1
|
Han Z, Wang K, Ding S, Zhang M. Cross-talk of inflammation and cellular senescence: a new insight into the occurrence and progression of osteoarthritis. Bone Res 2024; 12:69. [PMID: 39627227 PMCID: PMC11615234 DOI: 10.1038/s41413-024-00375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 12/06/2024] Open
Abstract
Osteoarthritis (OA) poses a significant challenge in orthopedics. Inflammatory pathways are regarded as central mechanisms in the onset and progression of OA. Growing evidence suggests that senescence acts as a mediator in inflammation-induced OA. Given the lack of effective treatments for OA, there is an urgent need for a clearer understanding of its pathogenesis. In this review, we systematically summarize the cross-talk between cellular senescence and inflammation in OA. We begin by focusing on the mechanisms and hallmarks of cellular senescence, summarizing evidence that supports the relationship between cellular senescence and inflammation. We then discuss the mechanisms of interaction between cellular senescence and inflammation, including senescence-associated secretory phenotypes (SASP) and the effects of pro- and anti-inflammatory interventions on cellular senescence. Additionally, we focus on various types of cellular senescence in OA, including senescence in cartilage, subchondral bone, synovium, infrapatellar fat pad, stem cells, and immune cells, elucidating their mechanisms and impacts on OA. Finally, we highlight the potential of therapies targeting senescent cells in OA as a strategy for promoting cartilage regeneration.
Collapse
Affiliation(s)
- Zeyu Han
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Ketao Wang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Shenglong Ding
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Mingzhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China.
| |
Collapse
|
2
|
Wang J, Peng L, Yang M, Wang J, Feng R, Xu K, Xu P. Is there a genetic relationship between blood glucose and osteoarthritis? A mendelian randomization study. Diabetol Metab Syndr 2024; 16:274. [PMID: 39543708 PMCID: PMC11562302 DOI: 10.1186/s13098-024-01517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
OBJECTIVE The relationship between blood glucose levels and osteoarthritis (OA) is unclear. This study aimed to investigate the genetic causal relationship between blood glucose-related traits and OA. METHODS We first performed univariate Mendelian randomization (UVMR) analyses using published genome-wide association study (GWAS) datasets with fasting glucose (FG), 2 h-glucose post-challenge glucose (2hGlu), and glycosylated hemoglobin (HbA1c) as exposures, and hip osteoarthritis (HOA) and knee osteoarthritis (KOA) as outcomes; then, we performed inverse analyses of them. We used Inverse-variance weighted (IVW) analysis as the primary analysis, and sensitivity analyses were performed. Moreover, we performed multivariate Mendelian randomization (MVMR) to estimate the independent effect of exposure on outcome after adjusting for body mass index (BMI). Summarized data for blood glucose-related traits were obtained from the MAGIC Consortium study of the glucose trait genome and for OA from the UK Biobank and arcOGEN. Summarized data for BMI were obtained from the GIANT Consortium meta-analysis of individuals of European ancestry. A two-sided p value < 0.05 in UVMR was considered suggestive of significance when p < 0.0167 (Bonferroni correction p = 0.05/3 exposures) was considered statistically significant. RESULTS We found significant negative genetic causality of FG for HOA and KOA, and these associations remained significant after we adjusted for the effect of BMI [odds ratios (ORs) of 0.829 (0.687-0.999, p = 0.049) and 0.741 (0.570-0.964, p = 0.025)]. HbA1c also had an independent negative genetic causal effect on HOA after adjustment for BMI [0.665 (0.463-0.954, p = 0.027)]. At the same time, there was no evidence of reverse genetic causality of OA on blood glucose-related traits. CONCLUSION We further elucidated the relationship between blood glucose-related traits and OA by adjusting for the effect of BMI from a genetic causal perspective. This study provides new insights to further clarify the relationship between blood glucose levels and OA, as well as the pathogenesis, etiology and genetics of OA.
Collapse
Affiliation(s)
- Junxiang Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Leixuan Peng
- Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mingyi Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
| | - Jiachen Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Ruoyang Feng
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Ke Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
3
|
Liu X, Li Z, Liu L, Zhang P, Wang Y, Ding G. Metformin-mediated effects on mesenchymal stem cells and mechanisms: proliferation, differentiation and aging. Front Pharmacol 2024; 15:1465697. [PMID: 39193338 PMCID: PMC11347424 DOI: 10.3389/fphar.2024.1465697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are a type of pluripotent adult stem cell with strong self-renewal and multi-differentiation abilities. Their excellent biological traits, minimal immunogenicity, and abundant availability have made them the perfect seed cells for treating a wide range of diseases. After more than 60 years of clinical practice, metformin is currently one of the most commonly used hypoglycaemic drugs for type 2 diabetes in clinical practice. In addition, metformin has shown great potential in the treatment of various systemic diseases except for type 2 diabetes in recent years, and the mechanisms are involved with antioxidant stress, anti-inflammatory, and induced autophagy, etc. This article reviews the effects and the underlying mechanisms of metformin on the biological properties, including proliferation, multi-differentiation, and aging, of MSCs in vitro and in vivo with the aim of providing theoretical support for in-depth scientific research and clinical applications in MSCs-mediated disease treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Gang Ding
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
4
|
Wu D, Huang W, Zhang J, He L, Chen S, Zhu S, Sang Y, Liu K, Hou G, Chen B, Xu Y, Liu B, Yao H. Downregulation of VEGFA accelerates AGEs-mediated nucleus pulposus degeneration through inhibiting protective mitophagy in high glucose environments. Int J Biol Macromol 2024; 262:129950. [PMID: 38320636 DOI: 10.1016/j.ijbiomac.2024.129950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Intervertebral disc degeneration (IVDD) contributes largely to low back pain. Recent studies have highlighted the exacerbating role of diabetes mellitus (DM) in IVDD, mainly due to the influence of hyperglycemia (HG) or the accumulation of advanced glycation end products (AGEs). Vascular endothelial growth factor A (VEGFA) newly assumed a distinct impact in nonvascular tissues through mitophagy regulation. However, the combined actions of HG and AGEs on IVDD and the involved role of VEGFA remain unclear. We confirmed the potential relation between VEGFA and DM through bioinformatics and biological specimen detection. Then we observed that AGEs induced nucleus pulposus (NP) cell degeneration by upregulating cellular reactive oxygen species (ROS), and HG further aggravated ROS level through breaking AGEs-induced protective mitophagy. Furthermore, this adverse effect could be strengthened by VEGFA knockdown. Importantly, we identified that the regulation of VEGFA and mitophagy were vital mechanisms in AGEs-HG-induced NP cell degeneration through Parkin/Akt/mTOR and AMPK/mTOR pathway. Additionally, VEGFA overexpression through local injection with lentivirus carrying VEGFA plasmids significantly alleviated NP degeneration and IVDD in STZ-induced diabetes and puncture rat models. In conclusion, the findings first confirmed that VEGFA protects against AGEs-HG-induced IVDD, which may represent a therapeutic strategy for DM-related IVDD.
Collapse
Affiliation(s)
- Depeng Wu
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Weijun Huang
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Junbin Zhang
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Lei He
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Siyu Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Sihan Zhu
- University Hospital, LMU Munich, 81377 Munich, Germany
| | - Yuan Sang
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Kaihua Liu
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Gang Hou
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Biying Chen
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Yichun Xu
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Bin Liu
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China.
| | - Hui Yao
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
5
|
Zheng L, He S, Wang H, Li J, Liu Y, Liu S. Targeting Cellular Senescence in Aging and Age-Related Diseases: Challenges, Considerations, and the Emerging Role of Senolytic and Senomorphic Therapies. Aging Dis 2024; 15:2554-2594. [PMID: 38421832 PMCID: PMC11567261 DOI: 10.14336/ad.2024.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Cellular senescence is characterized by the permanent arrest of cell proliferation and is a response to endogenous and exogenous stress. The continuous accumulation of senescent cells (SnCs) in the body leads to the development of aging and age-related diseases (such as neurodegenerative diseases, cancer, metabolic diseases, cardiovascular diseases, and osteoarthritis). In the face of the growing challenge of aging and age-related diseases, several compounds have received widespread attention for their potential to target SnCs. As a result, senolytics (compounds that selectively eliminate SnCs) and senomorphics (compounds that alter intercellular communication and modulate the behavior of SnCs) have become hot research topics in the field of anti-aging. In addition, strategies such as combination therapies and immune-based approaches have also made significant progress in the field of anti-aging therapy. In this article, we discuss the latest research on anti-aging targeting SnCs and gain a deeper understanding of the mechanism of action and impact of different anti-aging strategies on aging and age-related diseases, with the aim of providing more effective references and therapeutic ideas for clinical anti-aging treatment in the face of the ever-grave challenges of aging and age-related diseases.
Collapse
Affiliation(s)
- Liyao Zheng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Shipei He
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Wang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinling Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuanyuan Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
6
|
Longevity OMAC. Retracted: Metformin Ameliorates Senescence of Adipose-Derived Mesenchymal Stem Cells and Attenuates Osteoarthritis Progression via the AMPK-Dependent Autophagy Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:9853471. [PMID: 38234532 PMCID: PMC10791259 DOI: 10.1155/2024/9853471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
[This retracts the article DOI: 10.1155/2022/4620254.].
Collapse
|
7
|
Chang W, Li W, Li P. The anti-diabetic effects of metformin are mediated by regulating long non-coding RNA. Front Pharmacol 2023; 14:1256705. [PMID: 38053839 PMCID: PMC10694297 DOI: 10.3389/fphar.2023.1256705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disease with complex etiology and mechanisms. Long non-coding ribonucleic acid (LncRNA) is a novel class of functional long RNA molecules that regulate multiple biological functions through various mechanisms. Studies in the past decade have shown that lncRNAs may play an important role in regulating insulin resistance and the progression of T2D. As a widely used biguanide drug, metformin has been used for glucose lowering effects in clinical practice for more than 60 years. For diabetic therapy, metformin reduces glucose absorption from the intestines, lowers hepatic gluconeogenesis, reduces inflammation, and improves insulin sensitivity. However, despite being widely used as the first-line oral antidiabetic drug, its mechanism of action remains largely elusive. Currently, an increasing number of studies have demonstrated that the anti-diabetic effects of metformin were mediated by the regulation of lncRNAs. Metformin-regulated lncRNAs have been shown to participate in the inhibition of gluconeogenesis, regulation of lipid metabolism, and be anti-inflammatory. Thus, this review focuses on the mechanisms of action of metformin in regulating lncRNAs in diabetes, including pathways altered by metformin via targeting lncRNAs, and the potential targets of metformin through modulation of lncRNAs. Knowledge of the mechanisms of lncRNA modulation by metformin in diabetes will aid the development of new therapeutic drugs for T2D in the future.
Collapse
Affiliation(s)
- Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Liu X, Guo Q, Wang L, Gu Y, Meng S, Gu Y, Yu B. Metformin attenuates high-fat diet induced metabolic syndrome related osteoarthritis through inhibition of prostaglandins. Front Cell Dev Biol 2023; 11:1184524. [PMID: 37200628 PMCID: PMC10185907 DOI: 10.3389/fcell.2023.1184524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023] Open
Abstract
High-fat diet induces bone marrow inflammation and osteoarthritis phenotype in knee joint, but the underlying mechanisms is unknown. Here, we report that high-fat diet induces aberrant bone formation and cartilage degeneration in knee joint. Mechanistically, a high-fat diet increases the number of macrophages and the secretion of prostaglandins in subchondral bone, promoting bone formation. Metformin treatment is able to decrease the number of macrophages and also the level of prostaglandins induced by high-fat diet in subchondral bone. Importantly, metformin rescues aberrant bone formation and cartilage lesions by decreasing the number of osteoprogenitors and type-H vessels, which also results in relief of osteoarthritis pain response. Thus, we demonstrate prostaglandins secreted by macrophages may be a key reason for high-fat diet induced aberrant bone formation and metformin is a promising therapy for high-fat diet induced osteoarthritis.
Collapse
Affiliation(s)
- Xiaonan Liu
- Division of Orthopaedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiaoyue Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
- Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD, United States
| | - Lei Wang
- Division of Orthopaedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiru Gu
- Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD, United States
| | - Senxiong Meng
- Division of Orthopaedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Gu
- Division of Orthopaedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Bin Yu,
| |
Collapse
|
9
|
Ma T, Wang X, Qu W, Yang L, Jing C, Zhu B, Zhang Y, Xie W. Osthole Suppresses Knee Osteoarthritis Development by Enhancing Autophagy Activated via the AMPK/ULK1 Pathway. Molecules 2022; 27:molecules27238624. [PMID: 36500713 PMCID: PMC9738845 DOI: 10.3390/molecules27238624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Knee osteoarthritis (KOA) is an increasingly prevalent heterogeneous disease characterized by cartilage erosion and inflammation. As the main chemical constituent of Angelicae Pubescentis Radix (APR), an anti-inflammatory herbal medicine, the potential biological effects and underlying mechanism of osthole on chondrocytes and KOA progression remain elusive. In this study, the potential effect and mechanism of osthole on KOA were investigated in vitro and in vivo. We found that osthole inhibited IL-1β-induced apoptosis and cartilage matrix degeneration by activating autophagy in rat chondrocytes. In addition, osthole could activate autophagy through phosphorylation of AMPK/ULK1, and AMPK serves as a positive upstream regulator of ULK1. Furthermore, KOA rats treated with osthole showed phosphorylation of the AMPK/ULK1 pathway and autophagy activation, as well as cartilage protection. Collectively, the AMPK/ULK1 signaling pathway can be activated by osthole to enhance autophagy, thereby suppressing KOA development. Osthole may be a novel and effective therapeutic agent for the clinical treatment of KOA.
Collapse
Affiliation(s)
- Teng Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiangpeng Wang
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Wenjing Qu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lingsen Yang
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Cheng Jing
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Bingrui Zhu
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Yongkui Zhang
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
- Correspondence: (Y.Z.); (W.X.)
| | - Wenpeng Xie
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
- Correspondence: (Y.Z.); (W.X.)
| |
Collapse
|