1
|
Sethi A, Rezk A, Couban R, Chowdhury T. Role of midazolam on cancer progression/survival - An updated systematic review. Indian J Anaesth 2023; 67:951-961. [PMID: 38213688 PMCID: PMC10779977 DOI: 10.4103/ija.ija_731_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 01/13/2024] Open
Abstract
Background and Aims Cancer is a leading cause of mortality worldwide. Despite advancements in cancer management, cancer progression remains a challenge, requiring the development of novel therapies. Midazolam is a commonly used adjunct to anaesthesia care for various surgeries, including cancer. Recently, there has been a growing interest in exploring the potential role of midazolam as an anticancer agent; however, the exact mechanism of this linkage is yet to be investigated thoroughly. Methods Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline, this systematic review presented aggregated evidence (till November 2022) of the effects of midazolam on cancer progression and survival. All primary research article types where midazolam was administered in vivo or in vitro on subjects with cancers were included. No restrictions were applied on routes of administration or the type of cancer under investigation. Narrative synthesis depicted qualitative findings, whereas frequencies and percentages presented numerical data. Results Of 1720 citations, 19 studies were included in this review. All articles were preclinical studies conducted either in vitro (58%, 11/19) or both in vivo and in vitro (42%, 8/19). The most studied cancer was lung carcinoma (21%, 4/19). There are two main findings in this review. First, midazolam delays cancer progression (89%, 17/19). Second, midazolam reduces cancer cell survival (63%, 12/19). The two major mechanisms of these properties can be explained via inducing apoptosis (63%, 12/19) and inhibiting cancer cell proliferation (53%, 10/19). In addition, midazolam demonstrated antimetastatic properties via inhibition of cancer invasion (21%, 4/19), migration (26%, 5/19), or epithelial-mesenchymal transition (5%, 1/19). These anticancer properties of midazolam were demonstrated through different pathways when midazolam was used alone or in combination with traditional cancer chemotherapeutic agents. Conclusion This systematic review highlights that midazolam has the potential to impede cancer progression and decrease cancer cell survival. Extrapolation of these results into human cancer necessitates further investigation.
Collapse
Affiliation(s)
- Ansh Sethi
- Faculty of Science, McMaster University, Hamilton, ON, Canada
| | - Amal Rezk
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
| | - Rachel Couban
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Tumul Chowdhury
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Methods in Medicine CAM. Retracted: Midazolam Suppresses Hepatocellular Carcinoma Cell Metastasis and Enhances Apoptosis by Elevating miR-217. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:9793271. [PMID: 37811232 PMCID: PMC10551252 DOI: 10.1155/2023/9793271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
[This retracts the article DOI: 10.1155/2022/2813521.].
Collapse
|
3
|
Zhao R, Xu X, Sun L, Zhang G. Long-term effect of anesthesia choice on patients with hepatocellular carcinoma undergoing open liver resection. Front Oncol 2023; 12:960299. [PMID: 36713494 PMCID: PMC9880263 DOI: 10.3389/fonc.2022.960299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Clinical and experimental evidence suggested that anesthesia choice can influence cancer progression and patients' outcomes by modulating tumor microenvironment and tumorigenic pathways. Curative resection is the mainstay of therapy for hepatocellular carcinoma (HCC), which is an intractable disease due to high recurrence and poor prognosis. However, different anesthetics may play different roles in alleviating surgery-induced stress response and inflammatory cytokines release that are considered to be closely associated with proliferation, invasion and metastasis of tumor cells. Propofol, sevoflurane, non-steroidal anti-inflammatory drugs and local anesthetics have shown to exert anti-tumor effect on HCC mainly through regulating microRNAs or signaling pathways, while other inhalational agents, dexmedetomidine and opioids have the potential to promote tumor growth. In terms of anesthetic methods and analgesia strategies, propofol based total intravenous anesthesia and thoracic epidural analgesia could be preferred for HCC patients undergoing open liver resection rather than inhalational anesthesia. Local anesthesia techniques have great potential to attenuate perioperative stress response, hence they may contribute to more favorable outcomes. This review summarized the relations between different anesthesia choices and HCC patients' long-term outcomes as well as their underlying mechanisms. Due to the complexity of molecules interactions and signaling pathways, further studies are warranted to confirm these results so as to optimize anesthesia strategy for HCC patients.
Collapse
Affiliation(s)
- Runzhi Zhao
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiyuan Xu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Sun
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China,*Correspondence: Li Sun, ; Guohua Zhang,
| | - Guohua Zhang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Langfang, China,*Correspondence: Li Sun, ; Guohua Zhang,
| |
Collapse
|
4
|
Kang J, Zheng Z, Li X, Huang T, Rong D, Liu X, Qin M, Wang Y, Kong X, Song J, Lv C, Pan X. Midazolam exhibits antitumour and enhances the efficiency of Anti-PD-1 immunotherapy in hepatocellular carcinoma. Cancer Cell Int 2022; 22:312. [PMID: 36224624 PMCID: PMC9555186 DOI: 10.1186/s12935-022-02735-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Midazolam (MDZ) is an anaesthetic that is widely used for anxiolysis and sedation. More recently, MDZ has also been described to be related to the outcome of various types of carcinomas. However, how MDZ influences the progression of hepatocellular carcinoma (HCC) and its effects on the biological function and tumour immune microenvironment of this type of tumour remain unknown. METHODS The effects of MDZ on the proliferation, invasion, and migration of HCC cell lines were examined in vitro using the Cell Counting Kit 8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU), Transwell, and wound healing assays. Additionally, western blotting was employed to confirm that PD-L1 was expressed. Chromatin immunoprecipitation-seq (ChIP-seq) analysis was used to pinpoint the transcriptional regulation regions of NF-κB and programmed death-ligand 1 (PD-L1). A C57BL/6 mouse model was used to produce subcutaneous HCC tumors in order to evaluate the in vivo performance of MDZ. Mass spectrometry was also used to assess changes in the tumour immunological microenvironment following MDZ injection. RESULTS The HCC-LM3 and Hep-3B cell lines' proliferation, invasion, and migration were controlled by MDZ, according to the results of the CCK8, EdU, Transwell, and wound healing assays. PD-L1 expression was shown by ChIP-seq analysis to be boosted by NF-κB, and by Western blotting analysis, it was shown that MDZ downregulated the expression of NF-κB. Additionally, in vivo tests revealed that intraperitoneal MDZ injections reduced HCC tumor development and enhanced the effectiveness of anti-PD-1 therapy. The CD45+ immune cell proportions were higher in the MDZ group than in the PBS group, according to the mass spectrometry results. Injection of MDZ resulted in a decrease in the proportions of CD4+ T cells, CD8+ T cells, natural killer (NK) cells, monocytes, Tregs, and M2 macrophages and a rise in the proportion of dendritic cells. Additionally, the concentrations of the cytokines IFN-g and TNF-a were noticeably raised whereas the concentrations of the CD8+ T-cell fatigue markers ICOS, TIGIT, and TIM3 were noticeably lowered. CONCLUSION According to this study, MDZ inhibited the progression of HCC by inhibiting the NF-κB pathway and reducing the exhaustion of CD8+ T cells. In clinical practice, MDZ combined with anti-PD-1 therapy might contribute to synergistically improving the antitumor efficacy of HCC treatment.
Collapse
Affiliation(s)
- Junwei Kang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiying Zheng
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xian Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tian Huang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, Nanjing, China
| | - Dawei Rong
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xinyang Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Miaomiao Qin
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuliang Wang
- Basic Medical School, Nanjing Medical University, Nanjing, China
| | - Xiangyi Kong
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, Nanjing, China
| | - Jinhua Song
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Chengyu Lv
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Xiongxiong Pan
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|