1
|
Zhang J, Guo Y, Zhou H, Chen N, Feng W, Feng X, Liu W, Deng G. MicroRNA-155 targets p65 to regulate PD-L1 expression in the early pregnancy endometrium. Sci Rep 2025; 15:9922. [PMID: 40121250 PMCID: PMC11929852 DOI: 10.1038/s41598-025-94595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/14/2025] [Indexed: 03/25/2025] Open
Abstract
Reproductive disorders in dairy cows represent a significant challenge to the advancement of the dairy industry. Pregnancy success is closely related to the mechanism of immune tolerance, with the PD-1/PD-L1 signaling pathway playing a role in immune regulation, which is associated with immune tolerance and pregnancy maintenance. MicroRNAs can regulate pivotal molecules within the signaling pathway, physiological activities, and disease processes. p65 and PD-L1 expression was significantly increased in the early pregnant uterine epithelium. In contrast, the expression of p65 and PD-L1 was homogeneous in the endometrial epithelium of E2 and P4 co-stimulated bEECs and changed with the stimulation time and concentration. MiR-155 expression was significantly reduced in the early pregnant uterine epithelium. p65 was identified as a molecular target of miR-155 using a dual luciferase assay and mimics/inhibitor transfection, and miR-155 inhibited p65 expression by binding to the 3'-UTR of p65 mRNA. The regulation of PD-L1 expression by p65 was confirmed through the knockdown of p65 by si-p65 and the overexpression of p65 by pcDNA3.1-p65. In the context of pregnancy, miR-155 was observed to target p65, thereby regulating PD-L1 expression at the endometrial epithelium.
Collapse
Affiliation(s)
- Jinxin Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yingfang Guo
- School of Physical Education and International Equestrianism, Wuhan Business University, Wuhan, 430070, People's Republic of China
| | - Han Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Nuoer Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wen Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xinyu Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wenjing Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
2
|
Wang Z, Zheng M, Duan H, Wang Y, Dai Y, Tang H, Wang Y, Liu D, Cao C, Gu N, Weng Q, Zhou Y, Zhao G, Hu Y. Increased circulating miR-155 identifies a subtype of preeclamptic patients. BMC Pregnancy Childbirth 2025; 25:319. [PMID: 40108495 PMCID: PMC11921501 DOI: 10.1186/s12884-025-07424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
INTRODUCTION Preeclampsia is a common and severe pregnancy complication. The syndrome is highly heterogeneous, making accurate classification difficult, which is not conductive to find ways to predict and prevent this syndrome. Recently, we reported that high placental miR-155 defined a new subtype of preeclampsia. Here, we aimed to examine whether high maternal sero-miR-155 could be a marker to identify this subtype. METHODS To explore whether the patients with high sero-miR-155 no matter in first and third trimester, we conducted a case-control and a longitudinal cohort study. We measured the sero-miR-155 levels at first, second and third trimesters in all pregnant women. Then, using the 95th percentile (P95) of sero-miR-155 in controls as the cut-off value, we divided the preeclamptic patients into high sero-miR-155 group (≥ P95) and normal sero-miR-155 group (< P95). We compared the difference of clinical manifestations between two groups and used t-distributed stochastic neighbor embedding (t-SNE) to evaluate whether the patients with high sero-miR-155 could be clustered as a subtype. Finally, we evaluated the predictive value of sero-miR-155 in the subtype. RESULTS The case-control study included 525 subjects (350 controls and 175 preeclampsia) and the longitudinal cohort study included 411 subjects (274 controls and 137 preeclampsia). Sero-miR-155 was significantly elevated in preeclampsia. Compared with preeclamptic patients with normal sero-miR-155 levels, the cases with high sero-miR-155 had significantly higher blood pressure and other severe preeclampsia-related complications. The incidences of HELLP syndrome [5.2% (5/96) vs. 0.9% (2/216), p < 0.01], visual disturbance [15.6% (15/96) vs. 4.6% (10/216), p < 0.01], hypertensive retinopathy [13.5% (13/96) vs. 3.2% (7/216), p < 0.01], and placenta abruption [7.3% (7/96) vs. 0.9% (2/216), p < 0.01] in patients with high miR-155 level were significantly increased. T-SNE analysis showed the patients with high sero-miR-155 were predominantly clustered on the left of the plot. CONCLUSIONS The patients with high sero-miR-155 exhibited more severe clinical manifestations and sero-miR-155 could be a biomarker to identify a subtype of preeclampsia with high sero-miR-155.
Collapse
Affiliation(s)
- Zhiyin Wang
- Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Mingming Zheng
- Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Honglei Duan
- Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Yuan Wang
- Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Yimin Dai
- Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Huirong Tang
- Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Ya Wang
- Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Dan Liu
- Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Chenrui Cao
- Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Ning Gu
- Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Qiao Weng
- Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Yan Zhou
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.
| | - Guangfeng Zhao
- Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China.
| | - Yali Hu
- Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
3
|
Meng Y, Meng Y, Li L, Li Y, He J, Shan Y. The role of DNA methylation in placental development and its implications for preeclampsia. Front Cell Dev Biol 2024; 12:1494072. [PMID: 39691449 PMCID: PMC11649665 DOI: 10.3389/fcell.2024.1494072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
Preeclampsia (PE) is a prevalent and multifaceted pregnancy disorder, characterized by high blood pressure, edema, proteinuria, and systemic organ dysfunction. It remains one of the leading causes of pregnancy complications, yet its exact origins and pathophysiological mechanisms are not fully understood. Currently, the only definitive treatment is delivery, often requiring preterm termination of pregnancy, which increases neonatal and maternal morbidity and mortality rates, particularly in severe cases. This highlights the urgent need for further research to elucidate its underlying mechanisms and develop targeted interventions. PE is thought to result from a combination of factors, including inflammatory cytokines, trophoblast dysfunction, and environmental influences, which may trigger epigenetic changes, particularly DNA methylation. The placenta, a vital organ for fetal and maternal exchange, plays a central role in the onset of PE. Increasing evidence suggests a strong association between DNA methylation, placental function, and the development of PE. This review focuses on the impact of DNA methylation on placental development and its contribution to PE pathophysiology. It aims to clarify the epigenetic processes essential for normal placental development and explore potential epigenetic biomarkers and therapeutic targets for PE. Such insights could lead to the development of novel preventive and therapeutic strategies for this condition.
Collapse
Affiliation(s)
- Yizi Meng
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| | - Yimei Meng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linli Li
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| | - Yuan Li
- Department of General Gynecology I, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| | - Jin He
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| | - Yanhong Shan
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Selvakumar SC, Preethi KA, Ross K, Sekar D. The emerging role of microRNA-based therapeutics in the treatment of preeclampsia. Placenta 2024; 158:38-47. [PMID: 39361986 DOI: 10.1016/j.placenta.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/09/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Preeclampsia (PE) is a pregnancy complication that is often diagnosed due to elevated blood pressure and proteinuria. Though current research focuses on the identification of novel biomarkers and therapeutic targets, still, there is a lack of clinical validation for the use of biomarkers and therapeutic targets for early diagnosis and treatment of PE. Several molecules are being studied for their potential role in PE. Among them, microRNAs are studied vastly for their role in the diagnosis, prognosis, and treatment of PE. But only a few studies are focused on the therapeutic efficacy of miRNAs in PE. Thus, the relevant articles were identified and discussed in this review. These studies provide evidence that miRNAs are indeed important molecules in PE that have the role of both therapeutic targets and therapeutic molecules. However, the studies are limited to in vivo an in vitro models, hence further studies are required to validate the complete potential of miRNA therapeutics. Long non-coding RNA (lncRNA) sponges, miRNA mimics, miRNA inhibitors, exosome-associated miRNAs, and several other molecules have been studied as miRNA-based therapeutics in PE. Thus, miRNAs are postulated to be potential therapeutic targets and miRNA-based therapeutics might pave the way for novel therapeutic approaches for PE.
Collapse
Affiliation(s)
- Sushmaa Chandralekha Selvakumar
- RNA Biology Lab, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - K Auxzilia Preethi
- RNA Biology Lab, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, United Kingdom
| | - Durairaj Sekar
- RNA Biology Lab, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| |
Collapse
|
5
|
Luo X, Guo X, Chen N, Peng R, Pan C, Li Z, Zhao B, Ji R, Li S. miR-155 mediated regulation of PKG1 and its implications on cell invasion, migration, and apoptosis in preeclampsia through NF-κB pathway. Biol Direct 2024; 19:121. [PMID: 39587640 PMCID: PMC11590512 DOI: 10.1186/s13062-024-00526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/02/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Preeclampsia (PE) is a severe pregnancy complication characterized by complex molecular interactions. Understanding these interactions is crucial for developing effective therapeutic strategies. METHODS This study applies a pharmacometabolomics approach to explore the roles of miR-155 and PKG1 in PE, focusing on the regulatory influence of the NF-κB signaling pathway. Blood metabolomic profiles were analyzed, and bioinformatics tools, IHC staining, Western blot (WB) analysis, and immunofluorescence (IF) localization were employed to determine the expression and function of miR-155 and PKG1. Cell invasion, migration, proliferation, and apoptosis assays were conducted to assess miR-155's modulation of PKG1. Additionally, RT-qPCR and WB analysis elucidated NF-κB-mediated regulation mechanisms. RESULTS Our findings indicate significant metabolic alterations associated with miR-155 modulation of PKG1, with NF-κB acting as a critical upstream regulator. The study demonstrates that miR-155 affects cellular functions such as invasion, migration, proliferation, and apoptosis through PKG1 modulation. Furthermore, the NF-κB signaling pathway regulates miR-155 expression, contributing to the pathological processes of PE. CONCLUSION This study provides a proof of concept for using pharmacometabolomics to understand the molecular mechanisms of PE, suggesting new therapeutic targets and advancing personalized medicine approaches. These insights highlight the potential of pharmacometabolomics to complement genomic and transcriptional data in disease characterization and treatment strategies, offering new avenues for therapeutic intervention in PE.
Collapse
Affiliation(s)
- Xiaohua Luo
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Xiaopei Guo
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Ningning Chen
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Rui Peng
- Scientific Research Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ci Pan
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Zhuyin Li
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Bing Zhao
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Ruonan Ji
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Siyu Li
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| |
Collapse
|
6
|
Jia Y, Xie H, Wu S, Dong J, Ying H. Induction of FAM46C expression mediated by DNMT3A downregulation is involved in early-onset preeclampsia through gene body methylation. Cell Signal 2024; 125:111506. [PMID: 39532219 DOI: 10.1016/j.cellsig.2024.111506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Aberrant methylation of genomic DNA has been found in preeclamptic placentas, which is characterized by elevated DNA methylation and hypermethylation of gene body regions, but the underlying mechanism is not yet fully understood. METHODS Global DNA methylation was assessed through ELISA and HPLC. The methylation sites were detected using the Illumina Human Methylation 450 K Microarray. The methylation level of FAM46C promoter and gene body was detected through the bisulfite sequencing. RNA-seq was utilized to investigate the mechanism by which DNMT3A and FAM46C mediate the migration and invasion of trophoblast cells. RESULTS We discovered that DNMT3A knockdown led to elevated levels of gene body methylation and FAM46C transcription. FAM46C downregulation completely rescued the suppressive effects caused by DNMT3A knockdown on the migration and invasion of trophoblast cells. Mechanistically, DNMT3A reduction led to an increase in the enrichment of DNMT3B and DNMT1 in the gene body region of FAM46C. The results of transcriptome sequencing showed that DNMT3A and FAM46C regulate the adhesion of trophoblast cells. Elevated expression of FAM46C and increased methylation levels within its gene body region were observed in extravillous trophoblast cells of early-onset preeclamptic placentas. CONCLUSIONS DNMT3A-mediated aberrant FAM46C gene body methylation is relevant to the development of early-onset preeclampsia.
Collapse
Affiliation(s)
- Yuanhui Jia
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Han Xie
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengyu Wu
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaqi Dong
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Ying
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China..
| |
Collapse
|
7
|
Selvakumar SC, Preethi K A, Sekar D. MicroRNA-510-3p regulated vascular dysfunction in Preeclampsia by targeting Vascular Endothelial Growth Factor A (VEGFA) and its signaling axis. Placenta 2024; 153:31-52. [PMID: 38820941 DOI: 10.1016/j.placenta.2024.05.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/11/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
INTRODUCTION Preeclampsia (PE) is a pregnancy complication associated with multi-organ damage and vascular dysfunction. Meanwhile, microRNAs or miRNAs are crucial regulators of gene expression in various diseases including PE. Our previous studies reported high expression of miR-510 in the PE patients' blood compared to normal. Hence, we hypothesize that miR-510-3p targets Vascular endothelial growth factor A (VEGFA) in the regulation of PI3K/AKT/eNOS/mTOR axis in PE and miR-510-3p could be a potential therapeutic target for PE. METHODS The proliferation, migration, and apoptosis of HTR8/SVNeo and BeWo cells were analyzed by manipulating the miR-510-3p and VEGFA expression. Similarly, the inhibition of miR-510-3p through anti-miR-510-3p was analyzed in PE rat models, and the biochemical, hemodynamic parameters, and histopathology were examined between the groups. Moreover, the expression of miR-510-3p and VEGFA/PI3K/AKT/eNOS/mTOR axis was analyzed using qRT-PCR and Western blot. RESULTS Significant changes were observed in the BP, proteinuria, and other biochemical parameters between PE and control rats. Our results suggest that miR-510-3p targets VEGFA leading to vascular dysfunction in PE, while treatment with anti-miR-510-3p in the PE-induced rat model exhibits a significant change in the expression of miR-510-3p/VEGFA/PI3K/AKT/eNOS/mTOR signaling where miR-510-3p showed lesser expression and vice versa with VEGFA. The gene and protein expression analysis revealed a significant correlation between miR-510-3p and the VEGFA signaling axis in PE. DISCUSSION Thus, our findings from in vitro and in vivo suggest miR-510-3p as a potential therapeutic target and anti-miR-510-3p as a novel therapeutic molecule for PE.
Collapse
Affiliation(s)
- Sushmaa Chandralekha Selvakumar
- RNA Biology Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Auxzilia Preethi K
- RNA Biology Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Durairaj Sekar
- RNA Biology Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
| |
Collapse
|
8
|
Deng F, Lei J, Qiu J, Zhao C, Wang X, Li M, Sun M, Zhang M, Gao Q. DNA methylation landscape in pregnancy-induced hypertension: progress and challenges. Reprod Biol Endocrinol 2024; 22:77. [PMID: 38978060 PMCID: PMC11229300 DOI: 10.1186/s12958-024-01248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
Gestational hypertension (PIH), especially pre-eclampsia (PE), is a common complication of pregnancy. This condition poses significant risks to the health of both the mother and the fetus. Emerging evidence suggests that epigenetic modifications, particularly DNA methylation, may play a role in initiating the earliest pathophysiology of PIH. This article describes the relationship between DNA methylation and placental trophoblast function, genes associated with the placental microenvironment, the placental vascular system, and maternal blood and vascular function, abnormalities of umbilical cord blood and vascular function in the onset and progression of PIH, as well as changes in DNA methylation in the progeny of PIH, in terms of maternal, fetal, and offspring. We also explore the latest research on DNA methylation-based early detection, diagnosis and potential therapeutic strategies for PIH. This will enable the field of DNA methylation research to continue to enhance our understanding of the epigenetic regulation of PIH genes and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Fengying Deng
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Jiahui Lei
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Junlan Qiu
- Department of Oncology and Hematology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, 215153, P.R. China
| | - Chenxuan Zhao
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Xietong Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Min Li
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Miao Sun
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China.
| | - Meihua Zhang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
| | - Qinqin Gao
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China.
| |
Collapse
|
9
|
Li A, Wang T, Zhou S, Han J, Wu W. USP17 regulates preeclampsia by modulating the NF-κB signaling pathway via deubiquitinating HDAC2. Placenta 2024; 145:9-18. [PMID: 38008034 DOI: 10.1016/j.placenta.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
INTRODUCTION Ubiquitination is a significant post-translational modification engaged in diverse biological processes, such as cell differentiation, metastasis, and protein stability modulation. The dysregulation of ubiquitination and deubiquitination is inextricably linked to disease progression, including preeclampsia (PE). Ubiquitin-specific protease 17 (USP17), a prominent deubiquitinating enzyme that regulates ubiquitination modifications, performs multiple functions at the cellular level, whereas its role in PE remains elusive. In this study, we intended to probe the role of USP17 in PE and its underlying mechanisms. METHODS The USP17 level in the plasma of PE patients was detected through Elisa. Western blot and qRT-PCR were performed to measure the mRNA and protein level of USP17 in placental tissues. CCK-8, EdU, and transwell assays were conducted to evaluate the proliferation, migration, and invasion of trophoblast cells. The interaction between HDAC2 and USP17 or STAT1 were determined by co-immunoprecipitation and Western blot assays. The expression of NF-κB pathway related proteins was examined using Western blot. RESULTS USP17 was dramatically downregulated in PE patients. Overexpression of USP17 facilitated trophoblast proliferation, migration, and invasion. Moreover, histone deacetylase 2 (HDAC2) was validated as a substrate of USP17 deubiquitination, and USP17 upregulation enhanced HDAC2 protein level. Furthermore, HDAC2 could interact with and deacetylate Signal transducer and activator of transcription 1 (STAT1), resulting in the enhancement of STAT1 activity and inhibition of NF-κB signaling. DISCUSSION Our findings disclosed that USP17 augmented the proliferation and invasion of trophoblast by deubiquitinating HDAC2, which will contribute to novel prospective targets for diagnosing and treating PE.
Collapse
Affiliation(s)
- Aiping Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Ting Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China.
| | - Shasha Zhou
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Jingjing Han
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Wujia Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| |
Collapse
|
10
|
Vrzić Petronijević S, Vilotić A, Bojić-Trbojević Ž, Kostić S, Petronijević M, Vićovac L, Jovanović Krivokuća M. Trophoblast Cell Function in the Antiphospholipid Syndrome. Biomedicines 2023; 11:2681. [PMID: 37893055 PMCID: PMC10604227 DOI: 10.3390/biomedicines11102681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Antiphospholipid syndrome (APS) is a complex thrombo-inflammatory autoimmune disease characterized by the presence of antiphospholipid antibodies (aPL). Women with APS are at high risk of recurrent early pregnancy loss as well as late obstetrical complications-premature birth due to placental insufficiency or severe preeclampsia. Accumulating evidence implies that vascular thrombosis is not the only pathogenic mechanism in obstetric APS, and that the direct negative effect of aPL on the placental cells, trophoblast, plays a major role. In this review, we summarize the current findings regarding the potential mechanisms involved in aPL-induced trophoblast dysfunction. Introduction on the APS and aPL is followed by an overview of the effects of aPL on trophoblast-survival, cell function and aPL internalization. Finally, the implication of several non-coding RNAs in pathogenesis of obstetric APS is discussed, with special emphasis of their possible role in trophoblast dysfunction and the associated mechanisms.
Collapse
Affiliation(s)
- Svetlana Vrzić Petronijević
- University of Belgrade, Faculty of Medicine, University Clinical Center of Serbia Clinic for Obstetrics and Gynecology, Koste Todorovića 26, 11000 Belgrade, Serbia
| | - Aleksandra Vilotić
- University of Belgrade, Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080 Belgrade, Serbia
| | - Žanka Bojić-Trbojević
- University of Belgrade, Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080 Belgrade, Serbia
| | - Sanja Kostić
- University of Belgrade, Faculty of Medicine, University Clinical Center of Serbia Clinic for Obstetrics and Gynecology, Koste Todorovića 26, 11000 Belgrade, Serbia
| | - Miloš Petronijević
- University of Belgrade, Faculty of Medicine, University Clinical Center of Serbia Clinic for Obstetrics and Gynecology, Koste Todorovića 26, 11000 Belgrade, Serbia
| | - Ljiljana Vićovac
- University of Belgrade, Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080 Belgrade, Serbia
| | - Milica Jovanović Krivokuća
- University of Belgrade, Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080 Belgrade, Serbia
| |
Collapse
|
11
|
Mallette JH, Crudup BF, Alexander BT. Growth Restriction in Preeclampsia: Lessons from Animal Models. CURRENT OPINION IN PHYSIOLOGY 2023; 32:100647. [PMID: 36968132 PMCID: PMC10035651 DOI: 10.1016/j.cophys.2023.100647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Preeclampsia remains a major health concern for mother and child. Yet, treatment options remain limited to early delivery. Placental dysfunction in preeclampsia occurs in response to an increase in oxidative stress and inflammatory cytokines with vasoactive and anti-angiogenic factors contributing to impaired maternal and fetal health. Moreover, recent studies indicate a potential role for epigenetic mediators in the pathophysiology of placental ischemia. Numerous animal models are utilized to explore the pathogenesis of preeclampsia and fetal growth restriction. This review provides a brief overview of recent progress in preclinical studies regarding potential therapeutic targets for the treatment and prevention of preeclampsia with an emphasis on fetal growth restriction and the fetal programming of increased cardiovascular risk.
Collapse
Affiliation(s)
- Jordan H. Mallette
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
| | - Breland F. Crudup
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
| | - Barbara T. Alexander
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
| |
Collapse
|
12
|
Hayder H, Shan Y, Chen Y, O’Brien JA, Peng C. Role of microRNAs in trophoblast invasion and spiral artery remodeling: Implications for preeclampsia. Front Cell Dev Biol 2022; 10:995462. [PMID: 36263015 PMCID: PMC9575991 DOI: 10.3389/fcell.2022.995462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
It is now well-established that microRNAs (miRNAs) are important regulators of gene expression. The role of miRNAs in placental development and trophoblast function is constantly expanding. Trophoblast invasion and their ability to remodel uterine spiral arteries are essential for proper placental development and successful pregnancy outcome. Many miRNAs are reported to be dysregulated in pregnancy complications, especially preeclampsia and they exert various regulatory effects on trophoblasts. In this review, we provide a brief overview of miRNA biogenesis and their mechanism of action, as well as of trophoblasts differentiation, invasion and spiral artery remodeling. We then discuss the role of miRNAs in trophoblasts invasion and spiral artery remodeling, focusing on miRNAs that have been thoroughly investigated, especially using multiple model systems. We also discuss the potential role of miRNAs in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Heyam Hayder
- Department of Biology, York University, Toronto, ON, Canada
| | - Yanan Shan
- Department of Biology, York University, Toronto, ON, Canada
| | - Yan Chen
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng,
| |
Collapse
|