Network Pharmacology and Molecular Docking-Based Strategy to Investigate the Multitarget Mechanisms of Shenqi Yizhi Granule on Alzheimer's Disease.
EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022;
2022:8032036. [PMID:
35535155 PMCID:
PMC9078761 DOI:
10.1155/2022/8032036]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/13/2022] [Indexed: 01/28/2023]
Abstract
Background
Traditional Chinese herbal medicine draws more attention to explore an effective therapeutic strategy for Alzheimer's disease (AD). Shenqi Yizhi granule (SQYG), a Chinese herbal recipe, has been applied to ameliorate cognitive impairment in mild-to-moderate AD patients. However, the overall molecular mechanism of SQYG in treating AD has not been clarified.
Objective
This study aimed to investigate the molecular mechanism of SQYG on AD using an integration strategy of network pharmacology and molecular docking.
Methods
The active compounds of SQYG and common targets between SQYG and AD were screened from databases. The herb-compound network, compound-target network, and protein-protein interaction network were constructed. The enrichment analysis of common targets and molecular docking were performed.
Results
816 compounds and 307 common targets between SQYG and AD were screened. KEGG analysis revealed that common targets were mainly enriched in lipid metabolism, metal ion metabolism, IL-17 signaling pathway, GABA receptor signaling, and neuroactive ligand-receptor interaction. Molecular docking analysis showed high binding affinity between ginsenoside Rg1 and Aβ 1-42, tanshinone IIA and BACE1, baicalin, and AchE.
Conclusions
The therapeutic mechanisms of SQYG on AD were associated with regulating lipid metabolism, metal ion metabolism, IL-17 signaling pathway, and GABA receptor signaling. Ginsenoside Rg1, tanshinone IIA, baicalin, astragaloside IV, and folic acid may play an important role in AD treatment.
Collapse