1
|
Zhang M, Xiong W, Qiao R, Li M, Zhang C, Yang C, Zhu Y, He J, Ma Z. Irisin in the modulation of bone and cartilage homeostasis: a review on osteoarthritis relief potential. Front Physiol 2025; 16:1570157. [PMID: 40313878 PMCID: PMC12043700 DOI: 10.3389/fphys.2025.1570157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025] Open
Abstract
Osteoarthritis, a progressive and degenerative joint disease, disrupts the integrity of the entire joint structure, underscoring the urgency of identifying more effective therapeutic strategies and innovative targets. Among these, exercise therapy is considered a key component in the early management of osteoarthritis, functioning by stimulating the secretion of myokines from the skeletal muscle system. Irisin, a myokine predominantly secreted by skeletal muscle during exercise and encoded by the FNDC5 gene, has garnered attention for its regulatory effects on bone health. Emerging evidence suggests that irisin may play a protective role in osteoarthritis by promoting tissue homeostasis, enhancing subchondral bone density and microstructure, and inhibiting chondrocyte apoptosis. By improving chondrocyte viability, preserving extracellular matrix integrity, and maintaining homeostasis in osteoblasts, osteoclasts, and osteocytes, irisin emerges as a promising therapeutic target for osteoarthritis. This review delves into the role of irisin in osteoarthritis pathogenesis, highlighting its influence on cartilage and bone metabolism as well as its dynamic relationship with exercise. Additionally, this review suggests that further exploration on its specific molecular mechanisms, optimization of drug delivery systems, and strategic utilization of exercise-induced benefits will be pivotal in unlocking the full potential of irisin as a novel intervention for osteoarthritis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yan Zhu
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiaying He
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhigui Ma
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
2
|
Dong Y, Yuan H, Ma G, Cao H. Bone-muscle crosstalk under physiological and pathological conditions. Cell Mol Life Sci 2024; 81:310. [PMID: 39066929 PMCID: PMC11335237 DOI: 10.1007/s00018-024-05331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Anatomically connected bones and muscles determine movement of the body. Forces exerted on muscles are then turned to bones to promote osteogenesis. The crosstalk between muscle and bone has been identified as mechanotransduction previously. In addition to the mechanical features, bones and muscles are also secretory organs which interact closely with one another through producing myokines and osteokines. Moreover, besides the mechanical features, other factors, such as nutrition metabolism, physiological rhythm, age, etc., also affect bone-muscle crosstalk. What's more, osteogenesis and myogenesis within motor system occur almost in parallel. Pathologically, defective muscles are always detected in bone associated diseases and induce the osteopenia, inflammation and abnormal bone metabolism, etc., through biomechanical or biochemical coupling. Hence, we summarize the study findings of bone-muscle crosstalk and propose potential strategies to improve the skeletal or muscular symptoms of certain diseases. Altogether, functional improvement of bones or muscles is beneficial to each other within motor system.
Collapse
Affiliation(s)
- Yuechao Dong
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongyan Yuan
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guixing Ma
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Trandafir AI, Sima OC, Gheorghe AM, Ciuche A, Cucu AP, Nistor C, Carsote M. Trabecular Bone Score (TBS) in Individuals with Type 2 Diabetes Mellitus: An Updated Review. J Clin Med 2023; 12:7399. [PMID: 38068450 PMCID: PMC10707110 DOI: 10.3390/jcm12237399] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2025] Open
Abstract
Bone fragility is a complication of type 2 diabetes mellitus (T2DM) that has been identified in recent decades. Trabecular bone score (TBS) appears to be more accurate than bone mineral density (BMD) in diabetic bone disease, particularly in menopausal women with T2DM, to independently capture the fracture risk. Our purpose was to provide the most recent overview on TBS-associated clinical data in T2DM. The core of this narrative review is based on original studies (PubMed-indexed journals, full-length, English articles). The sample-based analysis (n = 11, N = 4653) confirmed the use of TBS in T2DM particularly in females (females/males ratio of 1.9), with ages varying between 35 and 91 (mean 65.34) years. With concern to the study design, apart from the transversal studies, two others were prospective, while another two were case-control. These early-post-pandemic data included studies of various sample sizes, such as: males and females (N of 245, 361, 511, and 2294), only women (N of 80, 96, 104, 243, 493, and 887), and only men (N = 169). Overall, this 21-month study on published data confirmed the prior profile of BMD-TBS in T2DM, while the issue of whether checking the fracture risk is mandatory in adults with uncontrolled T2DM remains to be proven or whether, on the other hand, a reduced TBS might function as a surrogate marker of complicated/uncontrolled T2DM. The interventional approach with bisphosphonates for treating T2DM-associated osteoporosis remains a standard one (n = 2). One control study on 4 mg zoledronic acid showed after 1 year a statistically significant increase of lumbar BMD in both diabetic and non-diabetic groups (+3.6%, p = 0.01 and +6.2%, p = 0.01, respectively). Further studies will pinpoint additive benefits on glucose status of anti-osteoporotic drugs or will confirm if certain glucose-lowering regimes are supplementarily beneficial for fracture risk reduction. The novelty of this literature research: these insights showed once again that the patients with T2DM often have a lower TBS than those without diabetes or with normal glucose levels. Therefore, the decline in TBS may reflect an early stage of bone health impairment in T2DM. The novelty of the TBS as a handy, non-invasive method that proved to be an index of bone microarchitecture confirms its practicality as an easily applicable tool for assessing bone fragility in T2DM.
Collapse
Affiliation(s)
- Alexandra-Ioana Trandafir
- PhD Doctoral School, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-I.T.); (O.-C.S.); (A.-M.G.); (A.-P.C.)
| | - Oana-Claudia Sima
- PhD Doctoral School, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-I.T.); (O.-C.S.); (A.-M.G.); (A.-P.C.)
| | - Ana-Maria Gheorghe
- PhD Doctoral School, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-I.T.); (O.-C.S.); (A.-M.G.); (A.-P.C.)
| | - Adrian Ciuche
- Department 4—Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Thoracic Surgery Department, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Anca-Pati Cucu
- PhD Doctoral School, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-I.T.); (O.-C.S.); (A.-M.G.); (A.-P.C.)
- Thoracic Surgery Department, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Claudiu Nistor
- Department 4—Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Thoracic Surgery Department, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Mara Carsote
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Clinical Endocrinology V, C.I. Parhon National Institute of Endocrinology, 020021 Bucharest, Romania
| |
Collapse
|
4
|
Hu J, Han J, Jin M, Jin J, Zhu J. Effects of metformin on bone mineral density and bone turnover markers: a systematic review and meta-analysis. BMJ Open 2023; 13:e072904. [PMID: 37355276 PMCID: PMC10314630 DOI: 10.1136/bmjopen-2023-072904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023] Open
Abstract
OBJECTIVES Metformin is associated with osteoblastogenesis and osteoclastogenesis. This study aims to investigate the impacts of metformin therapy on bone mineral density (BMD) and bone turnover markers. DESIGN Systematic review and meta-analysis of randomised controlled trials. METHODS Searches were carried out in PubMed, EMBASE, Web of science, Cochrane library, ClinicalTrials.gov from database inception to 26 September 2022. Two review authors assessed trial eligibility in accordance with established inclusion criteria. The risk of bias was assessed using the Cochrane Risk of Bias tool (RoB V.2.0). Data analysis was conducted with Stata Statistical Software V.16.0 and Review Manager Software V.5.3. RESULTS A total of 15 studies with 3394 participants were identified for the present meta-analysis. Our pooled results indicated that metformin had no statistically significant effects on BMD at lumbar spine (SMD=-0.05, 95% CI=-0.19 to 0.09, p=0.47, participants=810; studies=7), at femoral (MD=-0.01 g/cm2, 95% CI=-0.04 to 0.01 g/cm2, p=0.25, participants=601; studies=3) and at hip (MD=0.01 g/cm2, 95% CI=-0.02 to 0.03 g/cm2, p=0.56, participants=634; studies=4). Metformin did not lead to significant change in osteocalcin, osteoprotegerin and bone alkaline phosphatase. Metformin induced decreases in N-terminal propeptide of type I procollagen (MD=-6.09 µg/L, 95% CI=-9.38 to -2.81 µg/L, p=0.0003, participants=2316; studies=7) and C-terminal telopeptide of type I collagen (MD=-55.80 ng/L, 95% CI=-97.33 to -14.26 ng/L, p=0.008, participants=2325; studies=7). CONCLUSION This meta-analysis indicated that metformin had no significant effect on BMD. Metformin decreased some bone turnover markers as N-terminal propeptide of type I procollagen and C-terminal telopeptide of type I collagen. But the outcomes should be interpreted with caution due to several limitations.
Collapse
Affiliation(s)
- Jinhua Hu
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, Shanghai, China
| | - Jingjie Han
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, Shanghai, China
| | - Min Jin
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, Shanghai, China
| | - Jing Jin
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, Shanghai, China
| | - Jialei Zhu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, Shanghai, China
| |
Collapse
|
5
|
Irisin and Bone in Sickness and in Health: A Narrative Review of the Literature. J Clin Med 2022; 11:jcm11226863. [PMID: 36431340 PMCID: PMC9699623 DOI: 10.3390/jcm11226863] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Irisin is a hormone-like myokine produced by the skeletal muscle in response to exercise. Upon its release into the circulation, it is involved in the browning process and thermogenesis, but recent evidence indicates that this myokine could also regulate the functions of osteoblasts, osteoclasts, and osteocytes. Most human studies have reported that serum irisin levels decrease with age and in conditions involving bone diseases, including both primary and secondary osteoporosis. However, it should be emphasized that recent findings have called into question the importance of circulating irisin, as well as the validity and reproducibility of current methods of irisin measurement. In this review, we summarize data pertaining to the role of irisin in the bone homeostasis of healthy children and adults, as well as in the context of primary and secondary osteoporosis. Additional research is required to address methodological issues, and functional studies are required to clarify whether muscle and bone damage per se affect circulating levels of irisin or whether the modulation of this myokine is caused by the inherent mechanisms of underlying diseases, such as genetic or inflammatory causes. These investigations would shed further light on the effects of irisin on bone homeostasis and bone disease.
Collapse
|
6
|
Ning K, Wang Z, Zhang XA. Exercise-induced modulation of myokine irisin in bone and cartilage tissue—Positive effects on osteoarthritis: A narrative review. Front Aging Neurosci 2022; 14:934406. [PMID: 36062149 PMCID: PMC9439853 DOI: 10.3389/fnagi.2022.934406] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis is a chronic degenerative musculoskeletal disease characterized by pathological changes in joint structures along with the incidence of which increases with age. Exercise is recommended for all clinical treatment guidelines of osteoarthritis, but the exact molecular mechanisms are still unknown. Irisin is a newly discovered myokine released mainly by skeletal muscle in recent years—a biologically active protein capable of being released into the bloodstream as an endocrine factor, the synthesis and secretion of which is specifically induced by exercise-induced muscle contraction. Although the discovery of irisin is relatively recent, its role in affecting bone density and cartilage homeostasis has been reported. Here, we review the production and structural characteristics of irisin and discuss the effects of the different types of exercise involved in the current study on irisin and the role of irisin in anti-aging. In addition, the role of irisin in the regulation of bone mineral density, bone metabolism, and its role in chondrocyte homeostasis and metabolism is reviewed. A series of studies on irisin have provided new insights into the mechanisms of exercise training in improving bone density, resisting cartilage degeneration, and maintaining the overall environmental homeostasis of the joint. These studies further contribute to the understanding of the role of exercise in the fight against osteoarthritis and will provide an important reference and aid in the development of the field of osteoarthritis prevention and treatment.
Collapse
|
7
|
Radugin FM, Timkina NV, Karonova TL. Metabolic properties of irisin in health and in diabetes mellitus. OBESITY AND METABOLISM 2022; 19:332-339. [DOI: 10.14341/omet12899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Irisin is a polypeptide hormone of muscle tissue (myokine), the synthesis and secretion of which increase against the background of physical exertion, which plays a significant role in the metabolism of fat, muscle and bone tissues. It is known that irisin promotes the transformation of white adipose tissue into brown adipose tissue. It has also been experimentally proven that the introduction of irisin contributed to an increase in bone mass and the prevention of osteoporosis and muscular atrophy. There are works indicating a positive effect of irisin in the functioning of bone, fat and muscle tissues in humans. Diabetes mellitus (DM) is an independent risk factor for osteoporotic fractures and the development of specific diabetic myopathy, at the cellular level similar to the aging of muscle tissue, and type 2 diabetes is also associated with the presence of obesity. Thus, it is of particular interest to study the effect of irisin on the state of bone, muscle and adipose tissues and glucose homeostasis in patients with diabetes. This literature review highlights the biological functions of irisin in healthy people and patients with DM.
Collapse
|