1
|
Chang Z, Zhu Y, Wang P, Du L, Wu M, Wang X, Kong C, Huang D, Xie R, Ji G, Wang C, Cheng L, Yan X, Wei Q, Qin H. Multi-omic analyses of the development of obesity-related depression linked to the gut microbe Anaerotruncus colihominis and its metabolite glutamate. Sci Bull (Beijing) 2025:S2095-9273(25)00359-7. [PMID: 40274437 DOI: 10.1016/j.scib.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/06/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025]
Abstract
Emerging evidence implicates gut microbiota in the pathogenesis of obesity-related depression (OD); however, the underlying molecular mechanisms remain inadequately explored. This study compared the microbial and transcriptional profiles between patients with OD and healthy individuals. The results revealed an enrichment of Anaerotruncus colihominis (A. colihominis) and glutamate metabolism-related genes in the OD group. Fecal microbiota transplantation (FMT) from patients with OD induced weight gain, compromised barrier function, and intensified depression-like behaviors in high-fat diet (HFD) mice. Microbial analysis in the mice feces corroborated the clinical findings. Single-cell RNA sequencing highlighted the pivotal role of the Efnb2-Ephb2 interaction in cell communication among colon epithelial and hippocampal neuron subtypes in OD mice. Notably, A. colihominis correlated with glutamate levels in the OD mice and patients. It produced glutamate through a glutamic acid metabolism-related DNA sequence, verified in an engineered Escherichia coli MG1655 strain. Both A. colihominis and glutamate reduced barrier proteins in colon epithelial cells and modulated cognitive proteins in neurons. Finally, A. colihominis treatment induced the Efnb2-Ephb2 interaction, exacerbating depression-like behaviors in germ-free HFD mice. Collectively, these findings reveal that A. colihominis and glutamate are potential intervention targets for OD treatment.
Collapse
Affiliation(s)
- Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Yefei Zhu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, China
| | - Ping Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150001, China
| | - Lei Du
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Minkang Wu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Xingchun Wang
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Cheng Kong
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Dengfeng Huang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Ruting Xie
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Guo Ji
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Chao Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150001, China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150001, China.
| | - Xuebing Yan
- Jiangsu Provincial Innovation and Practice Base for Postdoctors, Suining First People's Hospital, Affiliated Hospital of Xuzhou Medical University, Yangzhou University, Suining 221200, China.
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China.
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China.
| |
Collapse
|
2
|
Verma A, Chinnasamy HV, Biswas B, Singh A, Matheshwaran S. Biochemical and steady-state kinetic analyses of arsenate reductases from an arsenic-tolerant strain of Citrobacter youngae IITK SM2. Biochem Biophys Res Commun 2024; 739:150936. [PMID: 39541923 DOI: 10.1016/j.bbrc.2024.150936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Arsenic (As) poisoning in aquifers is a serious problem worldwide, especially in the middle-Gangetic Plain (MGP) of India. Microbially-mediated As speciation in such aquifers is governed by the arsenate-reductase enzyme, ArsC, encoded by the arsC gene of As-metabolizing bacteria. In this study, ArsC1 (119 aa) and ArsC2 (141 aa) of a highly resistant strain to arsenic, Citrobacter youngae IITK SM2 (CyIITKSM2), isolated from a mixed-oxic MGP groundwater were biochemically characterized. Coupled-arsenate-reductase assay and IC-ICP-MS analysis confirmed that ArsC2 showed higher As(V) reduction than ArsC1 in the dissolved phase, which was consistent with the prominent structural changes in ArsC2 as identified through circular dichroism spectroscopy. Furthermore, the two ArsCs were able to mobilize arsenic from solid-bound arsenate [As(V)-loaded goethite, AsG] predominantly as As(III). However, the total arsenic released in the presence of ArsC2 was ∼38 % and ∼88 % higher, respectively, as compared to the ArsC1-containing and ArsC-free conditions. A process-based model that considered ArsC-mediated As(V) reduction to As(III) in the dissolved phase, and surface complexation of As(V) and As(III) on goethite, suggested that the extent of arsenate binding with ArsC was not affected by whether As(V) was dissolved or was sorbed. However, the catalytic reduction rate was at least an order of magnitude lower in sorbed As(V) than in dissolved As(V). Mutants of ArsC2 exhibited variable but reduced efficiencies compared to the wild-type ArsC2. This reduction may be attributed to the C-terminal loop observed in the AlphaFold predicted structure of ArsC2, which was absent in ArsC1. This comprehensive biochemical and biophysical analysis of the arsenate reductases in Citrobacter youngae could enhance our understanding of the role these microbes play in arsenic mobilization within MGP aquifers.
Collapse
Affiliation(s)
- Akshat Verma
- Department of Civil Engineering, Indian Institute of Technology Kanpur, India; Environmental Geochemistry Laboratory, Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, India; Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, USA
| | - Hariharan Vedi Chinnasamy
- Microbial Adapdation and Chromatin Remodelling Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India
| | - Bhumika Biswas
- Microbial Adapdation and Chromatin Remodelling Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India
| | - Abhas Singh
- Department of Civil Engineering, Indian Institute of Technology Kanpur, India; Environmental Geochemistry Laboratory, Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, India; Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, USA.
| | - Saravanan Matheshwaran
- Microbial Adapdation and Chromatin Remodelling Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India; Environmental Microbiology Laboratory, Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, India; Kotak School of Sustainability, Indian Institute of Technology Kanpur, India.
| |
Collapse
|
3
|
Tasnim Y, Stanley C, Rahman MK, Awosile B. bla SED-1 beta-lactamase-producing Citrobacter sedlakii isolated from horses and genomic comparison with human-derived isolates. J Appl Microbiol 2024; 135:lxae278. [PMID: 39462133 DOI: 10.1093/jambio/lxae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 10/29/2024]
Abstract
AIMS We aim to detect beta-lactamase-producing Citrobacter sedlakii from horses and compare the genomic characteristics with isolates from humans. METHODS AND RESULT We characterized phenotypically and genotypically nine C. sedlakii isolates from the feces of horses and then compared them to human-derived isolates using whole genome sequencing and phylogenomic methods. Seven isolates (7/9) were ampicillin-resistant, while at least one isolate was resistant to ceftriaxone, gentamicin, meropenem, and streptomycin. All nine isolates were carriers of the chromosomal-mediated blaSED-1 beta-lactamase gene, which confers resistance to ampicillin. One isolate was positive for the mcr-9 gene that confers resistance to colistin, and another isolate had the aac(6')-lid gene that confers resistance to aminoglycosides. Seven isolates (7/9) were carriers of genes that confer metal resistance to copper, silver, and arsenic. Phylogenetically, two horse-derived isolates clustered together with two human-derived isolates from the NDARO database. CONCLUSION The results from our study provide insight into the antimicrobial susceptibility of C. sedlakii in horses, which was previously lacking, and the specific beta-lactamase gene mediating resistance.
Collapse
Affiliation(s)
- Yamima Tasnim
- Texas Tech University School of Veterinary Medicine, Amarillo, TX 79106, United States
| | - Charlotte Stanley
- Texas Tech University School of Veterinary Medicine, Amarillo, TX 79106, United States
| | - Md Kaisar Rahman
- Texas Tech University School of Veterinary Medicine, Amarillo, TX 79106, United States
| | - Babafela Awosile
- Texas Tech University School of Veterinary Medicine, Amarillo, TX 79106, United States
| |
Collapse
|
4
|
Uddin MJ, Haque F, Jabeen I, Shuvo SR. Characterization and whole-genome sequencing of an extreme arsenic-tolerant Citrobacter freundii SRS1 strain isolated from Savar area in Bangladesh. Can J Microbiol 2023; 69:44-52. [PMID: 36332226 DOI: 10.1139/cjm-2022-0149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Citrobacter freundii SRS1, gram-negative bacteria, were isolated from Savar, Bangladesh. The strain could tolerate up to 80 mmol L-1 sodium arsenite, 400 mmol L-1 sodium arsenate, 5 mmol L-1 manganese sulfate, 3 mmol L-1 lead nitrate, 2.5 mmol L-1 cobalt chloride, 2.5 mmol L-1 cadmium acetate, and 2.5 mmol L-1 chromium chloride. The whole-genome sequencing revealed that the genome size of C. freundii SRS1 is estimated to be 5.4 Mb long, and the G + C content is 51.7%. The genome of C. freundii SRS1 contains arsA, arsB, arsC, arsD, arsH, arsR, and acr3 genes for arsenic resistance; czcA, czcD, cbiN, and cbiM genes for cobalt resistance; chrA and chrB genes for chromium resistance; mntH, sitA, sitB, sitC, and sitD genes for manganese resistance; and zntA gene for lead and cadmium resistance. This novel acr3 gene has never previously been reported in any C. freundii strain except SRS1. A set of 130 completely sequenced strains of C. freundii was selected for phylogenomic analysis. The phylogenetic tree showed that the SRS1 strain is closely related to the C. freundii 62 strain. Further analyses of the genes involved in metal and metalloid resistance might facilitate identifying the mechanisms and pathways involved in high metal resistance in the C. freundii SRS1 strain.
Collapse
Affiliation(s)
- Mohammed Jafar Uddin
- Department of Biochemistry & Microbiology, School of Health & Life Sciences, North South University, Dhaka, Bangladesh
| | - Farhana Haque
- Department of Biochemistry & Microbiology, School of Health & Life Sciences, North South University, Dhaka, Bangladesh
| | - Ishrat Jabeen
- Department of Biochemistry & Microbiology, School of Health & Life Sciences, North South University, Dhaka, Bangladesh
| | - Sabbir R Shuvo
- Department of Biochemistry & Microbiology, School of Health & Life Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
5
|
Vishnyakova A, Popova N, Artemiev G, Botchkova E, Litti Y, Safonov A. Effect of Mineral Carriers on Biofilm Formation and Nitrogen Removal Activity by an Indigenous Anammox Community from Cold Groundwater Ecosystem Alone and Bioaugmented with Biomass from a “Warm” Anammox Reactor. BIOLOGY 2022; 11:biology11101421. [PMID: 36290325 PMCID: PMC9598201 DOI: 10.3390/biology11101421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary During more than 50 years of exploitation of the sludge repositories near Chepetsky Mechanical Plant (Glazov, Udmurtia, Russia) containing solid wastes of uranium and processed polymetallic concentrate, the soluble compounds entered the upper aquifer due to infiltration. Nowadays, this has resulted in a high level of pollution of the groundwater with reduced and oxidized nitrogen compounds. In this work, quartz, kaolin, and bentonite clays from various deposits were shown to induce biofilm formation and enhance nitrogen removal by an indigenous microbial community capable of anaerobic ammonium oxidation with nitrite (anammox) at low temperatures. The addition of a “warm” anammox community was also effective in further improving nitrogen removal and expanding the list of mineral carriers most suitable for creating a permeable reactive barrier. It has been suggested that the anammox activity is determined by the presence of essential trace elements in the carrier, the morphology of its surface, and most importantly, competition from rapidly growing microbial groups. Future work was discussed to adapt the “warm” anammox community to cold and provide the anammox community with nitrite through a partial denitrification route within the scope of sustainable anammox-based bioremediation of a nitrogen-polluted cold aquifer. In this unique habitat, novel species of anammox bacteria that are adapted to cold and heavy nitrogen pollution can be discovered. Abstract The complex pollution of aquifers by reduced and oxidized nitrogen compounds is currently considered one of the urgent environmental problems that require non-standard solutions. This work was a laboratory-scale trial to show the feasibility of using various mineral carriers to create a permeable in situ barrier in cold (10 °C) aquifers with extremely high nitrogen pollution and inhabited by the Candidatus Scalindua-dominated indigenous anammox community. It has been established that for the removal of ammonium and nitrite in situ due to the predominant contribution of the anammox process, quartz, kaolin clays of the Kantatsky and Kamalinsky deposits, bentonite clay of the Berezovsky deposit, and zeolite of the Kholinsky deposit can be used as components of the permeable barrier. Biofouling of natural loams from a contaminated aquifer can also occur under favorable conditions. It has been suggested that the anammox activity is determined by a number of factors, including the presence of the essential trace elements in the carrier and the surface morphology. However, one of the most important factors is competition with other microbial groups that can develop on the surface of the carrier at a faster rate. For this reason, carriers with a high specific surface area and containing the necessary microelements were overgrown with the most rapidly growing microorganisms. Bioaugmentation with a “warm” anammox community from a laboratory reactor dominated by Ca. Kuenenia improved nitrogen removal rates and biofilm formation on most of the mineral carriers, including bentonite clay of the Dinozavrovoye deposit, as well as loamy rock and zeolite-containing tripoli, in addition to carriers that perform best with the indigenous anammox community. The feasibility of coupled partial denitrification–anammox and the adaptation of a “warm” anammox community to low temperatures and hazardous components contained in polluted groundwater prior to bioaugmentation should be the scope of future research to enhance the anammox process in cold, nitrate-rich aquifers.
Collapse
Affiliation(s)
- Anastasia Vishnyakova
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Nadezhda Popova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Grigoriy Artemiev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Ekaterina Botchkova
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Yuriy Litti
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
- Correspondence: ; Tel.: +7-(926)-369-92-43
| | - Alexey Safonov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|