1
|
Li F, Zhang HK, Jiang HX, Zhang XY, Chen QX. TUG1 exacerbates cerebral ischemia-reperfusion injury through miR-340-5p-mediated PTEN. J Mol Histol 2024; 55:699-707. [PMID: 39017855 DOI: 10.1007/s10735-024-10224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/07/2024] [Indexed: 07/18/2024]
Abstract
Long non-coding RNAs (LncRNAs) play a substantial role in the process of cerebral ischemia-reperfusion injury (CIRI). The present work aimed to determine the probable mechanism by which LncRNA TUG1 exacerbates CIRI via the miR-340-5p/phosphatase and tensin homolog (PTEN) pathway. After developing a middle cerebral artery occlusion/reperfusion (MCAO/R) model, pcDNA-TUG1 together with miR-340-5p agomir were administrated in vivo. Furthermore, the neurologic defects in rats were assessed by a modified neurological severity score. Moreover, 2,3,5-Triphenyl-2 H-tetrazolium chloride stain-step was performed to determine the brain's infarct size. In addition, western blotting, immunohistochemistry, and qRT-PCR experiments were utilized for gauging the proteomic/genomic expression-profiles. Luciferase reporter assay validated correlations across TUG1, miR-340-5p, together with PTEN. The results indicated relatively reduced miR-340-5p levels in MCAO/R models, while upregulated TUG1 levels. The pcDNA-TUG1-treated rats indicated increasing neurological dysfunction, whereas the miR-340-5p agomir-treated rats showed improvement. Furthermore, miR-340-5p was determined to be the expected and confirmed TUG1 target. All things considered, the findings suggested that PTEN can serve as the target of miR-340-5p. In addition, TUG1 served as a miR-340-5p ceRNA, which promotes PTEN modulation. Furthermore, TUG1 overexpression decreased miR-340-5p's capacity to fend against CIRI. Conclusively, this work proved that in CIRI, targeting the TUG1/miR-340-5p/PTEN regulatory axis is a viable approach for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Fei Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hui-Kai Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hong-Xiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xin-Yuan Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qian-Xue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
2
|
Rai V, Mendoza-Mari Y, Radwan MM, Brazdzionis J, Connett DA, Miulli DE, Agrawal DK. Transcriptional and Translational Regulation of Differentially Expressed Genes in Yucatan Miniswine Brain Tissues following Traumatic Brain Injury. JOURNAL OF BIOINFORMATICS AND SYSTEMS BIOLOGY : OPEN ACCESS 2024; 7:81-91. [PMID: 38818113 PMCID: PMC11138201 DOI: 10.26502/jbsb.5107080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity, disability, and mortality worldwide. Motor and cognitive deficits and emotional disturbances are long-term consequences of TBI. A lack of effective treatment for TBI-induced neural damage, functional impairments, and cognitive deficits makes it challenging in the recovery following TBI. One of the reasons may be the lack of knowledge underlying the complex pathophysiology of TBI and the regulatory factors involved in the cellular and molecular mechanisms of inflammation, neural regeneration, and injury repair. These mechanisms involve a change in the expression of various proteins encoded by genes whose expression is regulated by transcription factors (TFs) at the transcriptional level and microRNA (miRs) at the mRNA level. In this pilot study, we performed the RNA sequencing of injured tissues and non-injured tissues from the brain of Yucatan miniswine and analyzed the sequencing data for differentially expressed genes (DEGs) and the TFs and miRs regulating the expression of DEGs using in-silico analysis. We also compared the effect of the electromagnetic field (EMF) applied to the injured miniswine on the expression profile of various DEGs. The results of this pilot study revealed a few DEGs that were significantly upregulated in the injured brain tissue and the EMF stimulation showed effect on their expression profile.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Yssel Mendoza-Mari
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Mohamed M Radwan
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - James Brazdzionis
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - David A Connett
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Dan E Miulli
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| |
Collapse
|
3
|
Longevity OMAC. Retracted: Long Noncoding RNA TUG1 Aggravates Cerebral Ischemia/Reperfusion Injury by Acting as a ceRNA for miR-3072-3p to Target St8sia2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:9832607. [PMID: 38234550 PMCID: PMC10791416 DOI: 10.1155/2024/9832607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
[This retracts the article DOI: 10.1155/2022/9381203.].
Collapse
|
4
|
Liu NN, Huang YP, Shao YB, Fan XF, Sun HY, Wang TR, Yao T, Chen XY. The regulatory role and mechanism of lncTUG1 on cartilage apoptosis and inflammation in osteoarthritis. Arthritis Res Ther 2023; 25:106. [PMID: 37340458 DOI: 10.1186/s13075-023-03087-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/04/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Long-stranded non-coding RNA TUG1 is lowly expressed in osteoarthritic chondrocytes. This study aimed to elucidate the role of TUG1 in osteoarthritic cartilage damage and the underlying mechanisms. METHODS Combined database analysis, using primary chondrocytes as well as the C28/I2 cell line, was performed by qRT-PCR, Western blotting, and immunofluorescence to determine the expression of TUG1, miR-144-3p, DUSP1, and other target proteins. Dual luciferase reporter gene and RIP to verify direct interaction of TUG1 with miR-144-3-p and miR-144-3-p with DUSP1, Annexin V-FITC/PI double staining to detect apoptosis. CCK-8 to detect cell proliferation. The biological significance of TUG1, miR-144-3p, and DUSP1 was assessed in vitro experiments using siRNA for TUG1, mimic and repressor for miR-144-3p, and overexpression plasmid for DUSP1. In this study, all data were subjected to a t-test or one-way analysis of variance with a p-value < 0.05 as the cutoff. RESULTS TUG1 expression was closely associated with osteoarthritic chondrocyte damage, and knockdown of TUG1 significantly promoted chondrocyte apoptosis and inflammation. In the present study, we found that TUG1 inhibited chondrocyte apoptosis and inflammation by competitively binding miR-144-3p, deregulating the negative regulatory effect of miR-144-3p on DUSP1, promoting DUSP1 expression, and inhibiting the p38 MAPK signaling pathway. CONCLUSIONS In conclusion, our study clarifies the role of the ceRNA regulatory network of TUG1/miR-144-3p/DUSP1/P38 MAPK in OA cartilage injury and provides an experimental and theoretical basis for genetic engineering tools to promote articular cartilage repair.
Collapse
Affiliation(s)
- Nan-Nan Liu
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Yan-Ping Huang
- Department of Human Anatomy, Histology and Embryology, Anhui Medical College, No. 632 Furong Road, Hefei, 230601, Anhui Province, China
| | - Yu-Bao Shao
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Xue-Fei Fan
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - He-Yan Sun
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Tao-Rong Wang
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Tao Yao
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, No. 390 Huaihe Road, Hefei, 230061, Anhui Province, China.
| | - Xiao-Yu Chen
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
5
|
Feng Y, Lei B, Zhang H, Niu L, Li X, Luo X, Zhang F. Long noncoding RNA TUG1 induces angiogenesis of endothelial progenitor cells and dissolution of deep vein thrombosis. Thromb J 2022; 20:54. [PMID: 36163177 PMCID: PMC9511754 DOI: 10.1186/s12959-022-00413-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/03/2022] [Indexed: 03/09/2024] Open
Abstract
Objective Long non-coding RNA (lncRNA) essentially controls many physiological and pathological processes of deep vein thrombosis (DVT). Based on that, lncRNA taurine upregulated gene 1 (TUG1)-involved angiogenesis of endothelial progenitor cells (EPCs) and dissolution of DVT was explored. Methods In the in-vitro experiments, EPCs were engineered with mimic, inhibitor, siRNA, and plasmid, after which tube formation, proliferation, migration, and apoptosis were checked. In the in-vivo experiments, a DVT mouse model was established. Before the DVT operation, the mice were injected with agomir, antagomir, siRNA, and plasmid. Subsequently, thrombosis and damage to the femoral vein were pathologically evaluated. TUG1, miR-92a-3p, and 3-Hydroxy-3-methylglutaryl coenzyme A reductase (Hmgcr) expression in the femoral vein was tested. The relationship between TUG1, miR-92a-3p, and Hmgcr was validated. Results DVT mice showed suppressed TUG1 and Hmgcr expression, and elevated miR-92a-3p expression. In EPCs, TUG1 overexpression or miR-92a-3p inhibition promoted cellular angiogenesis, whereas Hmgcr silencing blocked cellular angiogenesis. In DVT mice, elevated TUG1 or inhibited miR-92a-3p suppressed thrombosis and damage to the femoral vein whilst Hmgcr knockdown acted oppositely. In both cellular and animal models, TUG1 overexpression-induced effects could be mitigated by miR-92a-3p up-regulation. Mechanically, TUG1 interacted with miR-92a-3p to regulate Hmgcr expression. Conclusion Evidently, TUG1 promotes the angiogenesis of EPCs and dissolution of DVT via the interplay with miR-92a-3p and Hmgcr. Supplementary Information The online version contains supplementary material available at 10.1186/s12959-022-00413-y.
Collapse
Affiliation(s)
- Yaping Feng
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Bo Lei
- Anesthesia Department, Beijing Haidian Maternal & Child Health Hospital, No. 33 Haidian South Road, Haidian District, Beijing, 100080, China.
| | - Huan Zhang
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Luyuan Niu
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xiangtao Li
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xiaoyun Luo
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Fuxian Zhang
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| |
Collapse
|