1
|
Neves MAD, de Jesus CM, de Oliveira JL, Buna SDSS, Silva LA, Fraceto LF, da Rocha CQ. Zein Nanoparticles-Loaded Flavonoids-Rich Fraction from Fridericia platyphylla: Potential Antileishmanial Applications. Pharmaceutics 2024; 16:1603. [PMID: 39771581 PMCID: PMC11678320 DOI: 10.3390/pharmaceutics16121603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Leishmaniasis, caused by protozoa of the genus Leishmania, is a major global health issue due to the limitations of current treatments, which include low efficacy, high costs, and severe side effects. This study aimed to develop a more effective and less toxic therapy by utilizing zein nanoparticles (ZNPs) in combination with a nonpolar fraction (DCMF) from Fridericia platyphylla (Syn. Arrabidaea brachypoda), a plant rich in dimeric flavonoids called brachydins. Methods: Zein nanoparticles were used as carriers to encapsulate DCMF. The system was characterized by measuring particle diameter, polydispersity index, zeta potential, and encapsulation efficiency. Analytical techniques such as FTIR, DSC, and AFM were employed to confirm the encapsulation and stability of DCMF. Antileishmanial activity was assessed against Leishmania amazonensis promastigotes and amastigotes, while cytotoxicity was tested on RAW264.7 macrophages. Results: The ZNP-DCMF system exhibited favorable properties, including a particle diameter of 141 nm, a polydispersity index below 0.2, and a zeta potential of 11.3 mV. DCMF was encapsulated with an efficiency of 94.6% and remained stable for 49 days. In antileishmanial assays, ZNP-DCMF inhibited the viability of promastigotes with an IC50 of 36.33 μg/mL and amastigotes with an IC50 of 0.72 μg/mL, demonstrating higher selectivity (SI = 694.44) compared to DCMF alone (SI = 43.11). ZNP-DCMF was non-cytotoxic to RAW264.7 macrophages, with a CC50 > 500 μg/mL. Conclusions: Combining F. platyphylla DCMF with zein nanoparticles as a carrier presents a promising approach for leishmaniasis treatment, offering improved efficacy, reduced toxicity, and protection of bioactive compounds from degradation.
Collapse
Affiliation(s)
- Monica Araujo das Neves
- PostGraduate Program in Chemistry, Center for Exact Sciences and Technology (CCET), UFMA-Federal University of Maranhão, São Luís 65080-805, Brazil; (M.A.d.N.); (S.d.S.S.B.)
| | - Caroline Martins de Jesus
- PostGraduate Program in Health Sciences, Center for Biological and Health Sciences (CCBS), UFMA-Federal University of Maranhão, São Luís 65080-805, Brazil; (C.M.d.J.); (L.A.S.)
| | - Jhones Luiz de Oliveira
- Department of Environmental Engineering, Institute of Science and Technology of Sorocaba, São Paulo State University (UNESP), Sorocaba 18087-180, Brazil; (J.L.d.O.); (L.F.F.)
| | - Samuel dos Santos Soares Buna
- PostGraduate Program in Chemistry, Center for Exact Sciences and Technology (CCET), UFMA-Federal University of Maranhão, São Luís 65080-805, Brazil; (M.A.d.N.); (S.d.S.S.B.)
| | - Lucilene Amorim Silva
- PostGraduate Program in Health Sciences, Center for Biological and Health Sciences (CCBS), UFMA-Federal University of Maranhão, São Luís 65080-805, Brazil; (C.M.d.J.); (L.A.S.)
| | - Leonardo Fernandes Fraceto
- Department of Environmental Engineering, Institute of Science and Technology of Sorocaba, São Paulo State University (UNESP), Sorocaba 18087-180, Brazil; (J.L.d.O.); (L.F.F.)
| | - Cláudia Quintino da Rocha
- PostGraduate Program in Chemistry, Center for Exact Sciences and Technology (CCET), UFMA-Federal University of Maranhão, São Luís 65080-805, Brazil; (M.A.d.N.); (S.d.S.S.B.)
| |
Collapse
|
2
|
das Neves MA, do Nascimento JR, Maciel-Silva VL, Dos Santos AM, Junior JDJGV, Coelho AJS, Lima MIS, Pereira SRF, da Rocha CQ. Anti-Leishmania activity and molecular docking of unusual flavonoids-rich fraction from Arrabidaea brachypoda (Bignoniaceae). Mol Biochem Parasitol 2024; 259:111629. [PMID: 38750697 DOI: 10.1016/j.molbiopara.2024.111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
Leishmaniases comprise a group of infectious parasitic diseases caused by various species of Leishmania and are considered a significant public health problem worldwide. Only a few medications, including miltefosine, amphotericin B, and meglumine antimonate, are used in current therapy. These medications are associated with severe side effects, low efficacy, high cost, and the need for hospital support. Additionally, there have been occurrences of drug resistance. Additionally, only a limited number of drugs, such as meglumine antimonate, amphotericin B, and miltefosine, are available, all of which are associated with severe side effects. In this context, the need for new effective drugs with fewer adverse effects is evident. Therefore, this study investigated the anti-Leishmania activity of a dichloromethane fraction (DCMF) extracted from Arrabidaea brachypoda roots. This fraction inhibited the viability of L. infantum, L. braziliensis, and L. Mexicana promastigotes, with IC50 values of 10.13, 11.44, and 11.16 µg/mL, respectively, and against L. infantum amastigotes (IC50 = 4.81 µg/mL). Moreover, the DCMF exhibited moderate cytotoxicity (CC50 = 25.15) towards RAW264.7 macrophages, with a selectivity index (SI) of 5.2. Notably, the DCMF caused damage to the macrophage genome only at 40 µg/mL, which is greater than the IC50 found for all Leishmania species. The results suggest that DCMF demonstrates similar antileishmanial effectiveness to isolated brachydin B, without causing genotoxic effects on mammalian cells. This finding is crucial because the isolation of the compounds relies on several steps and is very costly while obtaining the DCMF fraction is a simple and cost-effective process. Furthermore, In addition, the potential mechanisms of action of brachydins were also investigated. The computational analysis indicates that brachydin compounds bind to the Triosephosphate isomerase (TIM) enzyme via two main mechanisms: destabilizing the interface between the homodimers and interacting with catalytic residues situated at the site of binding. Based on all the results, DCMF exhibits promise as a therapeutic agent for leishmaniasis due to its significantly reduced toxicity in comparison to the adverse effects associated with current reference treatments.
Collapse
Affiliation(s)
- Monica A das Neves
- UFMA-Federal University of Maranhão, Center for Exact Sciences and Technology (CCET), Post Graduate Program in Chemistry, São Luís CEP 65080-805, Brazil
| | - Jessyane R do Nascimento
- UNESP, São Paulo State University Júlio de Mesquita Filho, Institute of Chemistry, Post Graduate Program in Chemistry, Araraquara CEP 14800-060, Brazil
| | - Vera Lucia Maciel-Silva
- UEMA, Maranhão State University, Center for Education, Exact and Natural Sciences (CECEN), Department of Biology, CEP: 65055-310, São Luís, Brazil
| | - Alberto M Dos Santos
- UNICAMP - University of Campinas, Institute of Chemistry and Center for Computer in Engineering and Sciences, Campinas CEP 13084-862, Brazil
| | | | - Ana Jessica S Coelho
- UFMA-Federal University of Maranhão, Laboratory of Genetics and Molecular Biology, Department of Biology, São Luís CEP 65080-805, Brazil
| | - Mayara Ingrid S Lima
- UFMA-Federal University of Maranhão, Laboratory of Genetics and Molecular Biology, Department of Biology, São Luís CEP 65080-805, Brazil
| | - Silma Regina F Pereira
- UFMA-Federal University of Maranhão, Laboratory of Genetics and Molecular Biology, Department of Biology, São Luís CEP 65080-805, Brazil
| | - Cláudia Q da Rocha
- UFMA-Federal University of Maranhão, Center for Exact Sciences and Technology (CCET), Post Graduate Program in Chemistry, São Luís CEP 65080-805, Brazil.
| |
Collapse
|
3
|
Dos Santos Bezerra WA, Tavares CP, Lima VAS, da Rocha CQ, da Silva Vaz Junior I, Michels PAM, Costa Junior LM, Dos Santos Soares AM. In silico and In vitro Assessment of Dimeric Flavonoids (Brachydins) on Rhipicephalus microplus Glutathione S-transferase. Med Chem 2024; 20:912-919. [PMID: 38847259 DOI: 10.2174/0115734064298481240517072216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Rhipicephalus microplus, an important cattle ectoparasite, is responsible for a substantial negative impact on the economy due to productivity loss. The emergence of resistance to widely used commercial acaricides has sparked efforts to explore alternative products for tick control. METHODS To address this challenge, innovative solutions targeting essential tick enzymes, like glutathione S-transferase (GST), have gained attention. Dimeric flavonoids, particularly brachydins (BRAs), have demonstrated various biological activities, including antiparasitic effects. The objectives of this study were to isolate four dimeric flavonoids from Fridericia platyphylla roots and to evaluate their potential as inhibitors of R. microplus GST. RESULTS In vitro assays confirmed the inhibition of R. microplus GST by BRA-G, BRA-I, BRA-J, and BRA-K with IC50 values of 0.075, 0.079, 0.075, and 0.058 mg/mL, respectively, with minimal hemolytic effects. Molecular docking of BRA-G, BRA-I, BRA-J, and BRA-K in a threedimensional model of R. microplus GST revealed predicted interactions with MolDock Scores of - 142.537, -126.831, -108.571, and -123.041, respectively. Both in silico and in vitro analyses show that brachydins are potential inhibitors of R. microplus GST. CONCLUSION The findings of this study deepen our understanding of GST inhibition in ticks, affirming its viability as a drug target. This knowledge contributes to the advancement of treatment modalities and strategies for improved tick control.
Collapse
Affiliation(s)
- Wallyson André Dos Santos Bezerra
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia - Bionorte, Universidade Federal do Maranhão, São Luís, MA, Brazil
| | - Caio Pavão Tavares
- Laboratório de Controle de Parasitos, Departamento de Patologia, Universidade Federal do Maranhão, São Luís, MA, Brazil
| | - Victor Antônio Silva Lima
- Laboratório de Química de Produtos Naturais, Departamento de Química, Universidade Federal do Maranhão, São Luís, MA, Brazil
| | - Cláudia Quintino da Rocha
- Laboratório de Química de Produtos Naturais, Departamento de Química, Universidade Federal do Maranhão, São Luís, MA, Brazil
| | - Itabajara da Silva Vaz Junior
- Faculdade de Veterinária, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paul A M Michels
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Livio Martins Costa Junior
- Laboratório de Química de Produtos Naturais, Departamento de Química, Universidade Federal do Maranhão, São Luís, MA, Brazil
| | - Alexandra Martins Dos Santos Soares
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia - Bionorte, Universidade Federal do Maranhão, São Luís, MA, Brazil
- Laboratório de Bioquímica Vegetal, Departamento de Engenharia Química, Universidade Federal do Maranhão, São Luís, MA, Brazil
| |
Collapse
|
4
|
Maciel-Silva VL, da Rocha CQ, Alencar LMR, Castelo-Branco PV, Sousa IHD, Azevedo-Santos AP, Vale AAM, Monteiro SG, Soares REP, Guimarães SJA, Nascimento JRD, Pereira SRF. Unusual dimeric flavonoids (brachydins) induce ultrastructural membrane alterations associated with antitumor activity in cancer cell lines. Drug Chem Toxicol 2022:1-12. [PMID: 35635136 DOI: 10.1080/01480545.2022.2080217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Notwithstanding the advances in molecular target-based drugs, chemotherapy remains the most common cancer treatment, despite its high toxicity. Consequently, effective anticancer therapies with fewer adverse effects are needed. Therefore, this study aimed to determine the anticancer activity of the dichloromethane fraction (DCMF) isolated from Arrabidae brachypoda roots, whose components are three unusual dimeric flavonoids. The toxicity of DCMF was investigated in breast (MCF-7), prostate (DU145), and cervical (HeLa) tumor cells, as well as non-tumor cells (PNT2), using sulforhodamine B (cell viability), Comet (genotoxicity), clonogenicity (reproductive capacity) and wound healing (cell migration) assays, and atomic force microscopy (AFM) for ultrastructural cell membrane alterations. Molecular docking revealed affinity between albumin and each rare flavonoid, supporting the impact of fetal bovine serum in DCMF antitumor activity. The IC50 values for MCF7, HeLa, and DU145 were 2.77, 2.46, and 2.51 µg/mL, respectively, and 4.08 µg/mL for PNT2. DCFM was not genotoxic to tumor or normal cells when exposed to twice the IC50 for up to 24 h, but it inhibited tumor cell migration and reproduction compared to normal cells. Additionally, AFM revealed alterations in the ultrastructure of tumor nuclear membrane surfaces, with a positive correlation between DCMF concentration and tumor cell roughness. Finally, we found a negative correlation between roughness and the ability of DCMF-treated tumor cells to migrate and form colonies with more than 50 cells. These findings suggest that DCFM acts by causing ultrastructural changes in tumor cell membranes while having fewer toxicological effects on normal cells.
Collapse
Affiliation(s)
- Vera Lucia Maciel-Silva
- Postgraduate Program in Biodiversity and Biotechnology-Bionorte, Federal University of Maranhão, São Luis, Brazil.,Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luis, Brazil.,Department of Biology, State University of Maranhão, São Luis, Brazil
| | - Claudia Quintino da Rocha
- Laboratory of Natural Products, Department of Chemistry, Federal University of Maranhão, São Luís, Brazil
| | | | | | - Israel Higino de Sousa
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luis, Brazil
| | - Ana Paula Azevedo-Santos
- Laboratory of Immunology Applied to Cancer, Department of Physiological Sciences, Federal University of Maranhão, São Luis, Brazil
| | - André Alvares Marques Vale
- Laboratory of Immunology Applied to Cancer, Department of Physiological Sciences, Federal University of Maranhão, São Luis, Brazil.,Postgraduate Program in Health Sciences, Federal University of Maranhão, Maranhão, Brazil
| | - Silvio Gomes Monteiro
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luis, Brazil
| | - Rossy-Eric Pereira Soares
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luis, Brazil
| | - Sulayne Janayna Araujo Guimarães
- Laboratory of Immunology Applied to Cancer, Department of Physiological Sciences, Federal University of Maranhão, São Luis, Brazil.,Postgraduate Program in Health Sciences, Federal University of Maranhão, Maranhão, Brazil
| | | | - Silma Regina Ferreira Pereira
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luis, Brazil
| |
Collapse
|