1
|
Ye L, Tong X, Pan K, Shi X, Xu B, Yao X, Zhuo L, Fang S, Tang S, Jiang Z, Xue X, Lu W, Guo G. Identification of potential novel N6-methyladenosine effector-related lncRNA biomarkers for serous ovarian carcinoma: a machine learning-based exploration in the framework of 3P medicine. Front Pharmacol 2024; 15:1351929. [PMID: 38895621 PMCID: PMC11185051 DOI: 10.3389/fphar.2024.1351929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/04/2024] [Indexed: 06/21/2024] Open
Abstract
Background Serous ovarian carcinoma (SOC) is considered the most lethal gynecological malignancy. The current lack of reliable prognostic biomarkers for SOC reduces the efficacy of predictive, preventive, and personalized medicine (PPPM/3PM) in patients with SOC, leading to unsatisfactory therapeutic outcomes. N6-methyladenosine (m6A) modification-associated long noncoding RNAs (lncRNAs) are effective predictors of SOC. In this study, an effective risk prediction model for SOC was constructed based on m6A modification-associated lncRNAs. Methods Transcriptomic data and clinical information of patients with SOC were downloaded from The Cancer Genome Atlas. Candidate lncRNAs were identified using univariate and multivariate and least absolute shrinkage and selection operator-penalized Cox regression analyses. The molecular mechanisms of m6A effector-related lncRNAs were explored via Gene Ontology, pathway analysis, gene set enrichment analysis, and gene set variation analysis (GSVA). The extent of immune cell infiltration was assessed using various algorithms, including CIBERSORT, Microenvironment Cell Populations counter, xCell, European Prospective Investigation into Cancer and Nutrition, and GSVA. The calcPhenotype algorithm was used to predict responses to the drugs commonly used in ovarian carcinoma therapy. In vitro experiments, such as migration and invasion Transwell assays, wound healing assays, and dot blot assays, were conducted to elucidate the functional roles of candidate lncRNAs. Results Six m6A effector-related lncRNAs that were markedly associated with prognosis were used to establish an m6A effector-related lncRNA risk model (m6A-LRM) for SOC. Immune microenvironment analysis suggested that the high-risk group exhibited a proinflammatory state and displayed increased sensitivity to immunotherapy. A nomogram was constructed with the m6A effector-related lncRNAs to assess the prognostic value of the model. Sixteen drugs potentially targeting m6A effector-related lncRNAs were identified. Furthermore, we developed an online web application for clinicians and researchers (https://leley.shinyapps.io/OC_m6A_lnc/). Overexpression of the lncRNA RP11-508M8.1 promoted SOC cell migration and invasion. METTL3 is an upstream regulator of RP11-508M8.1. The preliminary regulatory axis METTL3/m6A/RP11-508M8.1/hsa-miR-1270/ARSD underlying SOC was identified via a combination of in vitro and bioinformatic analyses. Conclusion In this study, we propose an innovative prognostic risk model and provide novel insights into the mechanism underlying the role of m6A-related lncRNAs in SOC. Incorporating the m6A-LRM into PPPM may help identify high-risk patients and personalize treatment as early as possible.
Collapse
Affiliation(s)
- Lele Ye
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinya Tong
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kan Pan
- First Clinical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyu Shi
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Binbing Xu
- First Clinical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuyang Yao
- First Clinical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linpei Zhuo
- Haiyuan College, Kunming Medical University, Kunming, Yunnan, China
| | - Su Fang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sangsang Tang
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhuofeng Jiang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiguo Lu
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center of Uterine Cancer Diagnosis and Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Gangqiang Guo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Gong Z, Ge L, Ye S, Xu Y. Hsa_circ_0000069 Accelerates Cervical Cancer Progression by Sponging miR-1270 to Facilitate CPEB4 Expression. Biochem Genet 2024; 62:1638-1656. [PMID: 37667097 DOI: 10.1007/s10528-023-10494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/06/2023] [Indexed: 09/06/2023]
Abstract
The critical importance of circular RNAs (circRNAs) in human cancers, including cervical cancer (CC), has been discovered in recent years. However, the function and mechanism of hsa_circ_0000069 (circ_0000069) in CC have been fully understood. The expression levels of circ_0000069, microRNAs (miR-1270, miR-1276 and miR-620) and cytoplasmic polyadenylation element binding protein 4 (CPEB4) mRNA were detected by quantitative real time polymerase chain reaction (qRT-PCR). Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, wound healing, transwell and tube formation assays were used to clarify the effects of circ_0000069 on the functional behaviors of CC cells. The binding relationships among miR-1270, circ_0000069 and CPEB4 were detected by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. A xenograft tumor model was established to explore the effect of circ_0000069 on tumor growth in vivo. Circ_0000069 was upregulated in CC clinical samples and cell lines, and its expression was associated with the clinical stage of CC patients. Circ_0000069 knockdown significantly decreased cell proliferation, invasion, migration, and tube formation and increased cell apoptosis in vitro. Moreover, miR-1270 was a direct target of circ_0000069, and CPEB4 was the downstream target of miR-1270. Knockdown of miR-1270 reversed the inhibitory effect of circ_0000069 knockdown on CC progression, and CPEB4 overexpression overturned the effect of miR-1270 on CC progression. In xenograft experiments, the oncogenic effect of circ_0000069 on tumor growth was verified. Altogether, circ_0000069 adsorbed miR-1270 to upregulate CPEB4 expression, thereby promoting the malignant phenotypes of CC cells. Circ_0000069 might be a potential target for treatment of CC.
Collapse
Affiliation(s)
- Zhiyong Gong
- Obstetrics and Gynecology Department, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Lingyan Ge
- Obstetrics and Gynecology Department, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453, Tiyuchang Road, Hangzhou, 310007, China
| | - Saiya Ye
- Obstetrics and Gynecology Department, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453, Tiyuchang Road, Hangzhou, 310007, China
| | - Yinyu Xu
- Obstetrics and Gynecology Department, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453, Tiyuchang Road, Hangzhou, 310007, China.
| |
Collapse
|
3
|
Cheng S, Jia Y, Wu J, Li J, Cao Y. Helicobacter pylori infection induces gastric cancer cell malignancy by targeting HOXA-AS2/miR-509-3p/MMD2 axis. Genes Genomics 2024; 46:647-657. [PMID: 38573409 DOI: 10.1007/s13258-024-01500-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/17/2023] [Indexed: 04/05/2024]
Abstract
BACKGROUND Helicobacter pylori (Hp) infection is considered to be the strongest risk factor for gastric cancer (GC). Long non-coding RNA HOXA cluster antisense RNA 2 (HOXA-AS2) has been indicated to be significantly related to Hp infection in GC patients. OBJECTIVE To investigate the detailed role and molecular mechanism of lncRNA HOXA-AS2 in Hp-induced GC. METHODS GC cells were treated with Hp filtrate for cell infection. Bioinformatics tools were utilized for survival analysis and prediction of HOXA-AS2 downstream molecules. Western blotting and RT-qPCR were utilized for assessing protein and RNA levels, respectively. Flow cytometry, colony formation and CCK-8 assays were implemented for testing HOXA-AS2 functions in Hp-infected GC cells. HOXA-AS2 localization in cells was determined by subcellular fractionation assay. The relationship between RNAs were measured by luciferase reporter assay. RESULTS Hp infection induced HOXA-AS2 upregulation in GC cells. Knocking down HOXA-AS2 restrained cell proliferation but promoted cell apoptosis with Hp infection. HOXA-AS2 bound to miR-509-3p, and miR-509-3p targeted monocyte to macrophage differentiation associated 2 (MMD2). Overexpressing MMD2 reversed HOXA-AS2 depletion-mediated suppression on cell aggressiveness with Hp infection. CONCLUSION Hp infection induces the aggressiveness of GC cells by regulating HOXA-AS2/miR-509-3p/MMD2 axis.
Collapse
Affiliation(s)
- Si Cheng
- Department of Gastroenterology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, No. 228, Jingui Road, Xian'an District, Xianning, 437100, Hubei, China
| | - Yu Jia
- Department of Gastroenterology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, No. 228, Jingui Road, Xian'an District, Xianning, 437100, Hubei, China
| | - Juan Wu
- Department of Gastroenterology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, No. 228, Jingui Road, Xian'an District, Xianning, 437100, Hubei, China
| | - Jiguang Li
- Department of Anus and Intestine Surgery, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, No. 228, Jingui Road, Xian'an District, Xianning, 437100, Hubei, China.
| | - Yan Cao
- Department of Gastroenterology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, No. 228, Jingui Road, Xian'an District, Xianning, 437100, Hubei, China.
| |
Collapse
|
4
|
Healthcare Engineering JO. Retracted: MiR-1270 Suppresses the Malignant Progression of Breast Cancer via Targeting MMD2. JOURNAL OF HEALTHCARE ENGINEERING 2023; 2023:9843621. [PMID: 37564800 PMCID: PMC10412138 DOI: 10.1155/2023/9843621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
[This retracts the article DOI: 10.1155/2022/3677720.].
Collapse
|
5
|
Alimohammadi M, Gholinezhad Y, Mousavi V, Kahkesh S, Rezaee M, Yaghoobi A, Mafi A, Araghi M. Circular RNAs: novel actors of Wnt signaling pathway in lung cancer progression. EXCLI JOURNAL 2023; 22:645-669. [PMID: 37636026 PMCID: PMC10450211 DOI: 10.17179/excli2023-6209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/20/2023] [Indexed: 08/29/2023]
Abstract
Circular RNAs (CircRNAs) are a class of regulatory RNA transcripts, which are ubiquitously expressed in eukaryotes. CircRNA dysregulation has been shown to disrupt the interaction of the Wnt/β-catenin pathway, which regulates several biological processes involved in tumorigenesis, thereby contributing to the development and progression of cancer. Interactions of tumor-derived circRNAs with the Wnt/β-catenin signaling pathway provide both clinical diagnostic biomarkers and promising therapeutic targets. In this review, we outlined current evidence on the roles of circRNAs associated with the Wnt/β-catenin pathway in regulating lung cancer formation and development. We believe that our findings will assist in the advancement or establishment of circRNA-based lung cancer therapeutic approaches.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahide Mousavi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Yaghoobi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmood Araghi
- Department of Pathology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
6
|
Taheriazam A, Bayanzadeh SD, Heydari Farahani M, Mojtabavi S, Zandieh MA, Gholami S, Heydargoy MH, Jamali Hondori M, Kangarloo Z, Behroozaghdam M, Khorrami R, Sheikh Beig Goharrizi MA, Salimimoghadam S, Rashidi M, Hushmandi K, Entezari M, Hashemi M. Non-coding RNA-based therapeutics in cancer therapy: An emphasis on Wnt/β-catenin control. Eur J Pharmacol 2023; 951:175781. [PMID: 37179043 DOI: 10.1016/j.ejphar.2023.175781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/22/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Non-coding RNA transcripts are RNA molecules that have mainly regulatory functions and they do not encode proteins. microRNAs (miRNAs), lncRNAs and circRNAs are major types of this family and these epigenetic factors participate in disease pathogenesis, especially cancer that their abnormal expression may lead to cancer progression. miRNAs and lncRNAs possess a linear structure, whereas circRNAs possess ring structures and high stability. Wnt/β-catenin is an important factor in cancer with oncogenic function and it can increase growth, invasion and therapy resistance in tumors. Wnt upregulation occurs upon transfer of β-catenin to nucleus. Interaction of ncRNAs with Wnt/β-catenin signaling can determine tumorigenesis. Wnt upregulation is observed in cancers and miRNAs are able to bind to 3'-UTR of Wnt to reduce its level. LncRNAs can directly/indirectly regulate Wnt and in indirect manner, lncRNAs sponge miRNAs. CircRNAs are new emerging regulators of Wnt and by its stimulation, they increase tumor progression. CircRNA/miRNA axis can affect Wnt and carcinogenesis. Overall, interaction of ncRNAs with Wnt can determine proliferation rate, migration ability and therapy response of cancers. Furthermore, ncRNA/Wnt/β-catenin axis can be utilized as biomarker in cancer and for prognostic applications in patients.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e Kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Sarah Mojtabavi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Heydargoy
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Microbiology, Shahr-e Ghods Branch, Azad Islamic University, Tehran, Iran
| | - Maryam Jamali Hondori
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zahra Kangarloo
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
7
|
Wang M, Li M, Liu Z, Jiang C, Lv H, Yang Q. Hsa_circ_0128846 knockdown attenuates the progression of pancreatic cancer by targeting miR-1270/NR3C1 axis. Sci Rep 2023; 13:2792. [PMID: 36797317 PMCID: PMC9935855 DOI: 10.1038/s41598-023-28439-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
The considerable role of circular RNAs (circRNAs) make them prospective biomarkers in cancer therapy. Our study aimed to unveil the function of circ_0128846 in pancreatic cancer (PC). The expressions of circ_0128846, miR-1270 and NR3C1 mRNA were measured via RT-qPCR. The expressions of NR3C1 protein and apoptosis-related markers (Bax and Bcl-2) were measured via western blotting. CCK-8, colony-forming, or wound healing assay was respectively utilized to identify cell proliferation, growth and migration. Xenograft model was developed to evaluate tumor growth affected by circ_0128846 in vivo. The putative binding between miR-1270 and circ_0128846 or NR3C1 was testified by dual-luciferase reporter, RIP or pull-down assay. Circ_0128846 showed elevated expression in PC. Circ_0128846 deficiency restrained cancer cell proliferation, colony formation and migratory ability, enhanced cell apoptotic rate, and also impeded tumor development in vivo. Circ_0128846 directly targeted miR-1270 whose expression was declined in PC. The suppressive effects of silencing circ_0128846 on PC cell malignant phenotypes were largely reversed by miR-1270 inhibition. NR3C1 was targeted by miR-1270 and was highly regulated in PC. The repressive effects of NR3C1 knockdown on PC cell malignant phenotypes were partly abolished by miR-1270 inhibition. Circ_0128846 deficiency blocked PC progression via mediating the miR-1270/NR3C1 pathway, which partly illustrated PC pathogenesis.
Collapse
Affiliation(s)
- Ming Wang
- grid.460068.c0000 0004 1757 9645Section for Hepatopancreatobiliary Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu & The Affiliated Hospital of Southwest Jiaotong University, No. 19 Yangshi Road, Chengdu, 610031 Sichuan China
| | - Ming Li
- grid.460068.c0000 0004 1757 9645Section for Hepatopancreatobiliary Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu & The Affiliated Hospital of Southwest Jiaotong University, No. 19 Yangshi Road, Chengdu, 610031 Sichuan China
| | - Zehan Liu
- grid.460068.c0000 0004 1757 9645Section for Hepatopancreatobiliary Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu & The Affiliated Hospital of Southwest Jiaotong University, No. 19 Yangshi Road, Chengdu, 610031 Sichuan China
| | - Cuinan Jiang
- grid.460068.c0000 0004 1757 9645Section for Hepatopancreatobiliary Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu & The Affiliated Hospital of Southwest Jiaotong University, No. 19 Yangshi Road, Chengdu, 610031 Sichuan China
| | - Hailong Lv
- grid.460068.c0000 0004 1757 9645Section for Hepatopancreatobiliary Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu & The Affiliated Hospital of Southwest Jiaotong University, No. 19 Yangshi Road, Chengdu, 610031 Sichuan China
| | - Qin Yang
- Section for Hepatopancreatobiliary Surgery, Department of General Surgery, The Third People's Hospital of Chengdu & The Affiliated Hospital of Southwest Jiaotong University, No. 19 Yangshi Road, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
8
|
Ma J, Wang F, Chen C, Ji J, Huang P, Wei D, Zhang Y, Ren L. Identification of prognostic genes signature and construction of ceRNA network in pirarubicin treatment of triple-negative breast cancer. Breast Cancer 2023; 30:379-392. [PMID: 36622564 DOI: 10.1007/s12282-023-01433-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The altered long non-coding RNA (lncRNA), circular RNA (circRNA) and mRNA expression in triple-negative breast cancer (TNBC) after pirarubicin (THP) treatment can be a critical factor in the development of tumor. Here, we identify a set of lncRNA, circRNA, and mRNA that can reveal the molecular target and molecular mechanism of THP, and can be used to predict the prognostic characteristics of TNBC. METHODS Affymetrix GeneChip sequencing was performed to determine whether lncRNA, circRNA, and mRNA were changed in MDA-MB-231 cells after THP treatment, and qRT-PCR was used to verify the accuracy of GeneChip results. Bioinformatics methods were used to analyze the differentially expressed (DE) lncRNA, circRNA and mRNA, and the co-expression network and ceRNA network were constructed. The STRING database, Kaplan-meier Mapper database, GEPIA database, and Tumor Immunity Estimation Resource were used to screen hub genes with clinical value and important significance. RESULTS THP 5 μM could significantly inhibit proliferation, migration and invasion of MDA-MB-231 cells for 24 h. 1547 DE lncRNAs, 4992 DE circRNAs, and 5777 DE mRNAs were identified. The reliability of the GeneChip was verified by qRT-PCR. An mRNA-lncRNA/circRNA co-expression network was constructed based on the Pearson correlation coefficient. Finally, we established a new ceRNA network, including three circRNAs, five miRNAs, and three mRNAs. The mRNAs are associated with immune infiltration. The mRNAs and miRNAs are significantly associated with survival outcomes in TNBC. CONCLUSION The results reveal the molecular target and mechanism of THP treatment of TNBC. These ceRNA network can be used as molecular targets for the treatment of TNBC patients and as molecular biomarkers to predict patient prognosis.
Collapse
Affiliation(s)
- Jiulong Ma
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Fengjun Wang
- Department of Hepatobiliary Surgery, Songyuan Central Hospital, Songyuan, China
| | - Chen Chen
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jiahua Ji
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Peng Huang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Dexian Wei
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yang Zhang
- Department of Vascular Surgery, The First Hospital of Jilin University, Changchun, China.
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China.
| |
Collapse
|