1
|
Chen T, Luo L, Li J, Li J, Lin T, Liu M, Sang H, Hong X, Pu J, Huang W. Advancements in 3D printing technologies for personalized treatment of osteonecrosis of the femoral head. Mater Today Bio 2025; 31:101531. [PMID: 40026627 PMCID: PMC11869124 DOI: 10.1016/j.mtbio.2025.101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Three-dimensional (3D) printing technology has shown significant promise in the medical field, particularly in orthopedics, prosthetics, tissue engineering, and pharmaceutical preparations. This review focuses on the innovative application of 3D printing in addressing the challenges of osteonecrosis of the femoral head (ONFH). Unlike traditional hip replacement surgery, which is often suboptimal for younger patients, 3D printing offers precise localization of necrotic areas and the ability to create personalized implants. By integrating advanced biomaterials, this technology offers a promising strategy approach for early hip-preserving treatments. Additionally, 3D-printed bone tissue engineering scaffolds can mimic the natural bone environment, promoting bone regeneration and vascularization. In the future, the potential of 3D printing extends to combining with artificial intelligence for optimizing treatment plans, developing materials with enhanced bioactivity and compatibility, and translating these innovations from the laboratory to clinical practice. This review demonstrates how 3D printing technology uniquely addresses critical challenges in ONFH treatment, including insufficient vascularization, poor mechanical stability, and limited long-term success of conventional therapies. By introducing gradient porous scaffolds, bioactive material coatings, and AI-assisted design, this work outlines novel strategies to improve bone regeneration and personalized hip-preserving interventions. These advancements not only enhance treatment efficacy but also pave the way for translating laboratory findings into clinical applications.
Collapse
Affiliation(s)
- Tingting Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian , 350108, China
| | - Lincong Luo
- Yue Bei People's Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, 510515, China
| | - Jiaying Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong , 510515, China
| | - Jiamin Li
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Tao Lin
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong , 510515, China
| | - Mingrui Liu
- School of Basic Medicine, Dali University, Dali, Yunnan, 671003, China
| | - Hang Sang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong , 510515, China
| | - Xinyu Hong
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian , 350108, China
| | - Jiahao Pu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian , 350108, China
| | - Wenhua Huang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian , 350108, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong , 510515, China
| |
Collapse
|
2
|
Giorgino R, Alessandri-Bonetti M, Del Re M, Verdoni F, Peretti GM, Mangiavini L. Google Bard and ChatGPT in Orthopedics: Which Is the Better Doctor in Sports Medicine and Pediatric Orthopedics? The Role of AI in Patient Education. Diagnostics (Basel) 2024; 14:1253. [PMID: 38928668 PMCID: PMC11202930 DOI: 10.3390/diagnostics14121253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND This study evaluates the potential of ChatGPT and Google Bard as educational tools for patients in orthopedics, focusing on sports medicine and pediatric orthopedics. The aim is to compare the quality of responses provided by these natural language processing (NLP) models, addressing concerns about the potential dissemination of incorrect medical information. METHODS Ten ACL- and flat foot-related questions from a Google search were presented to ChatGPT-3.5 and Google Bard. Expert orthopedic surgeons rated the responses using the Global Quality Score (GQS). The study minimized bias by clearing chat history before each question, maintaining respondent anonymity and employing statistical analysis to compare response quality. RESULTS ChatGPT-3.5 and Google Bard yielded good-quality responses, with average scores of 4.1 ± 0.7 and 4 ± 0.78, respectively, for sports medicine. For pediatric orthopedics, Google Bard scored 3.5 ± 1, while the average score for responses generated by ChatGPT was 3.8 ± 0.83. In both cases, no statistically significant difference was found between the platforms (p = 0.6787, p = 0.3092). Despite ChatGPT's responses being considered more readable, both platforms showed promise for AI-driven patient education, with no reported misinformation. CONCLUSIONS ChatGPT and Google Bard demonstrate significant potential as supplementary patient education resources in orthopedics. However, improvements are needed for increased reliability. The study underscores the evolving role of AI in orthopedics and calls for continued research to ensure a conscientious integration of AI in healthcare education.
Collapse
Affiliation(s)
- Riccardo Giorgino
- Residency Program in Orthopaedics and Traumatology, University of Milan, 20122 Milan, Italy
- IRCCS Ospedale Galeazzi Sant’ambrogio, 20157 Milan, Italy; (M.D.R.); (F.V.); (G.M.P.); (L.M.)
| | - Mario Alessandri-Bonetti
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 1350 Locust Street, Pittsburgh, PA 15213, USA;
| | - Matteo Del Re
- IRCCS Ospedale Galeazzi Sant’ambrogio, 20157 Milan, Italy; (M.D.R.); (F.V.); (G.M.P.); (L.M.)
| | - Fabio Verdoni
- IRCCS Ospedale Galeazzi Sant’ambrogio, 20157 Milan, Italy; (M.D.R.); (F.V.); (G.M.P.); (L.M.)
| | - Giuseppe M. Peretti
- IRCCS Ospedale Galeazzi Sant’ambrogio, 20157 Milan, Italy; (M.D.R.); (F.V.); (G.M.P.); (L.M.)
- Department of Biomedical Sciences for Health, University of Milan, 20122 Milan, Italy
| | - Laura Mangiavini
- IRCCS Ospedale Galeazzi Sant’ambrogio, 20157 Milan, Italy; (M.D.R.); (F.V.); (G.M.P.); (L.M.)
- Department of Biomedical Sciences for Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
3
|
Mortimer JW, Rust PA, Paxton JZ. Anatomical design and production of a novel three-dimensional co-culture system replicating the human flexor digitorum profundus enthesis. J Anat 2024. [PMID: 38400563 DOI: 10.1111/joa.14027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The enthesis, the specialized junction between tendon and bone, is a common site of injury. Although notoriously difficult to repair, advances in interfacial tissue engineering techniques are being developed for restorative function. Most notably are 3D in vitro co-culture models, built to recreate the complex heterogeneity of the native enthesis. While cell and matrix properties are often considered, there has been little attention given to native enthesis anatomical morphometrics and replicating these to enhance clinical relevance. This study focuses on the flexor digitorum profundus (FDP) tendon enthesis and, by combining anatomical morphometrics with computer-aided design, demonstrates the design and construction of an accurate and scalable model of the FDP enthesis. Bespoke 3D-printed mould inserts were fabricated based on the size, shape and insertion angle of the FDP enthesis. Then, silicone culture moulds were created, enabling the production of bespoke anatomical culture zones for an in vitro FDP enthesis model. The validity of the model has been confirmed using brushite cement scaffolds seeded with osteoblasts (bone) and fibrin hydrogel scaffolds seeded with fibroblasts (tendon) in individual studies with cells from either human or rat origin. This novel approach allows a bespoke anatomical design for enthesis repair and should be applied to future studies in this area.
Collapse
Affiliation(s)
- Jeremy W Mortimer
- Anatomy@Edinburgh, Deanery of Biomedical Sciences, Old Medical School, University of Edinburgh, Edinburgh, UK
- School of Anatomy, University of Bristol, Bristol, UK
| | - Philippa A Rust
- Anatomy@Edinburgh, Deanery of Biomedical Sciences, Old Medical School, University of Edinburgh, Edinburgh, UK
- Hooper Hand Unit, St. John's Hospital, Livingston, Edinburgh, UK
| | - Jennifer Z Paxton
- Anatomy@Edinburgh, Deanery of Biomedical Sciences, Old Medical School, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Cheng J, Wang C, Guo L, Gu Y. Development of heparinized and hepatocyte growth factor-coated acellular scaffolds using porcine carotid arteries. J Biomed Mater Res B Appl Biomater 2024; 112:e35317. [PMID: 37584376 DOI: 10.1002/jbm.b.35317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/16/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
Tissue-engineered blood vessel substitutes have been developed due to the lack of suitable small-diameter vascular grafts. Xenogeneic extracellular matrix (ECM) scaffolds have the potential to provide an ideal source for off-the-shelf vascular grafts. In this study, porcine carotid arteries were used to develop ECM scaffolds by decellularization and coating with heparin and hepatocyte growth factor (HGF). After decellularization, cellular and nucleic materials were successfully removed with preservation of the main compositions (collagen, elastin, and basement membrane) of the native ECM. The ultimate tensile strength, suture strength, and burst pressure were significantly increased after cross-linking. Pore size distribution analysis revealed a porous structure within ECM scaffolds with a high distribution of pores larger than 10 μm. Heparinized scaffolds exhibited sustained release of heparin in vitro and showed potent anticoagulant activity by prolonging activated partial thromboplastin time. The scaffolds showed an enhanced HGF binding capacity as well as a constant release of HGF as a result of heparin modification. When implanted subcutaneously in rats, the modified scaffolds revealed good biocompatibility with enzyme degradation resistance, mitigated immune response, and anti-calcification. In conclusion, heparinized and HGF-coated acellular porcine carotid arteries may be a promising biological scaffold for tissue-engineered vascular grafts.
Collapse
Affiliation(s)
- Jin Cheng
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Cong Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lianrui Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
5
|
MORDÀ F, BASILE G, VILLAFAÑE JH, GRASSI FA, LEIGHEB M. 3D printing in orthopedic surgery. Chirurgia (Bucur) 2023; 36. [DOI: 10.23736/s0394-9508.23.05642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
|
6
|
Chen L, Zhou C, Jiang C, Huang X, Liu Z, Zhang H, Liang W, Zhao J. Translation of nanotechnology-based implants for orthopedic applications: current barriers and future perspective. Front Bioeng Biotechnol 2023; 11:1206806. [PMID: 37675405 PMCID: PMC10478008 DOI: 10.3389/fbioe.2023.1206806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/21/2023] [Indexed: 09/08/2023] Open
Abstract
The objective of bioimplant engineering is to develop biologically compatible materials for restoring, preserving, or altering damaged tissues and/or organ functions. The variety of substances used for orthopedic implant applications has been substantially influenced by modern material technology. Therefore, nanomaterials can mimic the surface properties of normal tissues, including surface chemistry, topography, energy, and wettability. Moreover, the new characteristics of nanomaterials promote their application in sustaining the progression of many tissues. The current review establishes a basis for nanotechnology-driven biomaterials by demonstrating the fundamental design problems that influence the success or failure of an orthopedic graft, cell adhesion, proliferation, antimicrobial/antibacterial activity, and differentiation. In this context, extensive research has been conducted on the nano-functionalization of biomaterial surfaces to enhance cell adhesion, differentiation, propagation, and implant population with potent antimicrobial activity. The possible nanomaterials applications (in terms of a functional nanocoating or a nanostructured surface) may resolve a variety of issues (such as bacterial adhesion and corrosion) associated with conventional metallic or non-metallic grafts, primarily for optimizing implant procedures. Future developments in orthopedic biomaterials, such as smart biomaterials, porous structures, and 3D implants, show promise for achieving the necessary characteristics and shape of a stimuli-responsive implant. Ultimately, the major barriers to the commercialization of nanotechnology-derived biomaterials are addressed to help overcome the limitations of current orthopedic biomaterials in terms of critical fundamental factors including cost of therapy, quality, pain relief, and implant life. Despite the recent success of nanotechnology, there are significant hurdles that must be overcome before nanomedicine may be applied to orthopedics. The objective of this review was to provide a thorough examination of recent advancements, their commercialization prospects, as well as the challenges and potential perspectives associated with them. This review aims to assist healthcare providers and researchers in extracting relevant data to develop translational research within the field. In addition, it will assist the readers in comprehending the scope and gaps of nanomedicine's applicability in the orthopedics field.
Collapse
Affiliation(s)
- Long Chen
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Chanyi Jiang
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Zunyong Liu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Hengjian Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| |
Collapse
|
7
|
Lin GX, Chen CM, Rui G, Hu BS. Research relating to three-dimensional (3D) printing in spine surgery: a bibliometric analysis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:395-407. [PMID: 36109389 DOI: 10.1007/s00586-022-07376-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/30/2022] [Accepted: 08/29/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Although numerous publications on three-dimensional printing (3DP) in spine surgery have been published, bibliometric analysis studies are scarce. Thus, this study aimed to present a bibliometric analysis of the status, hot spots, and frontiers of 3DP in spine surgery and associated research disciplines. METHODS All publications relating to the utilization of 3DP in spine surgery from 1999 to May 9, 2022, were retrieved from the Web of Science. The bibliometric analysis was performed using CiteSpace software, and information on the country, institution, author, journal, and keywords for each publication was collected. RESULTS A total of 270 articles were identified. From 2016 onward, a significant increase in publications on spinal surgery was observed. China was the most productive and influential country (98 publications) and H-index (22), followed by the USA and Australia. The most productive institution was Capital Medical University (9 publications). P. S. D'urso (8 publications, 46 citations) and R. J. Mobbs (8 publications, 39 citations) were the most prolific authors. European Spine Journal contributed the highest number of publications. The eight main clusters were: "rapid prototyping" #0, "3D printed" #1, "spine fusion" #2, "scoliosis" #3, "spine surgery" #4, "patient-specific" #5, "nervous system" #6, and "neuronavigation" #7. The strongest keyword bursts in 3DP in spine surgery were "fixation," "drill template," "instrumentation," "fusion," "complication," and "atlantoaxial instability." CONCLUSION This analysis provides information on research trends and frontiers in the application of 3DP in spine surgery, as well as research and collaboration partners, institutions, and countries.
Collapse
Affiliation(s)
- Guang-Xun Lin
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,The Third Clinical Medical College, The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Chien-Min Chen
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan.,Department of Leisure Industry Management, National Chin-Yi University of Technology, Taichung, Taiwan.,College of nursing and health sciences, Dayeh University, Changhua, Taiwan
| | - Gang Rui
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,The Third Clinical Medical College, The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Bao-Shan Hu
- The Third Clinical Medical College, The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
8
|
Ye Z, Jiang H, Bai S, Wang T, Yang D, Hou H, Zhang Y, Yi S. Meta-analyzing the efficacy of 3D printed models in anatomy education. Front Bioeng Biotechnol 2023; 11:1117555. [PMID: 36890917 PMCID: PMC9986435 DOI: 10.3389/fbioe.2023.1117555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Three-dimensional printing models (3DPs) have been widely used in medical anatomy training. However, the 3DPs evaluation results differ depending on such factors as the training objects, experimental design, organ parts, and test content. Thus, this systematic evaluation was carried out to better understand the role of 3DPs in different populations and different experimental designs. Controlled (CON) studies of 3DPs were retrieved from PubMed and Web of Science databases, where the participants were medical students or residents. The teaching content is the anatomical knowledge of human organs. One evaluation indicator is the mastery of anatomical knowledge after training, and the other is the satisfaction of participants with 3DPs. On the whole, the performance of the 3DPs group was higher than that of the CON group; however, there was no statistical difference in the resident subgroup, and there was no statistical difference for 3DPs vs. 3D visual imaging (3DI). In terms of satisfaction rate, the summary data showed that the difference between the 3DPs group (83.6%) vs. the CON group (69.6%) (binary variable) was not statistically significant, with p > 0.05. 3DPs has a positive effect on anatomy teaching, although there are no statistical differences in the performance tests of individual subgroups; participants generally had good evaluations and satisfaction with 3DPs. 3DPs still faces challenges in production cost, raw material source, authenticity, durability, etc. The future of 3D-printing-model-assisted anatomy teaching is worthy of expectation.
Collapse
Affiliation(s)
- Zhen Ye
- School of clinical and basic medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Hanming Jiang
- School of clinical and basic medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Suyun Bai
- School of clinical and basic medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Tao Wang
- School of clinical and basic medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Duxiao Yang
- School of clinical and basic medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Haifeng Hou
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Yuanying Zhang
- School of clinical and basic medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Shuying Yi
- School of clinical and basic medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| |
Collapse
|
9
|
Guo Z, Zhang R, Que Y, Hu B, Xu S, Hu Y. Case Report: 3D-Printed Prosthesis for Limb Salvage and Joint Preservation After Tibial Sarcoma Resection. Front Surg 2022; 9:873272. [PMID: 35711702 PMCID: PMC9195185 DOI: 10.3389/fsurg.2022.873272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Reconstruction of massive tibial defects in ankle joint-preserving surgery remains challenging though biological and prosthetic methods have been attempted. We surgically treated a patient with only 18-mm distal tibia remaining and reconstructed with a unique three-dimensional printed prosthesis. Case Presentation, Intervention, and Outcomes A 36-year-old male presented to our clinic with complaints of gradually swelling left calf and palpable painless mass for five months. Imageological exam indicated a lesion spanning the entire length of the tibia and surrounding the vascular plexus. Diagnosis of chondrosarcoma was confirmed by biopsy. Amputation was initially recommended but rejected, thus a novel one-step limb-salvage procedure was performed. After en-bloc tumor resection and blood supply rebuilding, a customized, three-dimensional printed prosthesis with porous interface was fixed that connected the tumor knee prosthesis and distal ultra-small bone segment. During a 16-month follow-up, no soft tissue or prosthesis-related complications occurred. The patient was alive with no sign of recurrence or metastasis. Walking ability and full tibiotalar range of motion were preserved. Conclusions Custom-made, three-dimensional printed prosthesis manifested excellent mechanical stability during the follow-up in this joint-preserving surgery. Further investigation of the durability and rate of long-term complications is needed to introduce to routine clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Yong Hu
- Correspondence: Shenglin Xu Yong Hu
| |
Collapse
|