1
|
Palollathil A, Babu S, Abhinand CS, Mathew RT, Vijayakumar M, Prasad TSK. Proteomic profiling of oral squamous cell carcinoma tissues reveals altered immune-related proteins: implications for personalized therapy. Expert Rev Proteomics 2024; 21:483-495. [PMID: 39523852 DOI: 10.1080/14789450.2024.2428332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Oral squamous cell carcinoma poses a substantial global health challenge marked by rising mortality rate. Recently, immunotherapy has shown promising results in cancer management by enhancing immune response. Thus, identifying additional immune-related markers is critical for advancing immunotherapy treatments. METHODS Data-independent acquisition (DIA) mass spectrometry approach was used to explore differentially expressed immune-related proteins in oral cancer tissues compared to adjacent non-cancerous tissues. Functional significance was identified through Gene Ontology, pathway, and network analysis. Gene expression of identified proteins was validated using transcriptomic data. RESULTS DIA analysis identified 29,459 precursors corresponding to 3429 proteins. Among these, 1060 proteins were differentially expressed, with 166 being immune-related. Differentially regulated proteins were involved in innate immune response, mitochondrial ATP synthesis, and neutrophil degranulation. Pathway analysis of immune-related proteins showed perturbation in anti-tumor immunity-related pathways such as interferon signaling, TCR signaling, PD-1 signaling, and antigen processing and presentation. Significance of these pathways was further reinforced by the strong interactions identified in the protein-protein interaction network analysis. Additionally, gene expression analysis showed similar mRNA expression patterns for key proteins involved in altered pathways, including ISG15, IFIT1/3, HLA-A/C and OAS2/3. CONCLUSIONS Further validation of these proteins could establish them as potential targets for personalized therapy.
Collapse
Affiliation(s)
- Akhina Palollathil
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sreeranjini Babu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Rohan Thomas Mathew
- Department of Surgical Oncology, Yenepoya Medical College Hospital, Yenepoya (Deemed to be University), Mangalore, India
| | - Manavalan Vijayakumar
- Department of Surgical Oncology, Yenepoya Medical College Hospital, Yenepoya (Deemed to be University), Mangalore, India
| | | |
Collapse
|
2
|
Fan J, Wang L, Zhang C, Wu X, Han L, Zhang X, Gao S, Xue J, Zhang Q. PDIA3 driven STAT3/PD-1 signaling promotes M2 TAM polarization and aggravates colorectal cancer progression. Aging (Albany NY) 2024; 16:8880-8897. [PMID: 38761176 PMCID: PMC11164521 DOI: 10.18632/aging.205847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/13/2024] [Indexed: 05/20/2024]
Abstract
OBJECTIVE This inquiry endeavors to delineate the influence of PDIA3 on tumor-associated macrophages within the realm of colorectal malignancies, whilst elucidating the intrinsic biochemical pathways. METHOD Leveraging bioinformatics, we scrutinized the symbiosis between PDIA3, STAT3, and CD274. A xenograft model in immunodeficient murine served to assess PDIA3's impact on colorectal carcinogenesis. Further, Western blot analysis quantified the protein expression of PDIA3, p-STAT3, PD-1, XBP-1, assorted enzymes, and IL-6. Moreover, in vitro assays gauged SW480 cellular dynamics inclusive of migration, invasive potential, and proliferation. RESULTS Bioinformatics exploration exposed PDIA3's elevated presence in diverse cancers, with a marked expression in colorectal cancer, as per TCGA and GEO repositories. Correlative studies showed PDIA3 positively aligning with STAT3 and CD274, the latter also associated with monocyte-derived macrophages. Comparative analysis of colorectal neoplasms and normal colon samples unveiled heightened levels of PDIA3 markers which, when overexpressed in SW480 cells, escalated tumorigenicity and oncogenic behaviors, with a noted decrease upon PD-1 monoclonal antibody intervention. CONCLUSIONS PDIA3 augments the M2 polarization of tumor-associated macrophages via modulation of the STAT3/PD-1 cascade, thus invigorating the tumorous proliferation and dissemination in colorectal cancer. Such revelations position PDIA3 as an auspicious target for PD-1 blockade therapeutics, offering a promising foundation for rectifying colorectal carcinoma.
Collapse
Affiliation(s)
- Jianchun Fan
- Graduate School, Hebei North University, Zhangjiakou 075000, China
| | - Likun Wang
- Department of Ultrasound Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Chunze Zhang
- Department of Anus and Intestine Surgery, Tianjin People's Hospital, Tianjin 300122, China
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
- Institute of Tumor, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
- Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin 300100, China
| | - Lei Han
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Xiaoyu Zhang
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Shuquan Gao
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Qi Zhang
- Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin 300100, China
| |
Collapse
|
3
|
Wang F, Zhao D, Xu WY, Liu Y, Sun H, Lu S, Ji Y, Jiang J, Chen Y, He Q, Gong C, Liu R, Su Z, Dong Y, Yan Z, Liu L. Blood leukocytes as a non-invasive diagnostic tool for thyroid nodules: a prospective cohort study. BMC Med 2024; 22:147. [PMID: 38561764 PMCID: PMC10986011 DOI: 10.1186/s12916-024-03368-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Thyroid nodule (TN) patients in China are subject to overdiagnosis and overtreatment. The implementation of existing technologies such as thyroid ultrasonography has indeed contributed to the improved diagnostic accuracy of TNs. However, a significant issue persists, where many patients undergo unnecessary biopsies, and patients with malignant thyroid nodules (MTNs) are advised to undergo surgery therapy. METHODS This study included a total of 293 patients diagnosed with TNs. Differential methylation haplotype blocks (MHBs) in blood leukocytes between MTNs and benign thyroid nodules (BTNs) were detected using reduced representation bisulfite sequencing (RRBS). Subsequently, an artificial intelligence blood leukocyte DNA methylation (BLDM) model was designed to optimize the management and treatment of patients with TNs for more effective outcomes. RESULTS The DNA methylation profiles of peripheral blood leukocytes exhibited distinctions between MTNs and BTNs. The BLDM model we developed for diagnosing TNs achieved an area under the curve (AUC) of 0.858 in the validation cohort and 0.863 in the independent test cohort. Its specificity reached 90.91% and 88.68% in the validation and independent test cohorts, respectively, outperforming the specificity of ultrasonography (43.64% in the validation cohort and 47.17% in the independent test cohort), albeit with a slightly lower sensitivity (83.33% in the validation cohort and 82.86% in the independent test cohort) compared to ultrasonography (97.62% in the validation cohort and 100.00% in the independent test cohort). The BLDM model could correctly identify 89.83% patients whose nodules were suspected malignant by ultrasonography but finally histological benign. In micronodules, the model displayed higher specificity (93.33% in the validation cohort and 92.00% in the independent test cohort) and accuracy (88.24% in the validation cohort and 87.50% in the independent test cohort) for diagnosing TNs. This performance surpassed the specificity and accuracy observed with ultrasonography. A TN diagnostic and treatment framework that prioritizes patients is provided, with fine-needle aspiration (FNA) biopsy performed only on patients with indications of MTNs in both BLDM and ultrasonography results, thus avoiding unnecessary biopsies. CONCLUSIONS This is the first study to demonstrate the potential of non-invasive blood leukocytes in diagnosing TNs, thereby making TN diagnosis and treatment more efficient in China.
Collapse
Affiliation(s)
- Feihang Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Danyang Zhao
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Wang-Yang Xu
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | - Yiying Liu
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | - Huiyi Sun
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Shanshan Lu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yi Chen
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Qiye He
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | | | - Rui Liu
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | - Zhixi Su
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China.
| | - Yi Dong
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Zhiping Yan
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| | - Lingxiao Liu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| |
Collapse
|
4
|
Lv M, Li X, Tian W, Yang H, Zhou B. ADGRD1 as a Potential Prognostic and Immunological Biomarker in Non-Small-Cell Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5699892. [PMID: 36457341 PMCID: PMC9708333 DOI: 10.1155/2022/5699892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/17/2022] [Accepted: 11/02/2022] [Indexed: 08/19/2023]
Abstract
ADGRD1 (GPR133), an adhesion G protein-coupled receptor (GPCR), has been linked to cancer. However, the prognostic value and regulatory function within non-small-cell lung cancer (NSCLC) is still unclear. This work adopted various bioinformatics methods, including publicly available databases as well as real-time PCR (RT-PCR), for detecting ADGRD1 expression level and investigating the correlation between ADGRD1 expression level and prognosis, tumor mutational burden (TMB), microsatellite instability (MSI), immune infiltrating cells, immune-related genes, and targeted regulation mechanisms in NSCLC. According to the results, ADGRD1 expression decreased within NSCLC, which might be the factor predicting prognosis of NSCLC. Meanwhile, ADGRD1 showed significant correlation with TMB and MSI, respectively, as well as immune cell infiltrating levels in lung adenocarcinoma (LUAD), which were primarily linked to macrophage M1, mast cell resting, T cell CD4 memory activated, and T cell CD4 memory resting and were associated with mast cell activated and mast cell resting in lung squamous cell carcinoma (LUSC). The most promising upstream regulation pathways of ADGRD1 were likely miR-142-5p, miR-93-5p, and miR-17-5p, which were overexpressed and associated with poor prognosis in NSCLC. ADGRD1 and immune-related genes correlated with ADGRD1 were shown to be enriched in "positive regulation of leukocyte activation," "external side of plasma membrane," "receptor ligand activity," and "cytokine-cytokine receptor interaction" pathways. ADGRD1 expression and regulation may be critical in determining NSCLC prognosis.
Collapse
Affiliation(s)
- Meiwen Lv
- Department of Clinical Epidemiology, The First Hospital of China Medical University, 155 Nanjing Street, Heping District, Shenyang 110001, China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health of China Medical University, Shenyang 110122, China
| | - Wen Tian
- Department of Epidemiology, School of Public Health of China Medical University, Shenyang 110122, China
| | - He Yang
- Department of Clinical Epidemiology, The First Hospital of China Medical University, 155 Nanjing Street, Heping District, Shenyang 110001, China
| | - Baosen Zhou
- Department of Clinical Epidemiology, The First Hospital of China Medical University, 155 Nanjing Street, Heping District, Shenyang 110001, China
| |
Collapse
|