1
|
Yan H, Ding H, Xie RX, Liu ZQ, Yang XQ, Xie LL, Liu CX, Liu XD, Chen LY, Huang XP. Research progress of exosomes from different sources in myocardial ischemia. Front Cardiovasc Med 2024; 11:1436764. [PMID: 39350967 PMCID: PMC11440518 DOI: 10.3389/fcvm.2024.1436764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/16/2024] [Indexed: 10/04/2024] Open
Abstract
Ischemic heart disease refers to the imbalance between the supply and demand of myocardial blood; it has various causes and results in a class of clinical diseases characterized by myocardial ischemia (MI). In recent years, the incidence of cardiovascular disease has become higher and higher, and the number of patients with ischemic heart disease has also increased year by year. Traditional treatment methods include drug therapy and surgical treatment, both of which have limitations. The former maybe develop risks of drug resistance and has more significant side effects, while the latter may damage blood vessels and risk infection. At this stage, a new cell-free treatment method needs to be explored. Many research results have shown that exosomes from different cell sources can protect the ischemic myocardium via intercellular action methods, such as promoting angiogenesis, inhibiting myocardial fibrosis, apoptosis and pyroptosis, and providing a new basis for the treatment of MI. In this review, we briefly introduce the formation and consequences of myocardial ischemia and the biology of exosomes, and then focus on the role and mechanism of exosomes from different sources in MI. We also discuss the role and mechanism of exosomes pretreated with Chinese and Western medicines on myocardial ischemia. We also discuss the potential of exosomes as diagnostic markers and therapeutic drug for MI.
Collapse
Affiliation(s)
- Huan Yan
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Huang Ding
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Ruo-Xi Xie
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Zhi-Qing Liu
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Xiao-Qian Yang
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Ling-Li Xie
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Cai-Xia Liu
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Xiao-Dan Liu
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Li-Yuan Chen
- Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Xiao-Ping Huang
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Yang X, Wu M, Kong X, Wang Y, Hu C, Zhu D, Kong L, Qiu F, Jiang W. Exosomal miR-3174 induced by hypoxia promotes angiogenesis and metastasis of hepatocellular carcinoma by inhibiting HIPK3. iScience 2024; 27:108955. [PMID: 38322996 PMCID: PMC10845063 DOI: 10.1016/j.isci.2024.108955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 11/11/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor with rich blood supply. HCC-derived exosomes containing hereditary substances including microRNAs (miRNAs) were involved in regulating tumor angiogenesis and metastasis. Subsequently, series experiments were performed to evaluate the effect of exosomal miR-3174 on HCC angiogenesis and metastasis. HCC-derived exosomal miR-3174 was ingested by human umbilical vein endothelial cells (HUVECs) in which HIPK3 was targeted and silenced, causing subsequent inhibition of Fas and p53 signaling pathways. Furthermore, exosomal miR-3174 induced permeability and angiogenesis of HUVECs to enhance HCC progression and metastasis. Under hypoxia, upregulated HIF-1α further promoted the transcription of miR-3174. Moreover, HNRNPA1 augmented the package of miR-3174 into exosomes. Clinical data analysis confirmed that HCC patients with high-level miR-3174 were correlated with worse prognosis. Thus, exosomal miR-3174 induced by hypoxia promotes angiogenesis and metastasis of HCC by inhibiting HIPK3/p53 and HIPK3/Fas signaling pathways. Our findings might provide potential targets for anti-tumor therapy.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Hepatobiliary Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu 210000, China
| | - Mingyu Wu
- Department of Hepatobiliary Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, China
| | - Xiangxu Kong
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu 210000, China
| | - Yun Wang
- Department of Hepatobiliary Surgery, Xuzhou City Central Hospital, The Affiliated Hospital of the Southeast University Medical School (Xu zhou), The Tumor Research Institute of the Southeast University (Xu zhou), Xuzhou clinical college of Xuzhou Medical University, 199 Jiefang South Road, Xuzhou, Jiangsu 221009, China
| | - Chunyang Hu
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu 210000, China
| | - Deming Zhu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Lianbao Kong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu 210000, China
| | - Fei Qiu
- Department of Anesthesiology, The Second Hospital of Nanjing, Nanjing, Jiangsu 210000, China
| | - Wangjie Jiang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu 210000, China
| |
Collapse
|
3
|
Longevity OMAC. Retracted: Exosomal miR-27b-3p Derived from Hypoxic Cardiac Microvascular Endothelial Cells Alleviates Rat Myocardial Ischemia/Reperfusion Injury through Inhibiting Oxidative Stress-Induced Pyroptosis via Foxo1/GSDMD Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9754765. [PMID: 38188997 PMCID: PMC10769624 DOI: 10.1155/2023/9754765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024]
Abstract
[This retracts the article DOI: 10.1155/2022/8215842.].
Collapse
|
4
|
Qiu M, Yan W, Liu M. YAP Facilitates NEDD4L-Mediated Ubiquitination and Degradation of ACSL4 to Alleviate Ferroptosis in Myocardial Ischemia-Reperfusion Injury. Can J Cardiol 2023; 39:1712-1727. [PMID: 37541340 DOI: 10.1016/j.cjca.2023.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Ferroptosis is a novel iron-dependent type of cell death that takes part in the progression of myocardial ischemia/reperfusion injury (MIRI). However, the detailed mechanism of ferroptosis underlying MIRI remains unclear. This study aimed to investigate the regulatory role of yes-associated protein (YAP) in ferroptosis during MIRI. METHODS The in vivo and in vitro MIRI models were established in the Sprague-Dawley (SD) rats and H9C2 cardiomyocytes. The infarct volume, pathologic changes, cardiac function, serum levels of lactate dehydrogenase (LDH) and creatine kinase (CK)-MB were detected. Western blotting and immunohistochemistry were performed to measure the expression of YAP, neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) and ferroptosis-related proteins. Ferroptosis was evaluated by Fe2+, malondialdehyde (MDA), LDH, glutathione (GSH), and lipid reactive oxygen species (ROS) levels. Molecular mechanism was analyzed by co-immunoprecipitation (Co-IP), chromatin immunoprecipitation (ChIP), and dual-luciferase reporter assay. RESULTS YAP and NEDD4L were remarkably low expressed in MIRI models. YAP overexpression reduced myocardial infarct volume and improved cardiac function. In addition, YAP inhibited MIRI-induced ferroptosis as confirmed by reducing levels of Fe2+, MDA, LDH, lipid ROS, and ferroptosis-related protein ACSL4, and enhancing GSH level and cell viability. Mechanistically, YAP facilitated NEDD4L transcription that consequently caused ubiquitination and degradation of ACSL4, thereby restraining ferroptosis in MIRI. YAP knockdown aggravated MIRI-induced ferroptosis, which was counteracted by NEDD4L overexpression. CONCLUSIONS YAP represses MIRI-induced cardiomyocyte ferroptosis via promoting NEDD4L transcription and subsequent ubiquitination and degradation of ACSL4. YAP-mediated ferroptosis inhibition might be a novel therapeutic strategy for MIRI.
Collapse
Affiliation(s)
- Mali Qiu
- Cardiovascular Surgery ICU, Second Xiangya Hospital of Hunan Province, Changsha, Hunan Province, China
| | - Wei Yan
- Cardiopulmonary Bypass, Second Xiangya Hospital of Hunan Province, Changsha, Hunan Province, China
| | - Momu Liu
- Cardiovascular Surgery ICU, Second Xiangya Hospital of Hunan Province, Changsha, Hunan Province, China.
| |
Collapse
|
5
|
Fang G, Shen Y, Liao D. ENPP2 alleviates hypoxia/reoxygenation injury and ferroptosis by regulating oxidative stress and mitochondrial function in human cardiac microvascular endothelial cells. Cell Stress Chaperones 2023; 28:253-263. [PMID: 37052764 PMCID: PMC10167086 DOI: 10.1007/s12192-023-01324-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 04/14/2023] Open
Abstract
This study aimed to elucidate the molecular mechanisms of hypoxia/reoxygenation (H/R) injury in human cardiac microvascular endothelial cells (HCMECs) by regulating ferroptosis. H/R model was established with HCMECs and before the reperfusion, ferroptosis inhibitor ferrostatin-1 or ferroptosis inducer erastin was all administered. Wound-healing assay was performed to detect the migration ability of cells in each group, and the angiogenesis ability was determined by tube formation assay. The level of reactive oxygen species (ROS) was detected by flow cytometry. Transmission electron microscopy (TEM) was used to observe the state of mitochondria. The expressions of related proteins in HCMECs were assessed by Western blot. From the results, H/R injury could inhibit the migration and angiogenesis, induce the ROS production, and cause the mitochondrial damage of HCMECs. Ferroptosis activator erastin could aggravate H/R injury in HCMECs, while the ferroptosis inhibitor ferrostatin-1 could reverse the effects of H/R on HCMECs. Western blot results showed that H/R or/and erastin treatment could significantly induce ACSL4, HGF, VEGF, p-ERK, and uPA protein expression and inhibit GPX4 expression. The addition of ferrostatin-1 resulted in the opposite trend of the proteins expression above to erastin treatment. What is more, overexpression of ENPP2 markedly suppressed the damaging effect of H/R on HCMECs and reversed the effects of H/R or erastin treatment on the expression of related proteins. These results demonstrated a great therapeutic efficacy of ENPP2 overexpression in preventing the development of H/R injury through inhibiting oxidative stress and ferroptosis.
Collapse
Affiliation(s)
- Guanhua Fang
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, 350001 Fujian China
| | - Yanming Shen
- Fujian Medical University, Fuzhou, 350001 Fujian China
| | - Dongshan Liao
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, 350001 Fujian China
| |
Collapse
|
6
|
Wei L, Zhao D. M2 macrophage-derived exosomal miR-145-5p protects against the hypoxia/reoxygenation-induced pyroptosis of cardiomyocytes by inhibiting TLR4 expression. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1376. [PMID: 36660616 PMCID: PMC9843320 DOI: 10.21037/atm-22-6109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023]
Abstract
Background Exosomes carrying micro ribonucleic acids (miRNAs) protect against myocardial ischemic injury. In the study, we sought to investigate the protective effect mechanism of M2 macrophage-derived exosome miR-145-5p in hypoxia-reoxygenation (H/R)-induced cardiomyocytes. Methods M2 macrophages were isolated and induced from blood donated by healthy donors. M2 macrophages were transfected with or without miR-145-5p. Exosomes derived from M2 macrophages were isolated and identified by flow cytometry, nanoparticle tracking analysis, and transmission electron microscopy (TEM). AC16 cells were used to establish an H/R model, and cell activity was detected using a Cell Counting Kit 8 (CCK-8). Western blot was used to detect the expression of gasdermin D (GSDMD), nucleotide-binding domain-like receptor protein 3 (NLRP3), and caspase-1 in the H/R-induced AC16 cells to evaluate pyroptosis. Immunofluorescence staining was used to detect the positive rates of PKH26 and caspase-1. Combined with database prediction, dual luciferase reporter assays were used to validate toll-like receptor 4 (TLR4) as a downstream target molecule of miR-145-5p. A real-time quantitative polymerase chain reaction (RT-qPCR) analysis and western blot were used to detect the expression of TLR4 in the AC16 cells. Results Flow cytometry, western blot, nanoparticle tracking and TEM results confirmed the successful isolation of M2 macrophage-derived exosomes. CCK-8 results showed M2 macrophage-derived exosomes decreased the viability of the H/R-induced cells. Western blot results showed the expressions of GSDMD, caspase-1, and NLRP3 were significantly downregulated in the H/R group. Moreover, CCK-8 results showed the M2 macrophage-derived exosome miR-145-5p significantly ameliorated H/R-induced AC16 cellular activity. Western blot results confirmed the expressions of GSDMD, NLRP3, and caspase-1 were significantly downregulated in the macrophage-derived exosome miR-145-5p group compared to the M2 macrophage-derived exosome NC (normal control) group. Immunofluorescence staining results displayed the same trend in terms of the caspase-1 positivity rate. Further, we demonstrated overexpression of TLR4 partially reversed the protective effect of M2 macrophage-derived exosome miR-145-5p in the H/R-induced AC16 cells. Additionally, overexpression of TLR4 reversed the protein expression associated with pyroptosis in M2 macrophage-derived exosome miR-145-5p in the H/R-induced AC16 cells. Conclusions Our study indicated M2 macrophage-derived exosomes carrying miR-145-5p inhibited H/R-induced cardiomyocyte pyroptosis by downregulating the expression of TLR4.
Collapse
Affiliation(s)
- Li Wei
- Department of Electrocardiogram, The First People’s Hospital of Nantong, Nantong, China
| | - Dongsheng Zhao
- Department of Cardiology, The First People’s Hospital of Nantong, Nantong, China
| |
Collapse
|
7
|
Zheng Y, Xu X, Chi F, Cong N. Pyroptosis: A Newly Discovered Therapeutic Target for Ischemia-Reperfusion Injury. Biomolecules 2022; 12:1625. [PMID: 36358975 PMCID: PMC9687982 DOI: 10.3390/biom12111625] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 09/15/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury, uncommon among patients suffering from myocardial infarction, stroke, or acute kidney injury, can result in cell death and organ dysfunction. Previous studies have shown that different types of cell death, including apoptosis, necrosis, and autophagy, can occur during I/R injury. Pyroptosis, which is characterized by cell membrane pore formation, pro-inflammatory cytokine release, and cell burst, and which differentiates itself from apoptosis and necroptosis, has been found to be closely related to I/R injury. Therefore, targeting the signaling pathways and key regulators of pyroptosis may be favorable for the treatment of I/R injury, which is far from adequate at present. This review summarizes the current status of pyroptosis and its connection to I/R in different organs, as well as potential treatment strategies targeting it to combat I/R injury.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- Research Institute of Otorhinolaryngology, Fudan University, Shanghai 200031, China
| | - Xinda Xu
- Department of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- Research Institute of Otorhinolaryngology, Fudan University, Shanghai 200031, China
| | - Fanglu Chi
- Department of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- Research Institute of Otorhinolaryngology, Fudan University, Shanghai 200031, China
| | - Ning Cong
- Department of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- Research Institute of Otorhinolaryngology, Fudan University, Shanghai 200031, China
| |
Collapse
|