1
|
Guo T, Chen J, Tan X, Tang H, Wang X, Chen S, Wang X. GXYLT2: an emerging therapeutic target and predictive biomarker for anti-PD-1 efficacy in clear cell renal cell carcinoma. Genes Immun 2025; 26:27-35. [PMID: 39639109 DOI: 10.1038/s41435-024-00312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
There are studies reporting that glucoside xylosyltransferase 2 (GXYLT2) has a role in promoting tumor progression, but its role in clear cell renal cell carcinoma (ccRCC) remains unclear. In this study, RT-qPCR and western blotting were employed to detect the expression level of GXYLT2. RNA interference assays were used to knock down GXYLT2. CCK-8, wound healing assays, clone formation assays, and Transwell assays were utilized to investigate the function of GXYLT2. Bioinformatics analysis was used to explore the tumor microenvironment and potential biological mechanisms. We found that the expression level of GXYLT2 in ccRCC was higher than that in adjacent normal renal tissues. Patients with high GXYLT2 expression have worse clinical outcomes. Knockdown of GXYLT2 inhibits the proliferation, invasion, migration, and clone formation ability of ccRCC cells. Enrichment analysis uncovered that GXYLT2 participates in Wnt, cell cycle, and actin cytoskeleton regulation signaling pathways. After receiving anti-PD-1 therapy, patients with high GXYLT2 expression had longer progression-free survival compared with those with low GXYLT2 expression. In conclusion, GXYLT2 is a novel potential therapeutic target for ccRCC. Meanwhile, GXYLT2 can be used as a novel marker for predicting immunotherapeutic response.
Collapse
Affiliation(s)
- Tuanjie Guo
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyuan Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyin Tan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Heting Tang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siteng Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Pan W, Liu C, Ren T, Chen X, Liang C, Wang J, Yang J. Exploration of lncRNA/circRNA-miRNA-mRNA network in patients with chronic atrophic gastritis in Tibetan plateau areas based on DNBSEQ-G99 RNA sequencing. Sci Rep 2024; 14:9212. [PMID: 38649401 PMCID: PMC11035649 DOI: 10.1038/s41598-024-59836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
A higher incidence of chronic atrophic gastritis (CAG) is generally considered as a precancerous lesion in gastric cancer (GC). The aim of this study was to identify potential molecules involved in the pathogenesis of CAG in the Tibetan plateau, hoping to help the diagnosis and management of the disease. Atrophic and non-atrophic gastric mucosal tissue samples were collected from seven patients with chronic gastritis (CG). Differentially expressed lncRNAs, circRNAs, miRNAs, and mRNAs between CAG and chronic non-atrophic gastritis (CNAG) groups were identified based on DNBSEQ-G99 RNA sequencing. Subsequently, competitive endogenous RNA (ceRNA) regulatory networks (lncRNA/circRNA-miRNA-mRNA networks) were constructed. Two datasets (GSE153224 and GSE163416), involving data from non-Tibetan plateau areas, were used to further screen out Tibetan plateau key mRNAs, followed by the common genes of Tibetan plateau key and ferroptosis-related mRNAs were also identified. Functional enrichment analyses were performed to investigate the biological functions of Tibetan plateau mRNAs in the CAG. A total of seven lncRNA-miRNA-mRNA relationship pairs and 424 circRNA-miRNA-mRNA relationship pairs were identified in this study. The relationship pairs of hsa_circ_0082984-hsa-miR-204-5p-CACNG8, lncRNA DRAIC/has_circ_0008561-hsa-miR-34a-5p-AR/GXYLT2, lncRNA GAS1RR/RGMB-AS1/hsa_circ_0008561-hsa-miR-3614-5p-TMEM216/SUSD5, and LINC00941/hsa_circ_0082984-hsa-miR-873-3p-TMC5 can be involved in the pathogenesis of CAG. Additionally, eight common genes of Tibetan plateau key and ferroptosis-related differentially expressed mRNAs (DEmRNAs) (CBS, SLC2A4, STAT3, ALOX15B, ATF3, IDO1, NOX4, and SOCS1) were identified in CAG. The common genes of Tibetan plateau key and ferroptosis-related DEmRNAs can play a role in the JAK-STAT signaling pathway. This study identified important molecular biomarkers that may be involved in regulating the pathological mechanisms of CAG in the Tibetan plateau, which provides potential research directions for future research.
Collapse
Affiliation(s)
- Wen Pan
- Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610054, Sichuan, China
- Department of Health Management Center, The Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan, China
| | - Chao Liu
- Department of Gastroenterology and Hepatology, The Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan, China
| | - Tao Ren
- Department of Gastroenterology and Hepatology, The Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan, China
| | - Xiaohong Chen
- Department of Gastroenterology and Hepatology, The Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan, China
| | - Cuiting Liang
- Department of Gastroenterology and Hepatology, The Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan, China
| | - Jin Wang
- Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610054, Sichuan, China
| | - Jinlin Yang
- Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610054, Sichuan, China.
| |
Collapse
|
3
|
Molinaro M, Torrente Y, Villa C, Farini A. Advancing Biomarker Discovery and Therapeutic Targets in Duchenne Muscular Dystrophy: A Comprehensive Review. Int J Mol Sci 2024; 25:631. [PMID: 38203802 PMCID: PMC10778889 DOI: 10.3390/ijms25010631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Mounting evidence underscores the intricate interplay between the immune system and skeletal muscles in Duchenne muscular dystrophy (DMD), as well as during regular muscle regeneration. While immune cell infiltration into skeletal muscles stands out as a prominent feature in the disease pathophysiology, a myriad of secondary defects involving metabolic and inflammatory pathways persist, with the key players yet to be fully elucidated. Steroids, currently the sole effective therapy for delaying onset and symptom control, come with adverse side effects, limiting their widespread use. Preliminary evidence spotlighting the distinctive features of T cell profiling in DMD prompts the immuno-characterization of circulating cells. A molecular analysis of their transcriptome and secretome holds the promise of identifying a subpopulation of cells suitable as disease biomarkers. Furthermore, it provides a gateway to unraveling new pathological pathways and pinpointing potential therapeutic targets. Simultaneously, the last decade has witnessed the emergence of novel approaches. The development and equilibrium of both innate and adaptive immune systems are intricately linked to the gut microbiota. Modulating microbiota-derived metabolites could potentially exacerbate muscle damage through immune system activation. Concurrently, genome sequencing has conferred clinical utility for rare disease diagnosis since innovative methodologies have been deployed to interpret the functional consequences of genomic variations. Despite numerous genes falling short as clinical targets for MD, the exploration of Tdark genes holds promise for unearthing novel and uncharted therapeutic insights. In the quest to expedite the translation of fundamental knowledge into clinical applications, the identification of novel biomarkers and disease targets is paramount. This initiative not only advances our understanding but also paves the way for the design of innovative therapeutic strategies, contributing to enhanced care for individuals grappling with these incapacitating diseases.
Collapse
Affiliation(s)
- Monica Molinaro
- Neurology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (M.M.); (Y.T.)
| | - Yvan Torrente
- Neurology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (M.M.); (Y.T.)
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20100 Milan, Italy;
| | - Chiara Villa
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20100 Milan, Italy;
| | - Andrea Farini
- Neurology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (M.M.); (Y.T.)
| |
Collapse
|
4
|
Song YB, Bao WG, Liu DH, Wei LQ, Yang ST, Miao XJ, Lin CY, Li HJ, Lan D, He HM. Pan-cancer analysis of the prognostic significance and oncogenic role of GXYLT2. Medicine (Baltimore) 2023; 102:e35664. [PMID: 37986328 PMCID: PMC10659660 DOI: 10.1097/md.0000000000035664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 11/22/2023] Open
Abstract
Growing evidence supports an oncogenic role for glucoside xylosyltransferase 2 (GXYLT2) in a number of malignancies. To evaluate the prognostic value and oncogenic function of GXYLT2 in diverse cancer types, we analyzed sequencing data from public databases on 33 tumor tissues and their corresponding normal tissues. We found that GXYLT2 was overexpressed in a number of tumors, and that its expression was positively correlated with disease progression and mortality in several major cancer types including stomach adenocarcinoma (STAD). GXYLT2 was also linked to tumor size, grade, and the immune and molecular subtypes of STAD. GO and KEGG pathway analyses of GXYLT2 co-expressed genes in STAD suggested that GXYLT2 possibly plays a role in epithelial-mesenchymal transition, extracellular matrix production and degradation, angiogenesis, apoptosis, as well as in tumor inflammation, such as cytokine production and T cell activation. Finally, prognostic nomograms were created and validated for predicting 1, 3, and 5-year survival of patients with STAD. Our findings indicate that GXYLT2 may play a role in tumorigenesis and tumor immunity, and it may serve as a prognostic marker and potential immunotherapeutic target for STAD and some other types of cancer.
Collapse
Affiliation(s)
- Yi-Bei Song
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Wen-Guang Bao
- Department of Medical Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Deng-He Liu
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Li-Qiang Wei
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Shu-Ting Yang
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Xue-Jing Miao
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Chun-Yu Lin
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | | | - Dong Lan
- Department of Medical Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hui-Min He
- Guangxi Medical University, Nanning, China
| |
Collapse
|