1
|
Liu P, Li Q, Tang YF, Cui CY, Liu Q, Zhang Y, Tang B, Lai QC. Multiple algorithms highlight key brain genes driven by multiple anesthetics. Comput Biol Med 2024; 179:108805. [PMID: 38991319 DOI: 10.1016/j.compbiomed.2024.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Anesthesia serves as a pivotal tool in modern medicine, creating a transient state of sensory deprivation to ensure a pain-free surgical or medical intervention. While proficient in alleviating pain, anesthesia significantly modulates brain dynamics, metabolic processes, and neural signaling, thereby impairing typical cognitive functions. Furthermore, anesthesia can induce notable impacts such as memory impairment, decreased cognitive function, and diminished intelligence, emphasizing the imperative need to explore the concealed repercussions of anesthesia on individuals. In this investigation, we aggregated gene expression profiles (GSE64617, GSE141242, GSE161322, GSE175894, and GSE178995) from public repositories following second-generation sequencing analysis of various anesthetics. Through scrutinizing post-anesthesia brain tissue gene expression utilizing Gene Set Enrichment Analysis (GSEA), Robust Rank Aggregation (RRA), and Weighted Gene Co-expression Network Analysis (WGCNA), this research aims to pinpoint pivotal genes, pathways, and regulatory networks linked to anesthesia. This undertaking not only enhances comprehension of the physiological changes brought about by anesthesia but also lays the groundwork for future investigations, cultivating new insights and innovative perspectives in medical practice.
Collapse
Affiliation(s)
- Ping Liu
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qun Li
- Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yi-Fan Tang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chun-Yan Cui
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qing Liu
- Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Anesthesiology, Hejiang Hospital of Traditional Chinese Medicine, Southwest Medical University, China
| | - Ying Zhang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China; Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Anesthesiology, Hejiang Hospital of Traditional Chinese Medicine, Southwest Medical University, China.
| | - Bo Tang
- Department of Pathology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qian-Cheng Lai
- Department of Cardiac Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Nguyen HD, Jo WH, Cha JO, Hoang NHM, Kim MS. Elucidation of the effects of 2,5-hexandione as a metabolite of n-hexane on cognitive impairment in leptin-knockout mice (C57BL/6-Lepem1Shwl/Korl). Toxicol Res 2024; 40:389-408. [PMID: 38911537 PMCID: PMC11187033 DOI: 10.1007/s43188-024-00228-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 02/17/2024] [Indexed: 06/25/2024] Open
Abstract
Exposure to n-hexane and its metabolite 2,5-hexandione (HD) is a well-known cause of neurotoxicity, particularly in the peripheral nervous system. To date, few studies have focused on the neurotoxic effects of HD on cognitive impairment. Exposure to HD and diabetes mellitus can exacerbate neurotoxicity. There are links among HD, diabetes mellitus, and cognitive impairment; however, the specific mechanisms underlying them remain unclear. Therefore, we aimed to elucidate the neurotoxic effects of HD on cognitive impairment in ob/ob (C57BL/6-Lepem1Shwl/Korl) mice. We found that HD induced cognitive impairment by altering the expression of genes (FN1, AGT, ACTA2, MYH11, MKI67, MET, CTGF, and CD44), miRNAs (mmu-miR15a-5p, mmu-miR-17-5p, and mmu-miR-29a-3p), transcription factors (transcription factor AP-2 alpha [TFAP2A], serum response factor [Srf], and paired box gene 4 [PAX4]), and signaling pathways (ERK/CERB, PI3K/AKT, GSK-3β/p-tau/amyloid-β), as well as by causing neuroinflammation (TREM1/DAP12/NF-κB), oxidative stress, and apoptosis. The prevalent use of n-hexane in various industrial applications (for instance, shoe manufacturing, printing inks, paints, and varnishes) suggests that individuals with elevated body weight and glucose levels and those employed in high-risk workplaces have greater probability of cognitive impairment. Therefore, implementing screening strategies for HD-induced cognitive dysfunction is crucial. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00228-1.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922 Republic of Korea
| | - Won Hee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922 Republic of Korea
| | - Jae Ok Cha
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922 Republic of Korea
| | - Ngoc Hong Minh Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922 Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922 Republic of Korea
| |
Collapse
|
3
|
Xu Y, Xin X, Tao T. Decoding the neurotoxic effects of propofol: insights into the RARα-Snhg1-Bdnf regulatory cascade. Am J Physiol Cell Physiol 2024; 326:C1735-C1752. [PMID: 38618701 PMCID: PMC11371332 DOI: 10.1152/ajpcell.00547.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/26/2023] [Accepted: 01/27/2024] [Indexed: 04/16/2024]
Abstract
The potential neurotoxic effects of propofol, an extensively utilized anesthetic, underline the urgency to comprehend its influence on neuronal health. Insights into the role of the retinoic acid receptor-α, small nucleolar RNA host gene 1, and brain-derived neurotrophic factor (RARα-Snhg1-Bdnf) network can offer significant advancements in minimizing these effects. The study targets the exploration of the RARα and Snhg1 regulatory network's influence on Bdnf expression in the realm of propofol-induced neurotoxicity. Harnessing the Gene Expression Omnibus (GEO) database and utilizing JASPAR and RNA-Protein Interaction Prediction (RPISeq) database for projections, the study embarks on an in-depth analysis employing both in vitro and in vivo models. The findings draw a clear link between propofol-induced neurotoxicity and the amplification of RAR signaling pathways, impacting hippocampal development and apoptosis and leading to increased RARα and Snhg1 and decreased Bdnf. Propofol is inferred to accentuate neurotoxicity by heightening RARα and Snhg1 interactions, culminating in Bdnf suppression.NEW & NOTEWORTHY This study aimed to decode propofol's neurotoxic effects on the regulatory cascade, provide insights into the RARα-Snhg1-Bdnf interaction, apply extensive validation techniques, provide a detailed analysis and exploration of propofol's neurotoxicity, and offer a comprehensive approach to understanding molecular interactions.
Collapse
Affiliation(s)
- Yuhai Xu
- Department of Anesthesiology, Air Force Medical Center, Beijing, People's Republic of China
| | - Xin Xin
- Department of Anesthesiology, Air Force Medical Center, Beijing, People's Republic of China
| | - Tianzhu Tao
- Department of Anesthesiology, Air Force Medical Center, Beijing, People's Republic of China
| |
Collapse
|
4
|
He T, Huang J, Peng B, Wang M, Shui Q, Cai L. Screening of potential biomarkers in propofol-induced neurotoxicity via bioinformatics prediction and experimental verification. Am J Transl Res 2024; 16:755-767. [PMID: 38586100 PMCID: PMC10994811 DOI: 10.62347/mtay7931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/16/2022] [Indexed: 04/09/2024]
Abstract
OBJECTIVES To identify hub genes and biological processes of propofol-induced neurotoxicity and promote the development of pediatric anesthesiology. METHODS We downloaded the GSE106799 dataset from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened, then Kyoto Encyclopedia of Genes and Genomes, Gene Ontology and Gene Set Enrichment analyses were performed on all DEGs. We identified potential ferroptosis genes in the pathogenesis of propofol-induced neurotoxicity. A key module was obtained after performing weighted gene co-expression network analysis (WGCNA) on the GSE106799 dataset. Hub genes were identified after the least absolute shrinkage and selection operator (LASSO) regression analysis of the intersection of DEGs and genes from the key module. We established a competing endogenous RNA network and predicted potential drugs according to the hub genes. Total RNA and proteins were extracted for real-time quantitative polymerase chain reaction and Western blotting, respectively. RESULTS A total of 112 DEGs, including 76 upregulated and 36 downregulated ones were screened out. Propofol-induced neurotoxicity involved processes such as nervous system development, activation of JAK/STAT and MAPK signaling pathways, vascular regeneration, and oxidative stress. The results of WGCNA suggested that the tan module was the most strongly associated with propofol-induced neurotoxicity. We identified 4 hub genes (EGR4, HAO1, ITK and GM14446) after LASSO regression analysis. Animal experiments demonstrated that propofol caused overexpression of the protein levels of HAO1, ITK and inflammatory factors in the brain, as well as the mRNA levels of HAO1, ITK and GM14446. Propofol inhibited expression of EGR4 at mRNA and protein levels. CONCLUSIONS Previous studies have demonstrated that EGR4, HAO1, ITK and GM14446 play a role in intellectual development, neuroinflammation and neuronal differentiation. These hub genes may help us to find new preventive and therapeutic targets for propofol-induced neurotoxicity.
Collapse
Affiliation(s)
- Tianping He
- Department of Anesthesiology, Luxian People’s HospitalLuzhou 646100, Sichuan, China
| | - Jianfeng Huang
- Department of Anesthesiology, Luxian People’s HospitalLuzhou 646100, Sichuan, China
| | - Bo Peng
- Department of Anesthesiology, Luxian People’s HospitalLuzhou 646100, Sichuan, China
| | - Mianhui Wang
- Department of Anesthesiology, Luxian People’s HospitalLuzhou 646100, Sichuan, China
| | - Qiuhao Shui
- Department of Anesthesiology, Luxian People’s HospitalLuzhou 646100, Sichuan, China
| | - Liang Cai
- Department of Anesthesiology, The People’s Hospital of LeshanLeshan 614013, Sichuan, China
| |
Collapse
|
5
|
Zhang X, Wang Y, Xu F, Zhao B, Liang X, Shu J. Downregulation of miR-138-5p alleviates propofol-induced neurotoxicity and autophagy by regulating SIRT1. Hum Exp Toxicol 2024; 43:9603271241269021. [PMID: 39441175 DOI: 10.1177/09603271241269021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
BACKGROUND Propofol, a commonly utilized anesthetic, has been shown to induce neurotoxicity in developing neurons. A previous study showed that microRNA (miR)-138-5p was dysregulated in hippocampus tissue of mice administrated with propofol. The current study aimed to investigate the functions of miR-138-5p and its target gene in propofol-induced neurotoxicity. METHODS SH-SY5Y neuronal cells were treated with increasing doses of propofol for indicated time to identify the optimal concentration and treatment time. MiR-138-5p and SIRT1 expression in SH-SY5Y neuronal cells stimulated with propofol were measured by RT-qPCR. Western blotting was performed to quantify protein levels of SIRT1 and autophagy markers. After interference of miR-138-5p and/or SIRT1 expression, the toxicity of SH-SY5Y neuronal cells was evaluated by cell counting kit-8 (CCK-8) assays and flow cytometry. The formation of autophagosomes was estimated by monodansylcadaverine staining. RESULTS Propofol induced neurotoxicity in a dose- or time-dependent manner. Propofol upregulated miR-138-5p while downregulating SIRT1 in SH-SY5Y neuronal cells. The propofol-stimulated neurotoxicity and autophagy was inhibited by miR-138-5p knockdown. Moreover, miR-138-5p bound to SIRT1 3'untranslated region. SIRT1 overexpression increased cell viability while inhibiting apoptosis and autophagy in the context of propofol. SIRT1 downregulation reversed the ameliorative effect of miR-138-5p inhibition on propofol-induced neurotoxicity and autophagy. CONCLUSION Downregulation of miR-138-5p alleviates propofol-induced neurotoxicity and autophagy via upregulation of SIRT1.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Anesthesiology, Second People's Hospital of Anhui Province, Hefei, China
| | - Yiqiao Wang
- Department of Anesthesiology, Second People's Hospital of Anhui Province, Hefei, China
| | - Feng Xu
- Department of Anesthesiology, Second People's Hospital of Anhui Province, Hefei, China
| | - Binbin Zhao
- Department of Anesthesiology, Second People's Hospital of Anhui Province, Hefei, China
| | - Xiangnan Liang
- Department of Anesthesiology, Second People's Hospital of Anhui Province, Hefei, China
| | - Jianwei Shu
- Department of Anesthesiology, Second People's Hospital of Anhui Province, Hefei, China
| |
Collapse
|
6
|
Yu S, Liao J, Lin X, Luo Y, Lu G. Crucial role of autophagy in propofol-treated neurological diseases: a comprehensive review. Front Cell Neurosci 2023; 17:1274727. [PMID: 37946715 PMCID: PMC10631783 DOI: 10.3389/fncel.2023.1274727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Neurological disorders are the leading cause of disability and death globally. Currently, there is a significant concern about the therapeutic strategies that can offer reliable and cost-effective treatment for neurological diseases. Propofol is a widely used general intravenous anesthetic in the clinic. Emerging studies demonstrate that propofol exerts neuroprotective effects on neurological diseases and disorders, while its underlying pathogenic mechanism is not well understood. Autophagy, an important process of cell turnover in eukaryotes, has been suggested to involve in the neuroprotective properties developed by propofol. In this narrative review, we summarized the current evidence on the roles of autophagy in propofol-associated neurological diseases. This study highlighted the effect of propofol on the nervous system and the crucial roles of autophagy. According to the 21 included studies, we found that propofol was a double-edged sword for neurological disorders. Several eligible studies reported that propofol caused neuronal cell damage by regulating autophagy, leading to cognitive dysfunction and other neurological diseases, especially high concentration and dose of propofol. However, some of them have shown that in the model of existing nervous system diseases (e.g., cerebral ischemia-reperfusion injury, electroconvulsive therapy injury, cobalt chloride-induced injury, TNF-α-induced injury, and sleep deprivation-induced injury), propofol might play a neuroprotective role by regulating autophagy, thus improving the degree of nerve damage. Autophagy plays a pivotal role in the neurological system by regulating oxidative stress, inflammatory response, calcium release, and other mechanisms, which may be associated with the interaction of a variety of related proteins and signal cascades. With extensive in-depth research in the future, the autophagic mechanism mediated by propofol will be fully understood, which may facilitate the feasibility of propofol in the prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Sicong Yu
- Department of Anesthesiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Xuezheng Lin
- Department of Anesthesiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Yu Luo
- Department of Anesthesiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Guangtao Lu
- Department of Anesthesiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
7
|
Visconte C, Fenoglio C, Serpente M, Muti P, Sacconi A, Rigoni M, Arighi A, Borracci V, Arcaro M, Arosio B, Ferri E, Golia MT, Scarpini E, Galimberti D. Altered Extracellular Vesicle miRNA Profile in Prodromal Alzheimer's Disease. Int J Mol Sci 2023; 24:14749. [PMID: 37834197 PMCID: PMC10572781 DOI: 10.3390/ijms241914749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Extracellular vesicles (EVs) are nanosized vesicles released by almost all body tissues, representing important mediators of cellular communication, and are thus promising candidate biomarkers for neurodegenerative diseases like Alzheimer's disease (AD). The aim of the present study was to isolate total EVs from plasma and characterize their microRNA (miRNA) contents in AD patients. We isolated total EVs from the plasma of all recruited subjects using ExoQuickULTRA exosome precipitation solution (SBI). Subsequently, circulating total EVs were characterized using Nanosight nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and Western blotting. A panel of 754 miRNAs was determined with RT-qPCR using TaqMan OpenArray technology in a QuantStudio 12K System (Thermo Fisher Scientific). The results demonstrated that plasma EVs showed widespread deregulation of specific miRNAs (miR-106a-5p, miR-16-5p, miR-17-5p, miR-195-5p, miR-19b-3p, miR-20a-5p, miR-223-3p, miR-25-3p, miR-296-5p, miR-30b-5p, miR-532-3p, miR-92a-3p, and miR-451a), some of which were already known to be associated with neurological pathologies. A further validation analysis also confirmed a significant upregulation of miR-16-5p, miR-25-3p, miR-92a-3p, and miR-451a in prodromal AD patients, suggesting these dysregulated miRNAs are involved in the early progression of AD.
Collapse
Affiliation(s)
- Caterina Visconte
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (C.V.); (P.M.); (M.R.); (M.T.G.); (D.G.)
| | - Chiara Fenoglio
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (C.V.); (P.M.); (M.R.); (M.T.G.); (D.G.)
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.S.); (A.A.); (V.B.); (M.A.); (E.S.)
| | - Maria Serpente
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.S.); (A.A.); (V.B.); (M.A.); (E.S.)
| | - Paola Muti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (C.V.); (P.M.); (M.R.); (M.T.G.); (D.G.)
- Dental and Maxillo-Facial Surgery Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Andrea Sacconi
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, Regina Elena National Cancer Institute—IRCCS, 00144 Rome, Italy;
| | - Marta Rigoni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (C.V.); (P.M.); (M.R.); (M.T.G.); (D.G.)
- Dental and Maxillo-Facial Surgery Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Andrea Arighi
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.S.); (A.A.); (V.B.); (M.A.); (E.S.)
| | - Vittoria Borracci
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.S.); (A.A.); (V.B.); (M.A.); (E.S.)
| | - Marina Arcaro
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.S.); (A.A.); (V.B.); (M.A.); (E.S.)
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
| | - Evelyn Ferri
- Geriatric Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Maria Teresa Golia
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (C.V.); (P.M.); (M.R.); (M.T.G.); (D.G.)
- National Research Council of Italy, Institute of Neuroscience, Via Raoul Follereau 3, 20854 Vedano al Lambro, Italy
| | - Elio Scarpini
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.S.); (A.A.); (V.B.); (M.A.); (E.S.)
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (C.V.); (P.M.); (M.R.); (M.T.G.); (D.G.)
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.S.); (A.A.); (V.B.); (M.A.); (E.S.)
| |
Collapse
|
8
|
Minz R, Sharma PK, Negi A, Kesari KK. MicroRNAs-Based Theranostics against Anesthetic-Induced Neurotoxicity. Pharmaceutics 2023; 15:1833. [PMID: 37514018 PMCID: PMC10385075 DOI: 10.3390/pharmaceutics15071833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Various clinical reports indicate prolonged exposure to general anesthetic-induced neurotoxicity (in vitro and in vivo). Behavior changes (memory and cognition) are compilations commonly cited with general anesthetics. The ability of miRNAs to modulate gene expression, thereby selectively altering cellular functions, remains one of the emerging techniques in the recent decade. Importantly, engineered miRNAs (which are of the two categories, i.e., agomir and antagomir) to an extent found to mitigate neurotoxicity. Utilizing pre-designed synthetic miRNA oligos would be an ideal analeptic approach for intervention based on indicative parameters. This review demonstrates engineered miRNA's potential as prophylactics and/or therapeutics minimizing the general anesthetics-induced neurotoxicity. Furthermore, we share our thoughts regarding the current challenges and feasibility of using miRNAs as therapeutic agents to counteract the adverse neurological effects. Moreover, we discuss the scientific status and updates on the novel neuro-miRNAs related to therapy against neurotoxicity induced by amyloid beta (Aβ) and Parkinson's disease (PD).
Collapse
Affiliation(s)
- Roseleena Minz
- Department of Life Sciences, Central University of Jharkhand, Brambe, Ranchi 853205, Jharkhand, India
| | - Praveen Kumar Sharma
- Department of Life Sciences, Central University of Jharkhand, Brambe, Ranchi 853205, Jharkhand, India
| | - Arvind Negi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
9
|
Zhang J, Li Y. Propofol-Induced Developmental Neurotoxicity: From Mechanisms to Therapeutic Strategies. ACS Chem Neurosci 2023; 14:1017-1032. [PMID: 36854650 DOI: 10.1021/acschemneuro.2c00755] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Propofol is the most commonly used intravenous general anesthetic in clinical anesthesia, and it is also widely used in general anesthesia for pregnant women and infants. Some clinical and preclinical studies have found that propofol causes damage to the immature nervous system, which may lead to neurodevelopmental disorders and cognitive dysfunction in infants and children. However, its potential molecular mechanism has not been fully elucidated. Recent in vivo and in vitro studies have found that some exogenous drugs and interventions can effectively alleviate propofol-induced neurotoxicity. In this review, we focus on the relevant preclinical studies and summarize the latest findings on the potential mechanisms and therapeutic strategies of propofol-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao 266000, China.,Department of Medicine, Qingdao University, Qingdao 266000, China
| | - Yu Li
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
10
|
Wang J, Liu Z. Research progress on molecular mechanisms of general anesthetic-induced neurotoxicity and cognitive impairment in the developing brain. Front Neurol 2022; 13:1065976. [PMID: 36504660 PMCID: PMC9729288 DOI: 10.3389/fneur.2022.1065976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
General anesthetics-induced neurotoxicity and cognitive impairment in developing brains have become one of the current research hotspots in the medical science community. The underlying mechanisms are complex and involve various related molecular signaling pathways, cell mediators, autophagy, and other pathological processes. However, few drugs can be directly used to treat neurotoxicity and cognitive impairment caused by general anesthetics in clinical practice. This article reviews the molecular mechanism of general anesthesia-induced neurotoxicity and cognitive impairment in the neonatal brain after surgery in the hope of providing critical references for the treatments of clinical diseases.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Department of Anesthesiology, Baotou Central Hospital, Baotou, China,Baotou Clinical Medical College, Inner Mongolia Medical University, Baotou, China
| | - Zhihui Liu
- Department of Anesthesiology, Baotou Central Hospital, Baotou, China,*Correspondence: Zhihui Liu
| |
Collapse
|