1
|
Sultana S, Lawag IL, Lim LY, Foster KJ, Locher C. A Critical Exploration of the Total Flavonoid Content Assay for Honey. Methods Protoc 2024; 7:95. [PMID: 39584988 PMCID: PMC11586951 DOI: 10.3390/mps7060095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024] Open
Abstract
This study critically investigates the aluminium chloride-based colorimetric determination of the total flavonoid content (TFC) of honey. Following a comprehensive review of the recent literature reporting the use of the assay in the determination of TFC in honey, 10 honeys of different botanical origins were investigated using the colorimetric method alongside an artificial honey that was used as a control. Using spiking experiments, this study demonstrates that the flavonoid concentrations commonly found in honey are too low for a direct measurement and thus some of the TFC data reported in the literature might more likely be a reflection of the honey's inherent colour rather than a product of the coordination complex formed specifically between flavonoids and Al3+ ions. This paper highlights the importance of correct blanking and suggests alternative approaches to the traditional TFC assay for honey to ensure analysis results that are truly reflective of honey's TFC.
Collapse
Affiliation(s)
- Sharmin Sultana
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth 6009, Australia; (S.S.); (I.L.L.); (L.Y.L.)
- Institute for Pediatric Perioperative Excellence, The University of Western Australia, Perth 6009, Australia
| | - Ivan Lozada Lawag
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth 6009, Australia; (S.S.); (I.L.L.); (L.Y.L.)
- Institute of Herbal Medicine, National Institutes of Health, University of the Philippines Manila, 1st Flr., Paz Mendoza Building, UP College of Medicine, 547 Pedro Gil St., Ermita, Manila 1000, Philippines
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth 6009, Australia; (S.S.); (I.L.L.); (L.Y.L.)
- Institute for Pediatric Perioperative Excellence, The University of Western Australia, Perth 6009, Australia
| | - Kevin J. Foster
- School of Agriculture and Environment, University of Western Australia, Crawley 6009, Australia;
- Department of Primary Industries and Regional Development, Perth 6000, Australia
| | - Cornelia Locher
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth 6009, Australia; (S.S.); (I.L.L.); (L.Y.L.)
- Institute for Pediatric Perioperative Excellence, The University of Western Australia, Perth 6009, Australia
| |
Collapse
|
2
|
Massous A, Ouchbani T, Lo Turco V, Litrenta F, Nava V, Albergamo A, Potortì AG, Di Bella G. Monitoring Moroccan Honeys: Physicochemical Properties and Contamination Pattern. Foods 2023; 12:969. [PMID: 36900486 PMCID: PMC10000722 DOI: 10.3390/foods12050969] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
The physicochemical traits and an array of organic and inorganic contaminants were monitored in monofloral honeys (i.e., jujube [Ziziphus lotus], sweet orange [Citrus sinensis], PGI Euphorbia [Euphorbia resinifera] and Globularia alyphum) from the Moroccan Béni Mellal-Khénifra region (i.e., Khénifra, Beni Méllal, Azlal and Fquih Ben Salah provinces). Moroccan honeys were in line with the physicochemical standards set by the European Union. However, a critical contamination pattern has been outlined. In fact, jujube, sweet orange, and PGI Euphorbia honeys contained pesticides, such as acephate, dimethoate, diazinon, alachlor, carbofuran and fenthion sulfoxide, higher than the relative EU Maximum Residue Levels. The banned 2,3',4,4',5-pentachlorobiphenyl (PCB118) and 2,2',3,4,4',5,5'-heptachlorobiphenyl (PCB180) were detected in all samples and quantified in jujube, sweet orange and PGI Euphorbia honeys; while polycyclic aromatic hydrocarbons (PAHs), such as chrysene and fluorene, stood out for their higher contents in jujube and sweet orange honeys. Considering plasticizers, all honeys showed an excessive amount of dibutyl phthalate (DBP), when (improperly) considering the relative EU Specific Migration Limit. Furthermore, sweet orange, PGI Euphorbia and G. alypum honeys were characterized by Pb exceeding the EU Maximum Level. Overall, data from this study may encourage Moroccan governmental bodies to strengthen their monitoring activity in beekeeping and to find suitable solutions for implementing more sustainable agricultural practices.
Collapse
Affiliation(s)
- Abir Massous
- Institut Agronomique et Vétérinaire Hassan II, Rabat 10101, Morocco
| | - Tarik Ouchbani
- Institut Agronomique et Vétérinaire Hassan II, Rabat 10101, Morocco
| | - Vincenzo Lo Turco
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy
| | - Federica Litrenta
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy
| | - Vincenzo Nava
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy
| | - Ambrogina Albergamo
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy
| | - Angela Giorgia Potortì
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy
| | - Giuseppa Di Bella
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy
| |
Collapse
|