1
|
Wang L, Wang S, Dai X, Yue G, Yin J, Xu T, Shi H, Liu T, Jia Z, Brömme D, Zhang S, Zhang D. Salvia miltiorrhiza in osteoporosis: a review of its phytochemistry, traditional clinical uses and preclinical studies (2014-2024). Front Pharmacol 2024; 15:1483431. [PMID: 39421672 PMCID: PMC11484006 DOI: 10.3389/fphar.2024.1483431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Osteoporosis becomes a global public health concern due to its rising prevalence and substantial impact on life quality. Salvia miltiorrhiza Bunge (Salviae Miltiorrhizae Radix et Rhizoma, SM) has been firstly recorded in Shen Nong's Herbal Classic, and is frequently prescribed in conjunction with other herbs for the management of osteoporosis. This systematic review aims to comprehensively analyze the recent advances of SM on osteoporosis in traditional Chinese clinical uses and preclinical investigations. Literature encompassing pertinent studies were systematically retrieved across multiple databases, including the PubMed, Web of Science, Chinese National Knowledge Infrastructure, Chinese VIP Database, and Chinese Biomedical Literature Database. Original investigations spanning from February 2014 to March 2024, including traditional Chinese medicine (TCM) clinical trials and preclinical studies, were employed to analyze the effects and actions of SM on osteoporosis. Thirty-eight TCM clinical trials were identified to employ SM in combination with other herbs for the management of primary and secondary osteoporosis. The overall efficacy was between 77% and 96.67%. Forty preclinical studies were identified to investigate the effects and actions of SM and/or its ingredients on osteoporosis. The anti-osteoporosis actions of this herb may be attributed to inhibit osteoclastogenesis/bone resorption and promote osteoblastogenesis/osteogenesis. The ethanol extracts and its ingredients (tanshinones) inhibit osteoclastogenesis/bone resorption by inhibiting the MAPK/NF-κB/NFATc1 signaling pathway and cathepsin K-induced collagen degradation. Both ethanol extracts (tanshinones) and water extracts (Sal B and tanshinol) contribute to osteoblastogenesis by promoting osteogenesis and angiogenesis via activation of the Wnt/β-catenin/VEGF and ERK/TAZ pathways, and eliminating ROS production targeting Nrf2/ARE/HO-1 pathway. In conclusions, SM may offer a novel strategy for osteoporosis management. Well-designed clinical trials are still needed to evaluate the actions of this herb and its ingredients on bone remodeling.
Collapse
Affiliation(s)
- Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, China
| | - Shan Wang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xuan Dai
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Gaiyue Yue
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiyuan Yin
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tianshu Xu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hanfen Shi
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tianyuan Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhanhong Jia
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, China
| | - Dieter Brömme
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, Canada
| | - Shuofeng Zhang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, China
| | - Dongwei Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Xia D, Qian Q, Wang S, Dong X, Liu Y. Alendronate Functionalized Bone-Targeting Pomolic Acid Liposomes Restore Bone Homeostasis for Osteoporosis Treatment. Int J Nanomedicine 2024; 19:7983-7996. [PMID: 39135672 PMCID: PMC11317228 DOI: 10.2147/ijn.s462514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/11/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Osteoporosis, characterized by dysregulation of osteoclastic bone resorption and osteoblastic bone formation, severely threatens human health during aging. However, there is still no good therapy for osteoporosis, so this direction requires our continuous attention, and there is an urgent need for new drugs to solve this problem. Methods Traditional Chinese Medicine Salvia divinorum monomer pomolic acid (PA) could effectively inhibit osteoclastogenesis and ovariectomized osteoporosis. However, its poor solubility and lack of targeting severely limits its further application. A novel bone-targeting nanomedicine (PA@TLipo) has been developed to reconstruct the osteoporotic microenvironment by encapsulating pomolic acid in alendronate-functionalized liposomes. Through a series of operations such as synthesis, purification, encapsulation, and labeling, the PA@TLipo have been prepared. Moreover, the cytotoxicity, bone targeting and anti-osteoporosis effect was verified by cell and animal experiments. Results In the aspect of targeting, the PA@TLipo can effectively aggregate on the bone tissue to reduce bone loss, and in terms of toxicity, PA@TLipo could increase the bone target ability in comparison to nontargeted liposome, thereby mitigating systemic cytotoxicity. Moreover, PA@TLipo inhibited osteoclast formation and bone resorption in vitro and reduced bone loss in ovariectomy-induced osteoporotic mice. Conclusion In this study, a novel therapeutic agent was designed and constructed to treat osteoporosis, consisting of a liposome material as the drug pocket, PA as the anti-osteoporosis drug, and ALN as the bone-targeting molecule. And our study is the first to employ a bone-targeted delivery system to deliver PA for OVX-induced bone loss, providing an innovative solution for treating osteoporosis.
Collapse
Affiliation(s)
- Demeng Xia
- Department of Pharmacy, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, 200240, People’s Republic of China
- Department of Pharmacy, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, People’s Republic of China
| | - Qingqing Qian
- Department of Pharmacy, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, 200240, People’s Republic of China
| | - Sheng Wang
- Department of Traumatic Orthopedics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434, People’s Republic of China
| | - Xiao Dong
- School of Medicine, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Ying Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, People’s Republic of China
| |
Collapse
|
3
|
Wu X, Liu C, Jiang Y, Dai T, Zhang L, Wang J, Zhao H. Coaxial Electrospun Polycaprolactone/Gelatin Nanofiber Membrane Loaded with Salidroside and Cryptotanshinone Synergistically Promotes Vascularization and Osteogenesis. Int J Nanomedicine 2024; 19:6519-6546. [PMID: 38957181 PMCID: PMC11217144 DOI: 10.2147/ijn.s461141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
Background Salidroside (SAL) is the most effective component of Rhodiola rosea, a traditional Chinese medicine. Cryptotanshinone (CT) is the main fat-soluble extract of Salvia miltiorrhiza, exhibiting considerable potential for application in osteogenesis. Herein, a polycaprolactone/gelatin nanofiber membrane loaded with CT and SAL (PSGC membrane) was successfully fabricated via coaxial electrospinning and characterized. Methods and Results This membrane capable of sustained and controlled drug release was employed in this study. Co-culturing the membrane with bone marrow mesenchymal stem cells and human umbilical vein endothelial cells revealed excellent biocompatibility and demonstrated osteogenic and angiogenic capabilities. Furthermore, drug release from the PSGC membrane activated the Wnt/β-catenin signaling pathway and promoted osteogenic differentiation and vascularization. Evaluation of the membrane's vascularization and osteogenic capacities involved transplantation onto a rat's subcutaneous area and assessing rat cranium defects for bone regeneration, respectively. Microcomputed tomography, histological tests, immunohistochemistry, and immunofluorescence staining confirmed the membrane's outstanding angiogenic capacity two weeks post-operation, with a higher incidence of osteogenesis observed in rat cranial defects eight weeks post-surgery. Conclusion Overall, the SAL- and CT-loaded coaxial electrospun nanofiber membrane synergistically enhances bone repair and regeneration.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Gansu Provincial Maternity and Child-Care Hospital, Gansu Provincial Central Hospital, Gansu, People’s Republic of China
- Changzhou Medical Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Chun Liu
- Changzhou Medical Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Yuqing Jiang
- Changzhou Medical Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Ting Dai
- Gansu Provincial Maternity and Child-Care Hospital, Gansu Provincial Central Hospital, Gansu, People’s Republic of China
- Changzhou Medical Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Linxiang Zhang
- Gansu Provincial Maternity and Child-Care Hospital, Gansu Provincial Central Hospital, Gansu, People’s Republic of China
- Changzhou Medical Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Jiafeng Wang
- Gansu Provincial Maternity and Child-Care Hospital, Gansu Provincial Central Hospital, Gansu, People’s Republic of China
- Changzhou Medical Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Hongbin Zhao
- Gansu Provincial Maternity and Child-Care Hospital, Gansu Provincial Central Hospital, Gansu, People’s Republic of China
- Changzhou Medical Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| |
Collapse
|
4
|
REN P, WANG Q, BAI W, SUN M, LIU Z, GAO M, WANG L, PENG B, XU L. Identifying the effective combination of acupuncture and traditional Chinese medicinal herbs for postmenopausal osteoporosis therapy through studies of their molecular regulation of bone homeostasis. J TRADIT CHIN MED 2024; 44:212-219. [PMID: 38213257 PMCID: PMC10774716 DOI: 10.19852/j.cnki.jtcm.20230904.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/08/2023] [Indexed: 01/13/2024]
Abstract
Worldwide, as the population age, osteoporosis is becoming increasingly common, and osteoporotic fractures have a significant economic burden. Postmenopausal women are the most susceptible to developing osteoporosis and the most critical time to prevent it is during the perimenopausal and early menopausal years. In this regard, we hypothesize rational combination of acupuncture and Traditional Chinese Medicine (TCM) in the form of herbal extract could prevent osteoporosis in women. Estrogen deficiency during menopause causes low-level inflammation that stimulates the formation of osteoclasts, the bone-resorbing cells, and simultaneously inhibits the viability and function of osteoblasts, the bone-forming cells. The most potent inflammatory cytokine in skeletal homeostasis is the receptor activator of nuclear factor kappa B ligand (RANKL) that stimulates osteoclast function. Conversely, the canonical Wnt pathway is essential for osteoblastogenesis and bone formation, and estrogen deficiency leads to diminished functioning of this pathway. TCM and acupuncture could target the RANKL and the Wnt pathway in favorable ways to prevent the accelerated bone loss experienced during the early menopausal stage and promote the gain in bone mass in postmenopausal women. In this review, we propose a rational combination of specific TCM and acupuncture targeting those signaling molecules/pathways by the drugs that are in clinical use for the treatment of postmenopausal osteoporosis. Our rational approach revealed that Danshen (Radix Salviae Miltiorrhizae) could exert a synergistic effect with acupuncture. We then propose a translational path for developing the putative combination in women with postmenopausal osteoporosis to curtail the risk of osteoporotic fractures.
Collapse
Affiliation(s)
- Ping REN
- 1 Department of Health Management, the Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun 130117, China
| | - Quanwu WANG
- 2 Department of Dirty Tuina, the affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130117, China
| | - Wei BAI
- 3 Department of Acupuncture, the affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130117, China
| | - Miao SUN
- 4 Department of Rehabilitation Medicine, the 924th Hospital of the PLA Joint Logistic Support Force, Foshan 528226, China
| | - Zheling LIU
- 5 Department of College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ming GAO
- 5 Department of College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Liang WANG
- 5 Department of College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Bo PENG
- 5 Department of College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Liguang XU
- 3 Department of Acupuncture, the affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
5
|
Li Q, Tian C, Liu X, Li D, Liu H. Anti-inflammatory and antioxidant traditional Chinese Medicine in treatment and prevention of osteoporosis. Front Pharmacol 2023; 14:1203767. [PMID: 37441527 PMCID: PMC10335577 DOI: 10.3389/fphar.2023.1203767] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
A metabolic bone disorder called osteoporosis is characterized by decreased bone mass and compromised microarchitecture. This condition can deteriorate bones and raise the risk of fractures. The two main causes of osteoporosis are an increase in osteoclast activity or quantity and a decrease in osteoblast viability. Numerous mechanisms, including estrogen shortage, aging, chemical agents, and decreased mechanical loads, have been linked to osteoporosis. Inflammation and oxidative stress have recently been linked to osteoporosis, according to an increasing number of studies. The two primary medications used to treat osteoporosis at the moment are bisphosphonates and selective estrogen receptor modulators (SERMs). These medications work well for osteoporosis brought on by aging and estrogen deprivation, however, they do not target inflammation and oxidative stress-induced osteoporosis. In addition, these drugs have some limitations that are attributed to various side effects that have not been overcome. Traditional Chinese medicine (TCM) has been applied in osteoporosis for many years and has a high safety profile. Therefore, in this review, literature related to botanical drugs that have an effect on inflammation and oxidative stress-induced osteoporosis was searched for. Moreover, the pharmacologically active ingredients of these herbs and the pathways were discussed and may contribute to the discovery of more safe and effective drugs for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Qian Li
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| | - Ciqiu Tian
- Hubei University of Chinese Medicine, City Wuhan, Hubei Province, China
| | - Xiangjie Liu
- Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Geriatric Department, City Wuhan, Hubei Province, China
| | - Dinglin Li
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| | - Hao Liu
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| |
Collapse
|
6
|
Zhu F, Li W, Wang L, Dai B, Liu Z, Wu H, Deng T. Study on the treatment of postmenopausal osteoporosis with quercetin in Liuwei Dihuang Pill based on network pharmacology. J Orthop Surg Res 2023; 18:21. [PMID: 36624462 PMCID: PMC9827666 DOI: 10.1186/s13018-022-03470-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Liuwei Dihuang Pill (LP) was verified to alleviate postmenopausal osteoporosis (PMOP) development. Nevertheless, the major constituent of LP and the related network pharmacology study remain unexplored. METHODS Protein-protein interaction was established to identify the downstream target of LP in PMOP, and the related signaling pathway was investigated by bioinformatics analysis. MC3T3-E1 cells were added to ferric ammonium citrate (FAC) to mimic osteoporosis in vitro. The osteoblasts were identified by Alizarin red staining. Western blot was applied to evaluate protein levels. In addition, Cell Counting Kit-8 (CCK8) assay was applied to assess cell viability, and cell apoptosis was assessed by flow cytometry. RESULTS Quercetin was the major constituent of LP. In addition, quercetin significantly reversed FAC-induced inhibition of osteogenic differentiation in MC3T3-E1 cells. In addition, quercetin notably abolished the FAC-induced upregulation of Bax, Caspase-3, FOS, JUN, TGFB1 and PPARD. In contrast, Bcl-2, p-mTOR/mTOR, p-AKT/AKT and p-PI3K/PI3K levels in MC3T3-E1 cells were reduced by FAC, which was restored by quercetin. Meanwhile, FAC notably inhibited the viability of MC3T3-E1 cells via inducing apoptosis, but this impact was abolished by quercetin. Furthermore, quercetin could reverse pcDNA3.1-FOS-mediated growth of FAC-treated osteoblasts by mediating PI3K/AKT/mTOR signaling. CONCLUSION Quercetin alleviated the progression of PMOP via activation of PI3K/AKT/mTOR signaling. Hence, this study would shed novel insights into discovering new methods against PMOP.
Collapse
Affiliation(s)
- Fuping Zhu
- grid.477978.2Department of Foot and Ankle Orthopedics, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Wuping Li
- grid.477978.2Department of Foot and Ankle Orthopedics, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Linhua Wang
- grid.477978.2Department of Extremities and Arthrosis, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Bing Dai
- grid.477978.2Department of Pharmacy, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Zongyi Liu
- grid.477978.2Department of Foot and Ankle Orthopedics, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Hang Wu
- grid.477978.2Department of Foot and Ankle Orthopedics, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Ting Deng
- grid.452708.c0000 0004 1803 0208Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, No. 139, Renmin Road, Furong District, Changsha, Hunan China
| |
Collapse
|