1
|
Nguyen TD, Duong HN, Nguyen TP, Nguyen PT, Nguyen HH, Nguyen TT, Pham HG, Truong DH, Nguyen HT. Antibiotic potential and metabolic modulation of Bacillus velezensis VTRNT 01 in response to bacterial elicitors. World J Microbiol Biotechnol 2025; 41:102. [PMID: 40069525 DOI: 10.1007/s11274-025-04311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
Bacterial elicitors are recognized for their ecological role in stimulating plant defenses and enhancing the production of beneficial metabolites. This study explores the antibiotic potential of endophytic Bacillus velezensis VTRNT 01, isolated from Adenosma bracteosum Bonati, under co-cultivation with bacterial elicitors (Staphylococcus aureus, Escherichia coli, and Aeromonas hydrophila). By leveraging these interactions, we aim to unlock the full potential of endophytic bacteria for sustainable applications in agriculture and pharmaceuticals. Using gas chromatography-mass spectrometry (GC-MS) analysis, we identified a total of 42 distinct chemical compounds produced under these conditions. Notably, 15 of these compounds were exclusively induced by the elicitor treatment, suggesting a strong interactive effect between Bacillus velezensis and the elicitors. Among the identified compounds, several have well-documented antimicrobial properties, including benzaldehyde, benzeneacetic acid, and tetradecanoic acid, which were shown to exhibit significant antibacterial activity against common pathogens. These findings demonstrate the potential of bio-elicitor strategies to enhance the biosynthesis of antimicrobial compounds, paving the way for innovative solutions in crop protection and the development of new therapeutic agents.
Collapse
Affiliation(s)
| | | | | | - Phu-Tho Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | | | - Thi-Tho Nguyen
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam
| | - Ha-Giang Pham
- Medical Genetics Department, Hung Vuong Hospital, Ho Chi Minh City, Vietnam
| | - Dieu-Hien Truong
- Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Alabama, 35294, USA
| | - Huu-Thanh Nguyen
- An Giang University, An Giang, Vietnam.
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam.
| |
Collapse
|
2
|
Bashir S, Behiry S, Al-Askar AA, Kowalczewski PŁ, Emaish HH, Abdelkhalek A. Antibacterial, antifungal, and phytochemical properties of Salsola kali ethanolic extract. Open Life Sci 2024; 19:20220962. [PMID: 39247796 PMCID: PMC11377937 DOI: 10.1515/biol-2022-0962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/25/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
The research into the use of plants as plentiful reservoirs of bioactive chemicals shows significant potential for agricultural uses. This study focused on analyzing the chemical composition and potency of an ethanolic extract obtained from the aerial parts (leaves and stems) of Salsola kali against potato pathogenic fungal and bacterial pathogens. The isolated fungal isolates were unequivocally identified as Fusarium oxysporum and Rhizoctonia solani based on morphological characteristics and internal transcribed spacer genetic sequencing data. The antifungal activity of the extract revealed good inhibition efficacy against R. solani (60.4%) and weak activity against F. oxysporum (11.1%) at a concentration of 5,000 µg/mL. The S. kali extract exhibited strong antibacterial activity, as evidenced by the significant inhibition zone diameter (mm) observed in all three strains of bacteria that were tested: Pectobacterium carotovorum (13.33), Pectobacterium atrosepticum (9.00), and Ralstonia solanacearum (9.33), at a concentration of 10,000 µg/mL. High-performance liquid chromatography analysis revealed the presence of several polyphenolic compounds (μg/g), with gallic acid (2942.8), caffeic acid (2110.2), cinnamic acid (1943.1), and chlorogenic acid (858.4) being the predominant ones. Quercetin and hesperetin were the predominant flavonoid components, with concentrations of 1110.3 and 1059.3 μg/g, respectively. Gas chromatography-mass spectrometry analysis revealed the presence of many bioactive compounds, such as saturated and unsaturated fatty acids, diterpenes, and phytosterols. The most abundant compound detected was n-hexadecanoic acid, which accounted for 28.1%. The results emphasize the potential of S. kali extract as a valuable source of bioactive substances that possess good antifungal and antibacterial effects, which highlights its potential for many agricultural uses.
Collapse
Affiliation(s)
- Shimaa Bashir
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, 21934, Egypt
| | - Said Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Abdulaziz A Al-Askar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | | - Haitham H Emaish
- Department of Soils and Agricultural Chemistry, Biosystem Engineering, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, 21934, Egypt
| |
Collapse
|
3
|
Ndile MM, Makori WA, Kibiti CM, Ngugi MP. In Vitro Hypoglycemic and Antioxidant Activities of Dichloromethane Extract of Xerophyta spekei. SCIENTIFICA 2023; 2023:6652112. [PMID: 38188987 PMCID: PMC10769734 DOI: 10.1155/2023/6652112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/13/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024]
Abstract
Diabetes mellitus is a chronic metabolic disorder which has greatly led to an increase in morbidity and mortality globally. Although Xerophyta spekei is widely used for the management of diabetes among the Embu and Mbeere communities in Kenya, it has never been empirically evaluated for its hypoglycemic activity. This study was carried out to verify the hypoglycemic activity of dichloromethane (DCM) extract of Xerophyta spekei as well as its antioxidant activity using various in vitro techniques. Phytochemicals associated with its antioxidant activity were identified through GC-MS. Data were subjected to descriptive statistics and expressed as mean ± standard error of the mean (X̄ ± SEM). Comparison between various variables was performed by using unpaired Student's t-test and one-way analysis of variance (ANOVA), followed by Tukey's post-hoc test. The confidence interval was set at 95%. The obtained results were presented in tables and graphs. Results showed that there was no difference in α-amylase inhibition activity between the plant extract and the standard (IC50 525.9 ± 12.34 and 475.1 ± 9.115, respectively; p > 0.05). Besides, the glucose adsorption activity of the extract increased with an increase in glucose concentration (from 5.89 to 32.64 mg/dl at 5 mmol and 30 mmol of glucose, respectively; p < 0.05). The extract also limited the diffusion of glucose more than the negative control (7.49 and 17.63 mg/dl, respectively; p < 0.05). It also enhanced glucose uptake by yeast cells. In addition, the studied plant extract showed notable antioxidant activities. The therapeutic effects exhibited by this plant in managing diabetes mellitus and other ailments could be due to its antioxidant as well as its hypoglycemic activity. The study recommends the evaluation of X. spekei for in vivo hypoglycemic and antioxidant activities. Besides, the isolation of bioactive phytochemicals from the plant may lead to the development of new hypoglycaemic agents.
Collapse
Affiliation(s)
- Michael Musila Ndile
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P. O Box 43844-00100, Nairobi, Kenya
| | - Wycliffe Arika Makori
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P. O Box 43844-00100, Nairobi, Kenya
| | - Cromwell Mwiti Kibiti
- Department of Pure and Applied Sciences, Technical University of Mombasa, P. O. Box 90420-80100, Mombasa, Kenya
| | - Mathew Piero Ngugi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P. O Box 43844-00100, Nairobi, Kenya
| |
Collapse
|
4
|
Nyalo P, Omwenga G, Ngugi M. Quantitative Phytochemical Profile and In Vitro Antioxidant Properties of Ethyl Acetate Extracts of Xerophyta spekei (Baker) and Grewia tembensis (Fresen). J Evid Based Integr Med 2023; 28:2515690X231165096. [PMID: 36945829 PMCID: PMC10034282 DOI: 10.1177/2515690x231165096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Overproduction of free radicals in excess of antioxidants leads to oxidative stress which can cause harm to the body. Conventional antioxidants have drawbacks and are believed to be carcinogenic. The present study seeked to confirm folklore use and validate the antioxidant potentials of Grewia tembensis and Xerophyta spekei which have been widely used in the Mbeere community as medicinal plants. Antioxidant properties were determined through scavenging effects of diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide radicals as well as iron chelating effects. The data obtained was assayed in comparison to the standards (Ascorbic acid and EDTA). Ascorbic acid had a significantly greater DPPH radical scavenging property with an inhibitory concentration (IC50) value of 20.54 ± 2.24 µg/mL in comparison to the plant extracts, which had IC50 values of 33.00 ± 1.47 µg/mL, 69.66 ± 1.01 µg/mL and 86.88 ± 2.64 µg/mL for X. spekei, G. tembensis leaf and G. tembensis stem bark extracts, respectively. EDTA demonstrated a significantly greater iron chelating effect having a significantly lesser IC50 value of 25.05 ± 0.79 µg/mL as opposed to 43.56 ± 0.46 µg/mL, 89.78 ± 0.55 µg/mL, and 120.70 ± 0.71 µg/mL for X. spekei, G. tembensis leaf, and G. tembensis stem bark extracts respectively. Additionally, ascorbic acid also exhibited stronger hydrogen peroxide radical scavenging effect than the studied extracts. Generally, X. spekei extract had higher antioxidant activities as compared to both the leaf and stem bark extracts of G. tembensis. The phytochemical screening demonstrated the presence of secondary metabolites associated with antioxidant properties. The present study therefore, recommends ethno medicinal and therapeutic use of G. tembensis and X. spekei in the treatment and management of oxidative stress related infections.
Collapse
Affiliation(s)
- Paul Nyalo
- Department of Biochemistry, Microbiology and Biotechnology, 107864Kenyatta University, Nairobi, Kenya
- Medical Laboratory Department, Penda Health (K) Ltd, Nairobi, Kenya
| | - George Omwenga
- Department of Biochemistry, Microbiology and Biotechnology, 107864Kenyatta University, Nairobi, Kenya
| | - Mathew Ngugi
- Department of Biochemistry, Microbiology and Biotechnology, 107864Kenyatta University, Nairobi, Kenya
| |
Collapse
|