1
|
Cao L, Ba Y, Chen F, Li D, Zhang S, Zhang H. The prognostic significance of epoxide hydrolases in colorectal cancer. Biochem Biophys Rep 2025; 41:101912. [PMID: 39850362 PMCID: PMC11754166 DOI: 10.1016/j.bbrep.2024.101912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
Colorectal cancer (CRC) is a common malignant cancer. Epoxide hydrolases (EHs) are involved in the development of cancer by regulating epoxides, but their relationship with CRC is unclear. We used multiple datasets to confirm the expression of different EPHX family members in CRC tissues, and to explore their association with different clinicopathologic characteristics. The Kaplan-Meier method, correlation analysis and random forest algorithm were used to evaluate the prognostic value of EPHX family members for CRC. Finally, the cell experiment verified function of EPHX4 in CRC. The expressions of EPHX1 and EPHX2 were significantly decreased, while those of EPHX3 and EPHX4 were significantly increased in CRC. The expressions of EPHX family members were correlated with some clinicopathologic features and overall survival. The expressions of the EPHX family were positively associated with CD274, CTLA4, HAVCR2, and TIGIT. EPHX2 and EPHX4 were diagnostic and predictive biomarkers for CRC. EPHX4 promoted the malignant phenotype of CRC cells. Our study firstly elucidated the prognostic significance of EPHX family members in CRC and identified novel diagnostic and prognostic biomarkers for CRC.
Collapse
Affiliation(s)
- Lichao Cao
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, 518071, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, 201401, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, 518110, China
| | - Ying Ba
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, 518071, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, 201401, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, 518110, China
| | - Fang Chen
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, 518071, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, 201401, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, 518110, China
| | - Dandan Li
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, 518071, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, 201401, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, 518110, China
| | - Shenrui Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, 518071, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, 201401, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, 518110, China
| | - Hezi Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, 518071, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, 201401, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, 518110, China
| |
Collapse
|
2
|
Zhou L, Liu X, Wu T, Liu Q, Jing M, Li H, Xu N, Tang H. Identification of survival related key genes and long-term survival specific differentially expressed genes related key miRNA network of primary glioblastoma. Heliyon 2024; 10:e28439. [PMID: 38601561 PMCID: PMC11004527 DOI: 10.1016/j.heliyon.2024.e28439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Primary glioblastoma(pGBM) is the most malignant tumor of the central nervous system. Radiotherapy, chemotherapy and surgical treatment have little effect on the survival of pGBM patients. The prognosis is often poorly once the tumor recurs. It is urgent to develop new therapies for patients. In recent years, studies have been clarified that miRNA have a powerful regulating effect on the genes. However, the main group of miRNAs in regulating long-term survival specific related genes of pGBM is still unclear. Given that the survival period of most glioma patients is relatively short, studying long-term survival patients with pGBM is of great value for this disease. Our study aim to identify key miRNAs with long-term survival related genes present in pGBM and uncover their potential mechanisms. The gene expression profiles of GSE53733, GSE15824, GSE30563, GSE50161 were obtained from the Gene Expression Omnibus database. Firstly, samples were divided into 3 groups according to its survival time and each group compare to the normal control group. Then we obtained differential expression genes (DEGs) with a long-term survival specific (LTSDEGs) and a short-term survival specific DEGs (STSDEGs). Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted with LTSDEGs and STSDEGs together. Moreover, we used the UALCAN database to verify LTSDEGs and STSDEGs, and obtained long-term verified survival specific DEGs(LTVSDEGs) and short-term verified survival specific DEGs(STVSDEGs). Finally, we established the predicted key miRNAs-LTVSDEGs interaction network. The protein expressions of the top 4 LTVSDEGs were verified in the HPA database with immunohistochemical staining. In total, we found 260 genes changed in LTSDEGs and 822 genes changed in STSDEGs. GO and KEGG results shown that the major changes are focused on tumor metabolism. 9 LTVSDEGs and 18 STVSDEGs were verified in UALCAN database. As for protein expression verification in top 4 LTVSDEGs, ZNF630, BLVRB and RPA3 were verified, while TPBG was not detected. We obtained 59 key miRNA from the predicted key miRNAs-LTVSDEGs interaction network. 25 key miRNAs were verified using GSE90603. Finally, we constructed the key miRNAs-LTVSDEGs network using a Sankey diagram, including 25 miRNAs and 7 LTVSDEGs. In conclusion, our study shows that there is a close relationship between metabolic changes and survival in pGBM. Besides, we established a key miRNAs-LTVSDEGs network for pGBM, which could be the key path in prolonging the life of pGBM patients.
Collapse
Affiliation(s)
- Lingqi Zhou
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
- Guangzhou Key Laboratory of Child Neurodevelopment, Guangzhou, 510623, China
- Institute Pasteur of Shanghai, Chinese Academy of Science, Shanghai, 200031, China
| | - Xuemei Liu
- Department of Gynecology, Shunde Hospital,Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528308, China
| | - Tong Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080,China
| | - Qundi Liu
- Guangdong Jiangmen Chinese Medicine College, Jiangmen, 529000, China
| | - Meilian Jing
- Guangdong Jiangmen Chinese Medicine College, Jiangmen, 529000, China
| | - Huahan Li
- Guangdong Jiangmen Chinese Medicine College, Jiangmen, 529000, China
| | - Ning Xu
- Department of Clinical Laboratory, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518111, China
| | - Hai Tang
- Guangdong Jiangmen Chinese Medicine College, Jiangmen, 529000, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080,China
| |
Collapse
|
3
|
Li Z, Cai H, Zheng J, Chen X, Liu G, Lv Y, Ye H, Cai G. Mitochondrial-related genes markers that predict survival in patients with head and neck squamous cell carcinoma affect immunomodulation through hypoxia, glycolysis, and angiogenesis pathways. Aging (Albany NY) 2023; 15:10347-10369. [PMID: 37796226 PMCID: PMC10599748 DOI: 10.18632/aging.205081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Mitochondria play a crucial role in the occurrence and development of tumors. We used mitochondria-related genes for consistent clustering to identify three stable molecular subtypes of head and neck squamous cell carcinoma (HNSCC) with different prognoses, mutations, and immune characteristics. Significant differences were observed in clinical characteristics, immune microenvironment, immune cell infiltration, and immune cell scores. TP53 was the most significantly mutated; cell cycle-related pathways and tumorigenesis-related pathways were activated in different subtypes. Risk modeling was conducted using a multifactor stepwise regression method, and nine genes were identified as mitochondria-related genes affecting prognosis (DKK1, EFNB2, ITGA5, AREG, EPHX3, CHGB, P4HA1, CCND1, and JCHAIN). Risk score calculations revealed significant differences in prognosis, immune cell scores, immune cell infiltration, and responses to conventional chemotherapy drugs. Glycolysis, angiogenesis, hypoxia, and tumor-related pathways were positively correlated with the RiskScore. Clinical samples were subjected to qPCR to validate the results. In this work, we constructed a prognostic model based on the mitochondrial correlation score, which well reflects the risk and positive factors for the prognosis of patients with HNSCC. This model can be used to guide individualized adjuvant and immunotherapy in patients with HNSCC.
Collapse
Affiliation(s)
- Zhonghua Li
- Department of Otolaryngology Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Haoxi Cai
- School of Stomatology, Ningxia Medical University, Yinchuan 750004, China
| | - Jinyang Zheng
- Department of Pathology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Xun Chen
- Department of Oral Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Guancheng Liu
- Department of Otolaryngology Head and Neck Surgery, The Hospital Affiliated of Guilin Medical College, Guilin 541000, China
| | - Yunxia Lv
- Department of Thyroid Surgery, The Second Affiliated Hospital to Nanchang University, Nanchang 330006, China
| | - Hui Ye
- Haicang Hospital Affiliated of Xiamen Medical College, Xiamen 361026, China
| | - Gengming Cai
- Haicang Hospital Affiliated of Xiamen Medical College, Xiamen 361026, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou 361026, China
- The Graduate School of Fujian Medical University, Fuzhou 361026, China
| |
Collapse
|