1
|
Khosravi M, Mojtabaeian SM, Demiray EKD, Sayar B. A Systematic Review of the Outcomes of Utilization of Artificial Intelligence Within the Healthcare Systems of the Middle East: A Thematic Analysis of Findings. Health Sci Rep 2024; 7:e70300. [PMID: 39720235 PMCID: PMC11667773 DOI: 10.1002/hsr2.70300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 12/26/2024] Open
Abstract
Background and Aims The rapid expansion of artificial intelligence (AI) within worldwide healthcare systems is occurring at a significant rate. In this context, the Middle East has demonstrated distinctive characteristics in the application of AI within the healthcare sector, particularly shaped by regional policies. This study examined the outcomes resulting from the utilization of AI within healthcare systems in the Middle East. Methods A systematic review was conducted across several databases, including PubMed, Scopus, ProQuest, and the Cochrane Database of Systematic Reviews in 2024. The quality assessment of the included studies was conducted using the Authority, Accuracy, Coverage, Objectivity, Date, Significance checklist. Following this, a thematic analysis was carried out on the acquired data, adhering to the Boyatzis approach. Results 100 papers were included. The quality and bias risk of the included studies were delineated to be within an acceptable range. Multiple themes were derived from the thematic analysis including: "Prediction of diseases, their diagnosis, and outcomes," "Prediction of organizational issues and attributes," "Prediction of mental health issues and attributes," "Prediction of polypharmacy and emotional analysis of texts," "Prediction of climate change issues and attributes," and "Prediction and identification of success and satisfaction among healthcare individuals." Conclusion The findings emphasized AI's significant potential in addressing prevalent healthcare challenges in the Middle East, such as cancer, diabetes, and climate change. AI has the potential to overhaul the healthcare systems. The findings also highlighted the need for policymakers and administrators to develop a concrete plan to effectively integrate AI into healthcare systems.
Collapse
Affiliation(s)
- Mohsen Khosravi
- Imam Hossein Hospital Shahroud University of Medical Sciences Shahroud Iran
| | - Seyyed Morteza Mojtabaeian
- Department of Healthcare Services Management, School of Management and Medical Informatics Shiraz University of Medical Sciences Shiraz Iran
| | | | - Burak Sayar
- Bitlis Eren University Vocational School of Social Sciences Bitlis Türkiye
| |
Collapse
|
2
|
Leng B, Jiang H, Wang B, Wang J, Luo G. Deep-Orga: An improved deep learning-based lightweight model for intestinal organoid detection. Comput Biol Med 2024; 169:107847. [PMID: 38141452 DOI: 10.1016/j.compbiomed.2023.107847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
PROBLEM Organoids are 3D cultures that are commonly used for biological and medical research in vitro due to their functional and structural similarity to source organs. The development of organoids can be assessed by morphological tests. However, manual analysis of organoid morphology requires intensive labor from professionals and is prone to observer discrepancies. AIM Computer-assisted methods alleviate the pressure of manual labor, especially with the development of deep learning, the performance of morphological detection has been further improved. The aim of this paper is to automate the assessment of organoid morphology using deep learning techniques to reduce the labor pressure of professionals. METHODS Based on the lightweight model YOLOX, a lightweight intestinal organoid detection model named Deep-Orga is proposed. First, the performance of the Deep-Orga model is compared with other classical models on the intestinal organoids dataset. Then, ablation experiments are used to validate the improvement of the model detection performance by the improved module. Finally, Deep-Orga is compared with other methods. RESULTS Deep-Orga achieves optimal organoid detection with a partial increase in computational effort. Using Deep-Orga to replace the manual analysis process provides a new automated method for organoid morphology evaluation. CONCLUSION Deep-Orga proposed in this paper is able to accurately assess organoid development, effectively relieving the labor pressure of professionals and avoiding the subjectivity of assessment. This paper demonstrates the potential application of deep learning in the field of organoid morphology analysis.
Collapse
Affiliation(s)
- Bing Leng
- School of Biomedical Engineering (Suzhou), Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230026, People's Republic of China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, People's Republic of China
| | - Hao Jiang
- School of Biomedical Engineering (Suzhou), Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230026, People's Republic of China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, People's Republic of China
| | - Bidou Wang
- School of Biomedical Engineering (Suzhou), Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230026, People's Republic of China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, People's Republic of China
| | - Jinxian Wang
- School of Biomedical Engineering (Suzhou), Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230026, People's Republic of China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, People's Republic of China.
| | - Gangyin Luo
- School of Biomedical Engineering (Suzhou), Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230026, People's Republic of China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, People's Republic of China.
| |
Collapse
|
3
|
Intelligence and Neuroscience C. Retracted: Smart Healthcare System for Severity Prediction and Critical Tasks Management of COVID-19 Patients in IoT-Fog Computing Environments. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2023; 2023:9820684. [PMID: 37829848 PMCID: PMC10567478 DOI: 10.1155/2023/9820684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
[This retracts the article DOI: 10.1155/2022/5012962.].
Collapse
|
4
|
Mutlag AA, Ghani MKA, Mohd O, Abdulkareem KH, Mohammed MA, Alharbi M, Al-Araji ZJ. A new fog computing resource management (FRM) model based on hybrid load balancing and scheduling for critical healthcare applications. PHYSICAL COMMUNICATION 2023; 59:102109. [DOI: 10.1016/j.phycom.2023.102109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
5
|
Datiri DD, Li M. Effects of Particle Swarm Optimisation on a Hybrid Load Balancing Approach for Resource Optimisation in Internet of Things. SENSORS (BASEL, SWITZERLAND) 2023; 23:2329. [PMID: 36850927 PMCID: PMC9961315 DOI: 10.3390/s23042329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The internet of things, a collection of diversified distributed nodes, implies a varying choice of activities ranging from sleep monitoring and tracking of activities, to more complex activities such as data analytics and management. With an increase in scale comes even greater complexities, leading to significant challenges such as excess energy dissipation, which can lead to a decrease in IoT devices' lifespan. Internet of things' (IoT) multiple variable activities and ample data management greatly influence devices' lifespan, making resource optimisation a necessity. Existing methods with respect to aspects of resource management and optimisation are limited in their concern of devices energy dissipation. This paper therefore proposes a decentralised approach, which contains an amalgamation of efficient clustering techniques, edge computing paradigms, and a hybrid algorithm, targeted at curbing resource optimisation problems and life span issues associated with IoT devices. The decentralised topology aimed at the resource optimisation of IoT places equal importance on resource allocation and resource scheduling, as opposed to existing methods, by incorporating aspects of the static (round robin), dynamic (resource-based), and clustering (particle swarm optimisation) algorithms, to provide a solid foundation for an optimised and secure IoT. The simulation constructs five test-case scenarios and uses performance indicators to evaluate the effects the proposed model has on resource optimisation in IoT. The simulation results indicate the superiority of the PSOR2B to the ant colony, the current centralised optimisation approach, LEACH, and C-LBCA.
Collapse
|
6
|
Kapoor NR, Kumar A, Kumar A, Zebari DA, Kumar K, Mohammed MA, Al-Waisy AS, Albahar MA. Event-Specific Transmission Forecasting of SARS-CoV-2 in a Mixed-Mode Ventilated Office Room Using an ANN. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16862. [PMID: 36554744 PMCID: PMC9779012 DOI: 10.3390/ijerph192416862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The emerging novel variants and re-merging old variants of SARS-CoV-2 make it critical to study the transmission probability in mixed-mode ventilated office environments. Artificial neural network (ANN) and curve fitting (CF) models were created to forecast the R-Event. The R-Event is defined as the anticipated number of new infections that develop in particular events occurring over the course of time in any defined space. In the spring and summer of 2022, real-time data for an office environment were collected in India in a mixed-mode ventilated office space in a composite climate. The performances of the proposed CF and ANN models were compared with respect to traditional statistical indicators, such as the correlation coefficient, RMSE, MAE, MAPE, NS index, and a20-index, in order to determine the merit of the two approaches. Thirteen input features, namely the indoor temperature (TIn), indoor relative humidity (RHIn), area of opening (AO), number of occupants (O), area per person (AP), volume per person (VP), CO2 concentration (CO2), air quality index (AQI), outer wind speed (WS), outdoor temperature (TOut), outdoor humidity (RHOut), fan air speed (FS), and air conditioning (AC), were selected to forecast the R-Event as the target. The main objective was to determine the relationship between the CO2 level and R-Event, ultimately producing a model for forecasting infections in office building environments. The correlation coefficients for the CF and ANN models in this case study were 0.7439 and 0.9999, respectively. This demonstrates that the ANN model is more accurate in R-Event prediction than the curve fitting model. The results show that the proposed ANN model is reliable and significantly accurate in forecasting the R-Event values for mixed-mode ventilated offices.
Collapse
Affiliation(s)
- Nishant Raj Kapoor
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Architecture and Planning Department, CSIR-Central Building Research Institute, Roorkee 247667, India
| | - Ashok Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Architecture and Planning Department, CSIR-Central Building Research Institute, Roorkee 247667, India
| | - Anuj Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Building Energy Efficiency Division, CSIR-Central Building Research Institute, Roorkee 247667, India
| | - Dilovan Asaad Zebari
- Department of Computer Science, College of Science, Nawroz University, Duhok 42001, Iraq
| | - Krishna Kumar
- Department of Hydro and Renewable Energy, Indian Institute of Technology, Roorkee 247667, India
| | - Mazin Abed Mohammed
- College of Computer Science and Information Technology, University of Anbar, Anbar 31001, Iraq
| | - Alaa S. Al-Waisy
- Computer Technologies Engineering Department, Information Technology College, Imam Ja’afar Al-Sadiq University, Baghdad 10064, Iraq
| | - Marwan Ali Albahar
- School of Computer Science, Umm Al-Qura University, Mecca 24382, Saudi Arabia
| |
Collapse
|
7
|
Al‐Hashimi M, Mohammed Jameel S, Husham Almukhtar F, Abdul Zahra MM, Adnan Jaleel R. Optimised Internet of Thing framework based hybrid meta‐heuristic algorithms for E‐healthcare monitoring. IET NETWORKS 2022. [DOI: 10.1049/ntw2.12057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Muhaned Al‐Hashimi
- Department of Computer Science College of Computer Science and Mathematics Tikrit University Salah Al Din Iraq
| | - Shymaa Mohammed Jameel
- Iraqi Commission for Computers and Informatics Informatics Institute for Postgraduate Studies Baghdad Iraq
| | | | - Musaddak Maher Abdul Zahra
- Department of Computer Techniques Engineering Al‐Mustaqbal University College Babylon Iraq
- Department of Electrical Engineering University of Babylon Babylon Iraq
| | - Refed Adnan Jaleel
- Department of Information and Communication Engineering Al‐Nahrain University Baghdad Iraq
| |
Collapse
|
8
|
MEF: Multidimensional Examination Framework for Prioritization of COVID-19 Severe Patients and Promote Precision Medicine Based on Hybrid Multi-Criteria Decision-Making Approaches. Bioengineering (Basel) 2022; 9:bioengineering9090457. [PMID: 36135003 PMCID: PMC9495842 DOI: 10.3390/bioengineering9090457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022] Open
Abstract
Effective prioritization plays critical roles in precision medicine. Healthcare decisions are complex, involving trade-offs among numerous frequently contradictory priorities. Considering the numerous difficulties associated with COVID-19, approaches that could triage COVID-19 patients may help in prioritizing treatment and provide precise medicine for those who are at risk of serious disease. Prioritizing a patient with COVID-19 depends on a variety of examination criteria, but due to the large number of these biomarkers, it may be hard for medical practitioners and emergency systems to decide which cases should be given priority for treatment. The aim of this paper is to propose a Multidimensional Examination Framework (MEF) for the prioritization of COVID-19 severe patients on the basis of combined multi-criteria decision-making (MCDM) methods. In contrast to the existing literature, the MEF has not considered only a single dimension of the examination factors; instead, the proposed framework included different multidimensional examination criteria such as demographic, laboratory findings, vital signs, symptoms, and chronic conditions. A real dataset that consists of data from 78 patients with different examination criteria was used as a base in the construction of Multidimensional Evaluation Matrix (MEM). The proposed framework employs the CRITIC (CRiteria Importance Through Intercriteria Correlation) method to identify objective weights and importance for multidimensional examination criteria. Furthermore, the VIKOR (VIekriterijumsko KOmpromisno Rangiranje) method is utilized to prioritize COVID-19 severe patients. The results based on the CRITIC method showed that the most important examination criterion for prioritization is COVID-19 patients with heart disease, followed by cough and nasal congestion symptoms. Moreover, the VIKOR method showed that Patients 8, 3, 9, 59, and 1 are the most urgent cases that required the highest priority among the other 78 patients. Finally, the proposed framework can be used by medical organizations to prioritize the most critical COVID-19 patient that has multidimensional examination criteria and to promptly give appropriate care for more precise medicine.
Collapse
|