1
|
Rong RY, Shen YK, Wu SN, Xu SH, Hu JY, Zou J, He L, Chen C, Kang M, Ying P, Wei H, Ling Q, Ge QM, Lou Y, Shao Y. Prediction model for ocular metastasis of breast cancer: machine learning model development and interpretation study. BMC Cancer 2024; 24:1472. [PMID: 39614215 DOI: 10.1186/s12885-024-12928-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/10/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is caused by the uncontrolled proliferation of breast epithelial cells followed by malignant transformation, and it has the highest incidence among female malignant tumors. The metastasis of BC occurs through direct and lymphatic spread. Although ocular metastasis is relatively rare, it is a good indicator of a worse prognosis. We used machine learning (ML) to establish a model to analyze the risk factors of BC eye metastasis. METHODS The clinical data of 2225 patients with BC from 2003 to 2019 were collected and randomly classified into the training and test sets using a ratio of 7:3. Based on the presence or absence of eye metastasis, the patients with BC were classified into the ocular metastasis (OM) and non-ocular metastasis (NOM) groups. Univariate and multivariate logistic regression analyses and least absolute shrinkage and selection operator (LASSO) were conducted. We used six ML algorithms to establish a predictive BC model and used 10-fold cross-validation for internal verification. The area under the receiver operating characteristic (ROC) curve was used to evaluate the predictive ability of the model. In addition, we established a web hazard calculator depending on the best-performing model to facilitate its clinical application. Shapley additive interpretation (SHAP) was used to determine the risk factors and the interpretability of the black box model. RESULTS Univariate logistic regression analysis showed that histopathology (other types), axillary lymph node metastasis (ALNM) (> 4), Ca2+, total cholesterol (TC), low-density lipoprotein (LDL), apolipoprotein A (ApoA), carcinoembryonic antigen (CEA), carbohydrate antigen (CA) 125, CA153, CA199, alkaline phosphatase (ALP), and hemoglobin (Hb) were risk factors for BC eye metastasis. Multivariate logistic regression analysis showed that CA153, ApoA, and LDL were hazardous components for BC eye metastasis. LASSO showed that ALNM, LDL, CA125, Hb, ALP, and CA199 were the first six key variables that were useful for the diagnosis of ocular metastasis in breast cancer. Bootstrapped aggregation (BAG) demonstrated the discriminative ability (area under ROC curve [AUC] = 0.992, accuracy = 0.953, sensitivity = 0.987). Based on this, we applied the BAG machine learning model to build an online web computing system to help clinicians assist in determining the risk of BC eye metastasis. In addition, two typical cases are analyzed to determine the interpretability of the model. CONCLUSION We used ML to establish a risk prediction model for BC ocular metastasis, and BAG showed the greatest performance. The model can predict the risk of OM in patients with BC, facilitate early and timely diagnosis and treatment, and reduce the burden on society.
Collapse
Affiliation(s)
- Ru-Yi Rong
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yan-Kun Shen
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Shi-Nan Wu
- School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - San-Hua Xu
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jin-Yu Hu
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jie Zou
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Liangqi He
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Cheng Chen
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Min Kang
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ping Ying
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Hong Wei
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qian Ling
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qian-Ming Ge
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yan Lou
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
2
|
Moulaei K, Mahboubi M, Ghorbani Kalkhajeh S, Kazemi-Arpanahi H. Prediction of childbearing tendency in women on the verge of marriage using machine learning techniques. Sci Rep 2024; 14:20811. [PMID: 39242645 PMCID: PMC11379883 DOI: 10.1038/s41598-024-71854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024] Open
Abstract
The declining fertility rate and increasing marriage age among girls pose challenges for policymakers, leading to issues such as population decline, higher social and economic costs, and reduced labor productivity. Using machine learning (ML) techniques to predict the desire to have children can offer a promising solution to address these challenges. Therefore, this study aimed to predict the childbearing tendency in women on the verge of marriage using ML techniques. Data from 252 participants (203 expressing a "desire to have children" and 49 indicating "reluctance to have children") in Abadan, and Khorramshahr cities (Khuzestan Province, Iran) was analyzed. Seven ML algorithms, including multilayer perceptron (MLP), support vector machine (SVM), logistic regression (LR), random forest (RF), J48 decision tree, Naive Bayes (NB), and K-nearest neighbors (KNN), were employed. The performance of these algorithms was assessed using metrics derived from the confusion matrix. The RF algorithm showed superior performance, with the highest sensitivity (99.5%), specificity (95.6%), and receiver operating characteristic curve (90.1%) values. Meanwhile, MLP emerged as the top-performing algorithm, showcasing the best overall performance in accuracy (77.75%) and precision (81.8%) compared to other algorithms. Factors such as age of marriage, place of residence, and strength of the family center with the birth of a child were the most effective predictors of a woman's desire to have children. Conversely, the number of daughters, the wife's ethnicity, and the spouse's ownership of assets such as cars and houses were among the least important factors in predicting this desire. ML algorithms exhibit excellent predictive capabilities for childbearing tendencies in women on the verge of marriage, highlighting their remarkable effectiveness. This capacity to offer accurate prognoses holds significant promise for advancing research in this field.
Collapse
Affiliation(s)
- Khadijeh Moulaei
- Department of Health Information Technology, Faculty of Paramedical, Ilam University of Medical Sciences, Ilam, Iran
- Artificial Intelligence in Medical Sciences Research Center, Smart University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahboubi
- Department of Public Health, Abadan University of Medical Sciences, Abadan, Iran
| | - Sasan Ghorbani Kalkhajeh
- Department of Public Health, Abadan University of Medical Sciences, Abadan, Iran
- Department of Community Medicine, School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Hadi Kazemi-Arpanahi
- Department of Health Information Technology, Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
3
|
Yu L, Che M, Wu X, Luo H. Research on ultrasound-based radiomics: a bibliometric analysis. Quant Imaging Med Surg 2024; 14:4520-4539. [PMID: 39022291 PMCID: PMC11250334 DOI: 10.21037/qims-23-1867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/16/2024] [Indexed: 07/20/2024]
Abstract
Background A large number of studies related to ultrasound-based radiomics have been published in recent years; however, a systematic bibliometric analysis of this topic has not yet been conducted. In this study, we attempted to identify the hotspots and frontiers in ultrasound-based radiomics through bibliometrics and to systematically characterize the overall framework and characteristics of studies through mapping and visualization. Methods A literature search was carried out in Web of Science Core Collection (WoSCC) database from January 2016 to December 2023 according to a predetermined search formula. Bibliometric analysis and visualization of the results were performed using CiteSpace, VOSviewer, R, and other platforms. Results Ultimately, 466 eligible papers were included in the study. Publication trend analysis showed that the annual publication trend of journals in ultrasound-based radiomics could be divided into three phases: there were no more than five documents published in this field in any year before 2018, a small yearly increase in the number of annual publications occurred between 2018 and 2022, and a high, stable number of publications appeared after 2022. In the analysis of publication sources, China was found to be the main contributor, with a much higher number of publications than other countries, and was followed by the United States and Italy. Frontiers in Oncology was the journal with the highest number of papers in this field, publishing 60 articles. Among the academic institutions, Fudan University, Sun Yat-sen University, and the Chinese Academy of Sciences ranked as the top three in terms of the number of documents. In the analysis of authors and cocited authors, the author with the most publications was Yuanyuan Wang, who has published 19 articles in 8 years, while Philippe Lambin was the most cited author, with 233 citations. Visualization of the results from the cocitation analysis of the literature revealed a strong centrality of the subject terms papillary thyroid cancer, biological behavior, potential biomarkers, and comparative assessment, which may be the main focal points of research in this subject. Based on the findings of the keyword analysis and cluster analysis, the keywords can be categorized into two major groups: (I) technological innovations that enable the construction of radiomics models such as machine learning and deep learning and (II) applications of predictive models to support clinical decision-making in certain diseases, such as papillary thyroid cancer, hepatocellular carcinoma (HCC), and breast cancer. Conclusions Ultrasound-based radiomics has received widespread attention in the medical field and has been gradually been applied in clinical research. Radiomics, a relatively late development in medical technology, has made substantial contributions to the diagnosis, prediction, and prognostic evaluation of diseases. Additionally, the coupling of artificial intelligence techniques with ultrasound imaging has yielded a number of promising tools that facilitate clinical decision-making and enable the practice of precision medicine. Finally, the development of ultrasound-based radiomics requires multidisciplinary cooperation and joint efforts from the field biomedicine, information technology, statistics, and clinical medicine.
Collapse
Affiliation(s)
- Lu Yu
- Department of Ultrasound, The Second Affiliated Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Mengting Che
- Department of Tumor Radiotherapy and Chemotherapy, The Second Affiliated Hospital of Sichuan University, Chengdu, China
| | - Xu Wu
- Department of Ultrasound, The Second Affiliated Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Hong Luo
- Department of Ultrasound, The Second Affiliated Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
4
|
Li L, Yang J, Por LY, Khan MS, Hamdaoui R, Hussain L, Iqbal Z, Rotaru IM, Dobrotă D, Aldrdery M, Omar A. Enhancing lung cancer detection through hybrid features and machine learning hyperparameters optimization techniques. Heliyon 2024; 10:e26192. [PMID: 38404820 PMCID: PMC10884486 DOI: 10.1016/j.heliyon.2024.e26192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Machine learning offers significant potential for lung cancer detection, enabling early diagnosis and potentially improving patient outcomes. Feature extraction remains a crucial challenge in this domain. Combining the most relevant features can further enhance detection accuracy. This study employed a hybrid feature extraction approach, which integrates both Gray-level co-occurrence matrix (GLCM) with Haralick and autoencoder features with an autoencoder. These features were subsequently fed into supervised machine learning methods. Support Vector Machine (SVM) Radial Base Function (RBF) and SVM Gaussian achieved perfect performance measures, while SVM polynomial produced an accuracy of 99.89% when utilizing GLCM with an autoencoder, Haralick, and autoencoder features. SVM Gaussian achieved an accuracy of 99.56%, while SVM RBF achieved an accuracy of 99.35% when utilizing GLCM with Haralick features. These results demonstrate the potential of the proposed approach for developing improved diagnostic and prognostic lung cancer treatment planning and decision-making systems.
Collapse
Affiliation(s)
- Liangyu Li
- Center for Software Technology and Management, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Health Informatics Laboratory, Cancer Research Institute, Chifeng Cancer Hospital (Second Affiliated Hospital of Chifeng University), Medical Department, Chifeng University, Chifeng City, Inner Mongolia Autonomous Region, 024000, China
| | - Jing Yang
- Department of Computer System and Technology, Faculty of Computer Science and Information Technology, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lip Yee Por
- Department of Computer System and Technology, Faculty of Computer Science and Information Technology, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohammad Shahbaz Khan
- Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, United States
| | - Rim Hamdaoui
- Department of Computer Science, College of Science and Human Studies Dawadmi, Shaqra University, Shaqra, Riyadh, Saudi Arabia
| | - Lal Hussain
- Department of Computer Science and Information Technology, King Abdullah Campus Chatter Kalas, University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Azad Kashmir, Pakistan
- Department of Computer Science and Information Technology, Neelum Campus, University of Azad Jammu and Kashmir, Athmuqam, 13230, Azad Kashmir, Pakistan
| | - Zahoor Iqbal
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004, China
| | - Ionela Magdalena Rotaru
- Department of Industrial Engineering and Management, Lucian Blaga University of Sibiu, Bulevardul Victoriei 10, Sibiu, 550024, Romania
| | - Dan Dobrotă
- Faculty of Engineering, Lucian Blaga University of Sibiu, Bulevardul Victoriei 10, Sibiu, 550024, Romania
| | - Moutaz Aldrdery
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, 61411, Saudi Arabia
| | - Abdulfattah Omar
- Department of English, College of Science & Humanities, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| |
Collapse
|
5
|
Zhou S, Hu C, Wei S, Yan X. Breast Cancer Prediction Based on Multiple Machine Learning Algorithms. Technol Cancer Res Treat 2024; 23:15330338241234791. [PMID: 38592291 PMCID: PMC11005507 DOI: 10.1177/15330338241234791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/13/2023] [Accepted: 01/22/2024] [Indexed: 04/10/2024] Open
Abstract
INTRODUCTION The incidence of breast cancer has steadily risen over the years owing to changes in lifestyle and environment. Presently, breast cancer is one of the primary causes of cancer-related deaths among women, making it a crucial global public health concern. Thus, the creation of an automated diagnostic system for breast cancer bears great importance in the medical community. OBJECTIVES This study analyses the Wisconsin breast cancer dataset and develops a machine learning algorithm for accurately classifying breast cancer as benign or malignant. METHODS Our research is a retrospective study, and the main purpose is to develop a high-precision classification algorithm for benign and malignant breast cancer. To achieve this, we first preprocessed the dataset using standard techniques such as feature scaling and handling missing values. We assessed the normality of the data distribution initially, after which we opted for Spearman correlation analysis to examine the relationship between the feature subset data and the labeled data, considering the normality test results. We subsequently employed the Wilcoxon rank sum test to investigate the dissimilarities in distribution among various breast cancer feature data. We constructed the feature subset based on statistical results and trained 7 machine learning algorithms, specifically the decision tree, stochastic gradient descent algorithm, random forest algorithm, support vector machine algorithm, logistics algorithm, and AdaBoost algorithm. RESULTS The results of the evaluation indicated that the AdaBoost-Logistic algorithm achieved an accuracy of 99.12%, outperforming the other 6 algorithms and previous techniques. CONCLUSION The constructed AdaBoost-Logistic algorithm exhibits significant precision with the Wisconsin breast cancer dataset, achieving commendable classification performance for both benign and malignant breast cancer cases.
Collapse
Affiliation(s)
- Sheng Zhou
- Department of Preventive Medicine, Guizhou Medical University, Guiyang, China
| | - Chujiao Hu
- Department of Medicine and Health Management, Guizhou Medical University, Guiyang, China
| | - Shanshan Wei
- Department of Preventive Medicine, Guizhou Medical University, Guiyang, China
| | - Xiaofan Yan
- Department of Medicine and Health Management, Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Abbasi EY, Deng Z, Magsi AH, Ali Q, Kumar K, Zubedi A. Optimizing Skin Cancer Survival Prediction with Ensemble Techniques. Bioengineering (Basel) 2023; 11:43. [PMID: 38247920 PMCID: PMC10813432 DOI: 10.3390/bioengineering11010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
The advancement in cancer research using high throughput technology and artificial intelligence (AI) is gaining momentum to improve disease diagnosis and targeted therapy. However, the complex and imbalanced data with high dimensionality pose significant challenges for computational approaches and multi-omics data analysis. This study focuses on predicting skin cancer and analyzing overall survival probability. We employ the Kaplan-Meier estimator and Cox proportional hazards regression model, utilizing high-throughput machine learning (ML)-based ensemble methods. Our proposed ML-based ensemble techniques are applied to a publicly available dataset from the ICGC Data Portal, specifically targeting skin cutaneous melanoma cancers (SKCM). We used eight baseline classifiers, namely, random forest (RF), decision tree (DT), gradient boosting (GB), AdaBoost, Gaussian naïve Bayes (GNB), extra tree (ET), logistic regression (LR), and light gradient boosting machine (Light GBM or LGBM). The study evaluated the performance of the proposed ensemble methods and survival analysis on SKCM. The proposed methods demonstrated promising results, outperforming other algorithms and models in terms of accuracy compared to traditional methods. Specifically, the RF classifier exhibited outstanding precision results. Additionally, four different ensemble methods (stacking, bagging, boosting, and voting) were created and trained to achieve optimal results. The performance was evaluated and interpreted using accuracy, precision, recall, F1 score, confusion matrix, and ROC curves, where the voting method achieved a promising accuracy of 99%. On the other hand, the RF classifier achieved an outstanding accuracy of 99%, which exhibits the best performance. We compared our proposed study with the existing state-of-the-art techniques and found significant improvements in several key aspects. Our approach not only demonstrated superior performance in terms of accuracy but also showcased remarkable efficiency. Thus, this research work contributes to diagnosing SKCM with high accuracy.
Collapse
Affiliation(s)
- Erum Yousef Abbasi
- State Key Laboratory of Wireless Network Positioning and Communication Engineering Integration Research, School of Electronics Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
| | - Zhongliang Deng
- State Key Laboratory of Wireless Network Positioning and Communication Engineering Integration Research, School of Electronics Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
| | - Arif Hussain Magsi
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
| | - Qasim Ali
- Department of Software Engineering, Mehran University of Engineering and Technology, Jamshoro 76062, Pakistan;
| | - Kamlesh Kumar
- School of Electronics Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
| | - Asma Zubedi
- School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing 100876, China;
| |
Collapse
|
7
|
Khaledyan D, Marini TJ, M. Baran T, O’Connell A, Parker K. Enhancing breast ultrasound segmentation through fine-tuning and optimization techniques: Sharp attention UNet. PLoS One 2023; 18:e0289195. [PMID: 38091358 PMCID: PMC10718429 DOI: 10.1371/journal.pone.0289195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/03/2023] [Indexed: 12/18/2023] Open
Abstract
Segmentation of breast ultrasound images is a crucial and challenging task in computer-aided diagnosis systems. Accurately segmenting masses in benign and malignant cases and identifying regions with no mass is a primary objective in breast ultrasound image segmentation. Deep learning (DL) has emerged as a powerful tool in medical image segmentation, revolutionizing how medical professionals analyze and interpret complex imaging data. The UNet architecture is a highly regarded and widely used DL model in medical image segmentation. Its distinctive architectural design and exceptional performance have made it popular among researchers. With the increase in data and model complexity, optimization and fine-tuning models play a vital and more challenging role than before. This paper presents a comparative study evaluating the effect of image preprocessing and different optimization techniques and the importance of fine-tuning different UNet segmentation models for breast ultrasound images. Optimization and fine-tuning techniques have been applied to enhance the performance of UNet, Sharp UNet, and Attention UNet. Building upon this progress, we designed a novel approach by combining Sharp UNet and Attention UNet, known as Sharp Attention UNet. Our analysis yielded the following quantitative evaluation metrics for the Sharp Attention UNet: the Dice coefficient, specificity, sensitivity, and F1 score values obtained were 0.93, 0.99, 0.94, and 0.94, respectively. In addition, McNemar's statistical test was applied to assess significant differences between the approaches. Across a number of measures, our proposed model outperformed all other models, resulting in improved breast lesion segmentation.
Collapse
Affiliation(s)
- Donya Khaledyan
- Department of Electrical and Electronics Engineering, University of Rochester, Rochester, NY, United States of America
| | - Thomas J. Marini
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Timothy M. Baran
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Avice O’Connell
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Kevin Parker
- Department of Electrical and Electronics Engineering, University of Rochester, Rochester, NY, United States of America
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States of America
| |
Collapse
|
8
|
Owusu-Adjei M, Ben Hayfron-Acquah J, Frimpong T, Abdul-Salaam G. Imbalanced class distribution and performance evaluation metrics: A systematic review of prediction accuracy for determining model performance in healthcare systems. PLOS DIGITAL HEALTH 2023; 2:e0000290. [PMID: 38032863 PMCID: PMC10688675 DOI: 10.1371/journal.pdig.0000290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/29/2023] [Indexed: 12/02/2023]
Abstract
Focus on predictive algorithm and its performance evaluation is extensively covered in most research studies to determine best or appropriate predictive model with Optimum prediction solution indicated by prediction accuracy score, precision, recall, f1score etc. Prediction accuracy score from performance evaluation has been used extensively as the main determining metric for performance recommendation. It is one of the most widely used metric for identifying optimal prediction solution irrespective of dataset class distribution context or nature of dataset and output class distribution between the minority and majority variables. The key research question however is the impact of class inequality on prediction accuracy score in such datasets with output class distribution imbalance as compared to balanced accuracy score in the determination of model performance in healthcare and other real-world application systems. Answering this question requires an appraisal of current state of knowledge in both prediction accuracy score and balanced accuracy score use in real-world applications where there is unequal class distribution. Review of related works that highlight the use of imbalanced class distribution datasets with evaluation metrics will assist in contextualizing this systematic review.
Collapse
Affiliation(s)
- Michael Owusu-Adjei
- Department of Computer Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - James Ben Hayfron-Acquah
- Department of Computer Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Twum Frimpong
- Department of Computer Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Gaddafi Abdul-Salaam
- Department of Computer Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
9
|
Kapila R, Saleti S. An efficient ensemble-based Machine Learning for breast cancer detection. Biomed Signal Process Control 2023; 86:105269. [DOI: 10.1016/j.bspc.2023.105269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Joy A, Lin M, Joines M, Saucedo A, Lee-Felker S, Baker J, Chien A, Emir U, Macey PM, Thomas MA. Ensemble Learning for Breast Cancer Lesion Classification: A Pilot Validation Using Correlated Spectroscopic Imaging and Diffusion-Weighted Imaging. Metabolites 2023; 13:835. [PMID: 37512542 PMCID: PMC10385820 DOI: 10.3390/metabo13070835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The main objective of this work was to evaluate the application of individual and ensemble machine learning models to classify malignant and benign breast masses using features from two-dimensional (2D) correlated spectroscopy spectra extracted from five-dimensional echo-planar correlated spectroscopic imaging (5D EP-COSI) and diffusion-weighted imaging (DWI). Twenty-four different metabolite and lipid ratios with respect to diagonal fat peaks (1.4 ppm, 5.4 ppm) from 2D spectra, and water and fat peaks (4.7 ppm, 1.4 ppm) from one-dimensional non-water-suppressed (NWS) spectra were used as the features. Additionally, water fraction, fat fraction and water-to-fat ratios from NWS spectra and apparent diffusion coefficients (ADC) from DWI were included. The nine most important features were identified using recursive feature elimination, sequential forward selection and correlation analysis. XGBoost (AUC: 93.0%, Accuracy: 85.7%, F1-score: 88.9%, Precision: 88.2%, Sensitivity: 90.4%, Specificity: 84.6%) and GradientBoost (AUC: 94.3%, Accuracy: 89.3%, F1-score: 90.7%, Precision: 87.9%, Sensitivity: 94.2%, Specificity: 83.4%) were the best-performing models. Conventional biomarkers like choline, myo-Inositol, and glycine were statistically significant predictors. Key features contributing to the classification were ADC, 2D diagonal peaks at 0.9 ppm, 2.1 ppm, 3.5 ppm, and 5.4 ppm, cross peaks between 1.4 and 0.9 ppm, 4.3 and 4.1 ppm, 2.3 and 1.6 ppm, and the triglyceryl-fat cross peak. The results highlight the contribution of the 2D spectral peaks to the model, and they demonstrate the potential of 5D EP-COSI for early breast cancer detection.
Collapse
Affiliation(s)
- Ajin Joy
- Radiological Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.J.); (M.L.); (M.J.); (A.S.); (S.L.-F.); (A.C.)
| | - Marlene Lin
- Radiological Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.J.); (M.L.); (M.J.); (A.S.); (S.L.-F.); (A.C.)
| | - Melissa Joines
- Radiological Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.J.); (M.L.); (M.J.); (A.S.); (S.L.-F.); (A.C.)
| | - Andres Saucedo
- Radiological Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.J.); (M.L.); (M.J.); (A.S.); (S.L.-F.); (A.C.)
- Physics and Biology in Medicine-Inter-Departmental Graduate Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Stephanie Lee-Felker
- Radiological Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.J.); (M.L.); (M.J.); (A.S.); (S.L.-F.); (A.C.)
| | - Jennifer Baker
- Surgery, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Aichi Chien
- Radiological Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.J.); (M.L.); (M.J.); (A.S.); (S.L.-F.); (A.C.)
| | - Uzay Emir
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Paul M. Macey
- School of Nursing, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - M. Albert Thomas
- Radiological Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.J.); (M.L.); (M.J.); (A.S.); (S.L.-F.); (A.C.)
- Physics and Biology in Medicine-Inter-Departmental Graduate Program, University of California Los Angeles, Los Angeles, CA 90095, USA
- BioEngineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Pang J, Xiu W, Ma X. Application of Artificial Intelligence in the Diagnosis, Treatment, and Prognostic Evaluation of Mediastinal Malignant Tumors. J Clin Med 2023; 12:jcm12082818. [PMID: 37109155 PMCID: PMC10144939 DOI: 10.3390/jcm12082818] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Artificial intelligence (AI), also known as machine intelligence, is widely utilized in the medical field, promoting medical advances. Malignant tumors are the critical focus of medical research and improvement of clinical diagnosis and treatment. Mediastinal malignancy is an important tumor that attracts increasing attention today due to the difficulties in treatment. Combined with artificial intelligence, challenges from drug discovery to survival improvement are constantly being overcome. This article reviews the progress of the use of AI in the diagnosis, treatment, and prognostic prospects of mediastinal malignant tumors based on current literature findings.
Collapse
Affiliation(s)
- Jiyun Pang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Weigang Xiu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Wu R, Luo J, Wan H, Zhang H, Yuan Y, Hu H, Feng J, Wen J, Wang Y, Li J, Liang Q, Gan F, Zhang G. Evaluation of machine learning algorithms for the prognosis of breast cancer from the Surveillance, Epidemiology, and End Results database. PLoS One 2023; 18:e0280340. [PMID: 36701415 PMCID: PMC9879508 DOI: 10.1371/journal.pone.0280340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/26/2022] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION Many researchers used machine learning (ML) to predict the prognosis of breast cancer (BC) patients and noticed that the ML model had good individualized prediction performance. OBJECTIVE The cohort study was intended to establish a reliable data analysis model by comparing the performance of 10 common ML algorithms and the the traditional American Joint Committee on Cancer (AJCC) stage, and used this model in Web application development to provide a good individualized prediction for others. METHODS This study included 63145 BC patients from the Surveillance, Epidemiology, and End Results database. RESULTS Through the performance of the 10 ML algorithms and 7th AJCC stage in the optimal test set, we found that in terms of 5-year overall survival, multivariate adaptive regression splines (MARS) had the highest area under the curve (AUC) value (0.831) and F1-score (0.608), and both sensitivity (0.737) and specificity (0.772) were relatively high. Besides, MARS showed a highest AUC value (0.831, 95%confidence interval: 0.820-0.842) in comparison to the other ML algorithms and 7th AJCC stage (all P < 0.05). MARS, the best performing model, was selected for web application development (https://w12251393.shinyapps.io/app2/). CONCLUSIONS The comparative study of multiple forecasting models utilizing a large data noted that MARS based model achieved a much better performance compared to other ML algorithms and 7th AJCC stage in individualized estimation of survival of BC patients, which was very likely to be the next step towards precision medicine.
Collapse
Affiliation(s)
- Ruiyang Wu
- Department of Breast and Thyroid Surgery, Sichuan Provincial Hospital for Women and Children (Affiliated Women and Children’s Hospital of Chengdu Medical College), Chengdu, China
| | - Jing Luo
- Department of Breast and Thyroid Surgery, Sichuan Provincial Hospital for Women and Children (Affiliated Women and Children’s Hospital of Chengdu Medical College), Chengdu, China
| | - Hangyu Wan
- Department of Breast and Thyroid Surgery, Sichuan Provincial Hospital for Women and Children (Affiliated Women and Children’s Hospital of Chengdu Medical College), Chengdu, China
| | - Haiyan Zhang
- Department of Breast and Thyroid Surgery, Sichuan Provincial Hospital for Women and Children (Affiliated Women and Children’s Hospital of Chengdu Medical College), Chengdu, China
| | - Yewei Yuan
- Department of Breast and Thyroid Surgery, Sichuan Provincial Hospital for Women and Children (Affiliated Women and Children’s Hospital of Chengdu Medical College), Chengdu, China
| | - Huihua Hu
- Department of Breast and Thyroid Surgery, Sichuan Provincial Hospital for Women and Children (Affiliated Women and Children’s Hospital of Chengdu Medical College), Chengdu, China
| | - Jinyan Feng
- Department of Breast and Thyroid Surgery, Sichuan Provincial Hospital for Women and Children (Affiliated Women and Children’s Hospital of Chengdu Medical College), Chengdu, China
| | - Jing Wen
- Department of Breast and Thyroid Surgery, Sichuan Provincial Hospital for Women and Children (Affiliated Women and Children’s Hospital of Chengdu Medical College), Chengdu, China
| | - Yan Wang
- Department of Breast and Thyroid Surgery, Sichuan Provincial Hospital for Women and Children (Affiliated Women and Children’s Hospital of Chengdu Medical College), Chengdu, China
| | - Junyan Li
- Department of Breast and Thyroid Surgery, Sichuan Provincial Hospital for Women and Children (Affiliated Women and Children’s Hospital of Chengdu Medical College), Chengdu, China
| | - Qi Liang
- Department of Breast and Thyroid Surgery, Sichuan Provincial Hospital for Women and Children (Affiliated Women and Children’s Hospital of Chengdu Medical College), Chengdu, China
| | - Fengjiao Gan
- Department of Breast and Thyroid Surgery, Sichuan Provincial Hospital for Women and Children (Affiliated Women and Children’s Hospital of Chengdu Medical College), Chengdu, China
| | - Gang Zhang
- Department of Breast and Thyroid Surgery, Sichuan Provincial Hospital for Women and Children (Affiliated Women and Children’s Hospital of Chengdu Medical College), Chengdu, China
- * E-mail:
| |
Collapse
|
13
|
A. Mohamed E, Gaber T, Karam O, Rashed EA. A Novel CNN pooling layer for breast cancer segmentation and classification from thermograms. PLoS One 2022; 17:e0276523. [PMID: 36269756 PMCID: PMC9586394 DOI: 10.1371/journal.pone.0276523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Breast cancer is the second most frequent cancer worldwide, following lung cancer and the fifth leading cause of cancer death and a major cause of cancer death among women. In recent years, convolutional neural networks (CNNs) have been successfully applied for the diagnosis of breast cancer using different imaging modalities. Pooling is a main data processing step in CNN that decreases the feature maps' dimensionality without losing major patterns. However, the effect of pooling layer was not studied efficiently in literature. In this paper, we propose a novel design for the pooling layer called vector pooling block (VPB) for the CCN algorithm. The proposed VPB consists of two data pathways, which focus on extracting features along horizontal and vertical orientations. The VPB makes the CNNs able to collect both global and local features by including long and narrow pooling kernels, which is different from the traditional pooling layer, that gathers features from a fixed square kernel. Based on the novel VPB, we proposed a new pooling module called AVG-MAX VPB. It can collect informative features by using two types of pooling techniques, maximum and average pooling. The VPB and the AVG-MAX VPB are plugged into the backbone CNNs networks, such as U-Net, AlexNet, ResNet18 and GoogleNet, to show the advantages in segmentation and classification tasks associated with breast cancer diagnosis from thermograms. The proposed pooling layer was evaluated using a benchmark thermogram database (DMR-IR) and its results compared with U-Net results which was used as base results. The U-Net results were as follows: global accuracy = 96.6%, mean accuracy = 96.5%, mean IoU = 92.07%, and mean BF score = 78.34%. The VBP-based results were as follows: global accuracy = 98.3%, mean accuracy = 97.9%, mean IoU = 95.87%, and mean BF score = 88.68% while the AVG-MAX VPB-based results were as follows: global accuracy = 99.2%, mean accuracy = 98.97%, mean IoU = 98.03%, and mean BF score = 94.29%. Other network architectures also demonstrate superior improvement considering the use of VPB and AVG-MAX VPB.
Collapse
Affiliation(s)
- Esraa A. Mohamed
- Faculty of Science, Department of Mathematics, Suez Canal University, Ismailia, Egypt
| | - Tarek Gaber
- Faculty of Computers and Informatics, Suez Canal University, Ismailia, Egypt
- School of Science, Engineering and Environment University of Salford, Manchester, United Kingdom
| | - Omar Karam
- Faculty of Informatics and Computer Science, British University in Egypt (BUE), Cairo, Egypt
| | - Essam A. Rashed
- Faculty of Science, Department of Mathematics, Suez Canal University, Ismailia, Egypt
- Graduate School of Information Science, University of Hyogo, Kobe, Japan
| |
Collapse
|
14
|
Kivrak M. Breast Cancer Risk Prediction with Stochastic Gradient Boosting. CLINICAL CANCER INVESTIGATION JOURNAL 2022. [DOI: 10.51847/21qrrklo4y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|