreased cells in S stage and promoted cell apoptosis. Dual-luciferase reporter gene assay and RIP experiments showed that lncRNA MEG3 could directly bind to miR-330. Moreover, miR-330 mimics on the basis of lncRNA MEG3 overexpression ameliorated the tumor-suppressing effects of lncRNA MEG3 in breast cancer malignant properties by decreasing CNN1 expression. CONCLUSION Our study indicated lncRNA MEG3 is a breast cancer suppressor by regulating miR-330/CNN1 axis.
Collapse
Affiliation(s)
- Dandan Yi
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zetian Wang
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Haojie Yang
- Department of Coloproctology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ru Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xianbiao Shi
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhijian Liu
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Fazhan Xu
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Qing Lu
- Department of Breast Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiao Chu
- Department of Thoracic Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Jianfeng Sang
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| |
Collapse
|
4
|
Hussain MS, Majami AA, Ali H, Gupta G, Almalki WH, Alzarea SI, Kazmi I, Syed RU, Khalifa NE, Bin Break MK, Khan R, Altwaijry N, Sharma R. The complex role of MEG3: An emerging long non-coding RNA in breast cancer. Pathol Res Pract 2023; 251:154850. [PMID: 37839358 DOI: 10.1016/j.prp.2023.154850] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
MEG3, a significant long non-coding RNA (lncRNA), substantially functions in diverse biological processes, particularly breast cancer (BC) development. Within the imprinting DLK-MEG3 region on human chromosomal region 14q32.3, MEG3 spans 35 kb and encompasses ten exons. It exerts regulatory effects through intricate interactions with miRNAs, proteins, and epigenetic modifications. MEG3's multifaceted function in BC is evident in gene expression modulation, osteogenic tissue differentiation, and involvement in bone-related conditions. Its role as a tumor suppressor is highlighted by its influence on miR-182 and miRNA-29 expression in BC. Additionally, MEG3 is implicated in acute myocardial infarction and endothelial cell function, emphasising cell-specific regulatory mechanisms. MEG3's impact on gene activity encompasses transcriptional and post-translational adjustments, including DNA methylation, histone modifications, and interactions with transcription factors. MEG3 dysregulation is linked to unfavourable outcomes and drug resistance. Notably, higher MEG3 expression is associated with enhanced survival in BC patients. Overcoming challenges such as unravelling context-specific interactions, understanding epigenetic control, and translating findings into clinical applications is imperative. Prospective endeavours involve elucidating underlying mechanisms, exploring epigenetic alterations, and advancing MEG3-based diagnostic and therapeutic approaches. A comprehensive investigation into broader signaling networks and rigorous clinical trials are pivotal. Rigorous validation through functional and molecular analyses will shed light on MEG3's intricate contribution to BC progression.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017, Jaipur, Rajasthan, India
| | - Abdullah A Majami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haider Ali
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan.
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
| | - Nasrin E Khalifa
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, 11115, Sudan
| | - Mohammed Khaled Bin Break
- Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Ruqaiyah Khan
- Department of Basic Health Sciences, Deanship of Preparatory Year for the Health Colleges, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint, Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rahul Sharma
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017, Jaipur, Rajasthan, India
| |
Collapse
|
5
|
Tu T, Yuan Y, Liu X, Liang X, Yang X, Yang Y. Progress in investigating the relationship between Schlafen5 genes and malignant tumors. Front Oncol 2023; 13:1248825. [PMID: 37771431 PMCID: PMC10523568 DOI: 10.3389/fonc.2023.1248825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
The Schlafen5(SLFN5)gene belongs to the third group of the Schlafen protein family. As a tumor suppressor gene, SLFN5 plays a pivotal role in inhibiting tumor growth, orchestrating cell cycle regulation, and modulating the extent of cancer cell infiltration and metastasis in various malignancies. However, the high expression of SLFN 5 in some tumors was positively correlated with lymph node metastasis, tumor stage, and tumor grade. This article endeavors to elucidate the reciprocal relationship between the SLFN5 gene and malignant tumors, thereby enhancing our comprehension of the intricate mechanisms underlying the SLFN5 gene and its implications for the progression, invasive potential, and metastatic behavior of malignant tumors. At the same time, this paper summarizes the basis of SLFN 5 as a new biomarker of tumor diagnosis and prognosis, and provides new ideas for the target treatment of tumor.
Collapse
Affiliation(s)
- Teng Tu
- School of Basic Medicine, Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Ye Yuan
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Xiaoxue Liu
- School of Basic Medicine, Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Xin Liang
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Xiaofan Yang
- The 1st Clinical Medical College, Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Yue Yang
- School of Basic Medicine, Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| |
Collapse
|