1
|
Zhou B, Gan L, Zhou P, Yang T, Tang F, Jin P, Jin P, Chen J. LINC00426 promotes the progression of atherosclerosis by regulating miR-873-5p/SRRM2 axis. Cytokine 2025; 191:156938. [PMID: 40233646 DOI: 10.1016/j.cyto.2025.156938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/13/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Atherosclerosis (AS) is a disease that occurs in the great arteries and is the main cause of cardiovascular disease and death. OBJECTIVE To investigate the clinical significance of LINC00426 in AS and to investigate that LINC00426 regulates PDGF-BB-induced proliferation, migration, invasion and inflammatory response of vascular smooth muscle cells (VSMCs) by modulating miR-873-5p/SRRM2 axis. METHODS The expression of LINC00426 was detected using RT-qPCR. The diagnostic role of LINC00426 in AS was analyzed with ROC curves. CCK-8 assay was used to measure cell proliferation, and transwell assay was used to measure cell migration and invasion ability. The targeted binding relationship between LINC00426 and miR-873-5p, miR-873-5p and SRRM2 was detected using dual-luciferase reporter gene assay. The concentration of proinflammatory factors was detected by using ELISA kit. RESULT The expression of LINC00426 was increased in patients with AS, and LINC00426 had a diagnostic role in AS. In addition, LINC00426 regulated PDGF-BB-induced proliferation, migration, invasion, and inflammation of VSMCs by regulating miR-873-5p/SRRM2 axis. CONCLUSION LINC00426 may function as a biomarker for the diagnosis and treatment of AS.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Cardiology, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie 551700, China
| | - Lu Gan
- Department of Basic Medical Sciences, Bijie Medical College, Bijie 551700, China
| | - Pimo Zhou
- Department of Cardiology, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie 551700, China
| | - Tai Yang
- Department of Cardiology, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie 551700, China
| | - Fang Tang
- Department of Cardiology, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie 551700, China
| | - Peng Jin
- Department of Cardiology, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie 551700, China
| | - Ping Jin
- Department of Cardiology, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie 551700, China
| | - Jiulin Chen
- Department of Cardiology, Qian Xi Nan People's Hospital, Xingyi 562400, China.
| |
Collapse
|
2
|
Wang B, Li T, Zhang F, Miao S, Chen S, Li Y, Zhao Y, Han X, Li X, Zhao M. The efficacy and mechanisms of Maiguanfukang Tablets, a patented herbal-based TCM formula, for the treatment of atherosclerosis: An in vivo experiment based on the network pharmacology. Fitoterapia 2025; 182:106458. [PMID: 40057244 DOI: 10.1016/j.fitote.2025.106458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVE To investigate the efficacy and potential mechanisms of MGFKP on rabbit atherosclerotic models. METHODS The left carotid balloon injury surgery were used to establish the rabbit atherosclerotic model, followed by the administration of MGFKP from the second postoperative for 6 weeks. Left carotid ultrasound and histological analysis were determined to evaluate the anti-atherosclerotic efficacy of MGFKP. Additionally, LC-MS and network pharmacology were conducted to identify the active ingredients of MGFKP and their targets, respectively. Lastly, core targets were selected to validate using immunohistochemical staining, western blot or ELISA. RESULTS The results revealed that the vascular diameters difference, plaque area, plaque thickness, and ratio of vessel lumen to vessel cross-section radius were significantly improved following treatment with MGFKP (P<0.05). 539 ingredients of MGFKP were identified by LC-MS, and 23 ingredients were screened using SwissADME for network pharmacology. After combining the results of PPI and KEGG analyses with published literature, TLR4, NF-κB, IL-1β, and TNF-α were selected for the ensuing analyses. Molecular docking of most compounds showed satisfactory docking energy between TLR4, NF-κB, IL-1β, and TNF-α with their matched compounds. Finally, immunohistochemical analysis of TLR4 and western blot results of NF-κB, TNF-α, and IL-1β demonstrated that these proteins levels were obviously increased in the model group and significantly decreased in MGFKP group (P<0.05). The levels of TNF-α, IL-6, IL-1β were also significantly reduced following MGFKP treatment. CONCLUSIONS MGFKP is a potential drug for the treatment of atherosclerosis, and might suppress the TLR4/NF-κB inflammatory pathway to alleviate atherosclerotic plaque progression.
Collapse
Affiliation(s)
- Baofu Wang
- Department of Integrative Medicine Cardiology, China-Japan Friendship Hospital, Beijing 100700, China; Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Tong Li
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Fachang Zhang
- Tianjin Tongrentang Group CO., LTD, Tianjin 300000, China
| | - Shujie Miao
- Tianjin Tongrentang Group CO., LTD, Tianjin 300000, China
| | - Shiqi Chen
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yang Li
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yizhou Zhao
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiaowan Han
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xianlun Li
- Department of Integrative Medicine Cardiology, China-Japan Friendship Hospital, Beijing 100700, China.
| | - Mingjing Zhao
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
3
|
Qi K, Cao F, Wang J, Wang Y, Li G. miR-652-3p Suppressed the Protective Effects of Isoflurane Against Myocardial Injury in Hypoxia/Reoxygenation by Targeting ISL1. Cardiovasc Toxicol 2024; 24:646-655. [PMID: 38801481 DOI: 10.1007/s12012-024-09870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
This research is concentrated on investigating the role and mechanism of miR-652-3p in the protective effects of isoflurane (ISO) against myocardial ischemia-reperfusion (I/R) injury. H9c2 cells underwent pretreatment with varying concentrations of ISO, and subsequently, a hypoxia/reoxygenation (H/R) model was constructed. The levels of miR-652-3p, ISL LIM homeobox 1 (ISL1), and inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α) were evaluated through reverse transcription polymerase chain reaction (RT-qPCR). Enzyme-linked immunosorbent assay was employed to investigate concentrations of myocardial injury markers, such as creatine kinase-MB (CK-MB) and cardiac troponin I (cTnI). Cell counting kit-8 was used to evaluate cell viability, while flow cytometry was utilized to measure apoptosis. Additionally, a dual luciferase reporter assay was conducted to validate the targeting relationship between ISL1 and miR-652-3p. Herein, we confirmed that the level of miR-652-3p was gradually increased with prolonged hypoxia; nevertheless, this increase was suppressed by ISO pretreatment (P < 0.05). Additionally, ISO pretreatment prevented the decrease in cell viability, increase in apoptosis, and overproduction of IL-6, TNF-α, CK-MB, and cTnI induced by H/R (P < 0.05). However, the inhibitory effects of ISO were counteracted by the increased levels of miR-652-3p (P < 0.05). ISL1 is a potential target of miR-652-3p. H/R induction suppressed ISL1 levels compared to the control, but ISO treatment increased its expression (P < 0.05). Overexpression of ISL1 inhibited the elimination of the protective effect of ISO on myocardial damage induced by the elevation of miR-652-3p (P < 0.05). The findings of this research confirm that miR-652-3p attenuated the protective effect of ISO on cardiomyocytes in myocardial ischemia by targeting ISL1.
Collapse
Affiliation(s)
- Kaikai Qi
- Department of Anesthesiology, The Second Affiliated Hospital of Shandong First Medical University, 366, Taishan Street, Taishan District, Taian, 271000, Shandong, China
| | - Fang Cao
- Department of Orthopedics, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China
| | - Jing Wang
- Operating Room, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China
| | - Yu Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Shandong First Medical University, 366, Taishan Street, Taishan District, Taian, 271000, Shandong, China
| | - Guohua Li
- Department of Anesthesiology, The Second Affiliated Hospital of Shandong First Medical University, 366, Taishan Street, Taishan District, Taian, 271000, Shandong, China.
| |
Collapse
|
4
|
Zheng Z, Li K, Yang Z, Wang X, Shen C, Zhang Y, Lu H, Yin Z, Sha M, Ye J, Zhu L. Transcriptomic analysis reveals molecular characterization and immune landscape of PANoptosis-related genes in atherosclerosis. Inflamm Res 2024; 73:961-978. [PMID: 38587531 DOI: 10.1007/s00011-024-01877-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease characterized by abnormal lipid deposition in the arteries. Programmed cell death is involved in the inflammatory response of atherosclerosis, but PANoptosis, as a new form of programmed cell death, is still unclear in atherosclerosis. This study explored the key PANoptosis-related genes involved in atherosclerosis and their potential mechanisms through bioinformatics analysis. METHODS We evaluated differentially expressed genes (DEGs) and immune infiltration landscape in atherosclerosis using microarray datasets and bioinformatics analysis. By intersecting PANoptosis-related genes from the GeneCards database with DEGs, we obtained a set of PANoptosis-related genes in atherosclerosis (PANoDEGs). Functional enrichment analysis of PANoDEGs was performed and protein-protein interaction (PPI) network of PANoDEGs was established. The machine learning algorithms were used to identify the key PANoDEGs closely linked to atherosclerosis. Receiver operating characteristic (ROC) analysis was used to assess the diagnostic potency of key PANoDEGs. CIBERSORT was used to analyze the immune infiltration patterns in atherosclerosis, and the Spearman method was used to study the relationship between key PANoDEGs and immune infiltration abundance. The single gene enrichment analysis of key PANoDEGs was investigated by GSEA. The transcription factors and target miRNAs of key PANoDEGs were predicted by Cytoscape and online database, respectively. The expression of key PANoDEGs was validated through animal and cell experiments. RESULTS PANoDEGs in atherosclerosis were significantly enriched in apoptotic process, pyroptosis, necroptosis, cytosolic DNA-sensing pathway, NOD-like receptor signaling pathway, lipid and atherosclerosis. Four key PANoDEGs (ZBP1, SNHG6, DNM1L, and AIM2) were found to be closely related to atherosclerosis. The ROC curve analysis demonstrated that the key PANoDEGs had a strong diagnostic potential in distinguishing atherosclerotic samples from control samples. Immune cell infiltration analysis revealed that the proportion of initial B cells, plasma cells, CD4 memory resting T cells, and M1 macrophages was significantly higher in atherosclerotic tissues compared to normal tissues. Spearman analysis showed that key PANoDEGs showed strong correlations with immune cells such as T cells, macrophages, plasma cells, and mast cells. The regulatory networks of the four key PANoDEGs were established. The expression of key PANoDEGs was verified in further cell and animal experiments. CONCLUSIONS This study evaluated the expression changes of PANoptosis-related genes in atherosclerosis, providing a reference direction for the study of PANoptosis in atherosclerosis and offering potential new avenues for further understanding the pathogenesis and treatment strategies of atherosclerosis.
Collapse
Affiliation(s)
| | - Kaiyuan Li
- Dalian Medical University, Dalian, 116000, China
| | - Zhiyuan Yang
- Dalian Medical University, Dalian, 116000, China
| | - Xiaowen Wang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cheng Shen
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yubin Zhang
- Dalian Medical University, Dalian, 116000, China
| | - Huimin Lu
- Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, 225399, China
| | - Zhifeng Yin
- Jiangsu Hanjiang Biotechnology Co., LTD, Taizhou, 225399, China
| | - Min Sha
- Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, 225399, China.
| | - Jun Ye
- Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, 225399, China.
| | - Li Zhu
- Dalian Medical University, Dalian, 116000, China.
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, 225399, China.
| |
Collapse
|
5
|
Guo J, Chen S, Zhang Y, Liu J, Jiang L, Hu L, Yao K, Yu Y, Chen X. Cholesterol metabolism: physiological regulation and diseases. MedComm (Beijing) 2024; 5:e476. [PMID: 38405060 PMCID: PMC10893558 DOI: 10.1002/mco2.476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/27/2024] Open
Abstract
Cholesterol homeostasis is crucial for cellular and systemic function. The disorder of cholesterol metabolism not only accelerates the onset of cardiovascular disease (CVD) but is also the fundamental cause of other ailments. The regulation of cholesterol metabolism in the human is an extremely complex process. Due to the dynamic balance between cholesterol synthesis, intake, efflux and storage, cholesterol metabolism generally remains secure. Disruption of any of these links is likely to have adverse effects on the body. At present, increasing evidence suggests that abnormal cholesterol metabolism is closely related to various systemic diseases. However, the exact mechanism by which cholesterol metabolism contributes to disease pathogenesis remains unclear, and there are still unknown factors. In this review, we outline the metabolic process of cholesterol in the human body, especially reverse cholesterol transport (RCT). Then, we discuss separately the impact of abnormal cholesterol metabolism on common diseases and potential therapeutic targets for each disease, including CVD, tumors, neurological diseases, and immune system diseases. At the end of this review, we focus on the effect of cholesterol metabolism on eye diseases. In short, we hope to provide more new ideas for the pathogenesis and treatment of diseases from the perspective of cholesterol.
Collapse
Affiliation(s)
- Jiarui Guo
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Silong Chen
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Ying Zhang
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
- Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Jinxia Liu
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Luyang Jiang
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Lidan Hu
- National Clinical Research Center for Child HealthThe Children's HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Ke Yao
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Yibo Yu
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Xiangjun Chen
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
- Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| |
Collapse
|
6
|
Wang H, Wang L, Tan Y, Fang C, Li C, Zhang L. Identification of miRNAs Involved in Intracranial Aneurysm Rupture in Cigarette-Smoking Patients. Neurol Ther 2023; 12:2101-2119. [PMID: 37792217 PMCID: PMC10630182 DOI: 10.1007/s40120-023-00547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023] Open
Abstract
INTRODUCTION Smoking is an independent risk factor for the formation and rupture of intracranial aneurysms (IA). However, the underlying mechanism remains unclear. METHODS In this study, we performed miRNA sequencing on plasma from 10 smoking patients with IA, 10 non-smoking patients with IA, and 10 healthy controls. The differentially expressed miRNAs (DE miRNAs) between smoking and non-smoking patients with IA were identified. Functional and pathway enrichment analysis is employed to investigate the potential functions of those DE miRNA target genes. The correlations with the clinical parameters were assessed using receiver operating characteristic curve (ROC) analysis. RESULTS In total, we identified 428 DE miRNAs. Functional enrichment analysis showed the target genes were significantly enriched in biological aspects related to cell characteristics, such as cell cycle, cell differentiation, and cell migration. Pathway analysis showed DE miRNAs mainly enriched in the PI3K-Akt signaling pathway, Focal adhesion, and JAK-STAT signaling pathway. The expressions of miR-574-5p, miR-151a-3p, and miR-652-3p correlated well with aneurysm parameters. The AUC of miR-574-5p, miR-151a-3p, and miR-652-3p were 97%, 92%, and 99%, respectively. CONCLUSION Our study indicated that smoking significantly altered the plasma miRNA profile in patients with IA. The expression of miR-574-5p, miR-151a-3p, and miR-652-3p correlated with aneurysm parameters, which may play a significant role in the formation and rupture of IA.
Collapse
Affiliation(s)
- Hanbin Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei, China
| | - Luxuan Wang
- Department of Neurological Function Examination, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei, China
| | - Yanli Tan
- Department of Pathology, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei, China
| | - Chuan Fang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei, China.
- Postdoctoral Research Station of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei, China.
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China.
| | - Chunhui Li
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei, China.
| | - Lijian Zhang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei, China.
- Postdoctoral Research Station of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei, China.
| |
Collapse
|
7
|
Li Q, Chai Y, Li W, Guan L, Fan Y, Chen Y. Mechanism of Simiao Decoction in the treatment of atherosclerosis based on network pharmacology prediction and molecular docking. Medicine (Baltimore) 2023; 102:e35109. [PMID: 37682164 PMCID: PMC10489409 DOI: 10.1097/md.0000000000035109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
To explore the molecular mechanism of Simiao Decoction (SMD) intervening atherosclerosis (AS). The main components and potential mechanisms of SMD remain unknown. This study aims to initially clarify the potential mechanism of SMD in the treatment of AS based on network pharmacology and molecular docking techniques. The principal components and corresponding protein targets of SMD were searched on Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and the compound-target network was constructed by Cytoscape3.9.1. AS targets were searched on DrugBank, OMIM, and TTD databases. The intersection of compound target and disease target was obtained and the coincidence target was imported into STRING database to construct a protein-protein interaction network. We further performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis on the targets. The molecular docking method was used to verify the interaction between core components of SMD and targets. We created the active compounds-targets network and the active compounds-AS-targets network based on the network database containing Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, DrugBank, OMIM, and TTD. We discovered that the therapy of AS with SMD involves 3 key substances-quercetin, kaempferol, and luteolin-as well as 5 crucial targets-ALB, AKT1, TNF, IL6, and TP53. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that the shared targets involved a number of signaling pathways, including the advanced glycosylation end product-receptor of AGE signaling pathway in diabetic complications, Hepatitis B, Lipid and atherosclerosis, Chemical Carcinogenesis-Receptor Activation, and Pathways in Cancer. The molecular docking demonstrated that the binding energies of quercetin, kaempferol, and luteolin with 5 important targets were favorable. This study reveals the active ingredients and potential molecular mechanism of SMD in the treatment of AS, and provides a reference for subsequent basic research.
Collapse
Affiliation(s)
- Qian Li
- Guizhou University of Traditional Chinese Medicine, Guiyang City, China
| | - Yihui Chai
- Guizhou University of Traditional Chinese Medicine, Guiyang City, China
| | - Wen Li
- Guizhou University of Traditional Chinese Medicine, Guiyang City, China
| | - Liancheng Guan
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang City, China
| | - Yizi Fan
- Chongqing High-tech Zone People’s Hospital, Chongqing City, China
| | - Yunzhi Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang City, China
| |
Collapse
|
8
|
Han J, Cui X, Yuan T, Yang Z, Liu Y, Ren Y, Wu C, Bian Y. Plasma-derived exosomal let-7c-5p, miR-335-3p, and miR-652-3p as potential diagnostic biomarkers for stable coronary artery disease. Front Physiol 2023; 14:1161612. [PMID: 37228823 PMCID: PMC10203605 DOI: 10.3389/fphys.2023.1161612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Objectives: Circulating exosomal microRNAs (miRNAs) have been identified as promising biomarkers for diagnosis of cardiovascular diseases. Nevertheless, the diagnostic potential of miRNAs in circulating exosomes for stable coronary artery disease (SCAD) remains unclear. We aim here to analyze the exosomal differentially expressed miRNAs (DEmiRNAs) in plasma of SCAD patients and investigate their diagnostic potential as SCAD biomarkers. Methods: Plasma was collected from SCAD patients and healthy controls, and exosomes were isolated by ultracentrifugation. Exosomal DEmiRNAs were analyzed by small RNA sequencing and were further validated by quantitative real-time PCR (qRT-PCR) in a larger set of plasma samples. Relationships between plasma exosomal let-7c-5p, miR-335-3p, miR-652-3p, genders and Gensini Scores in patients with SCAD were analyzed using correlation analyses. Moreover, we conducted receiver operating characteristic (ROC) curves for these DEmiRNAs and analyzed their possible functions and signaling pathways. Results: Vesicles isolated from plasma displayed all characteristics of exosomes. In the small RNA sequencing study, a total of 12 DEmiRNAs were identified, among which seven were verified to be statistically significant by qRT-PCR. The areas under the ROC curves of exosomal let-7c-5p, miR-335-3p, and miR-652-3p were 0.8472, 0.8029, and 0.8009, respectively. Exosomal miR-335-3p levels were positively correlated with Gensini scores of patients with SCAD. Bioinformatics analysis revealed that these DEmiRNAs may be involved in the pathogenesis of SCAD. Conclusion: Our findings indicated that plasma exosomal let-7c-5p, miR-335-3p, and miR-652-3p can be used as promising biomarkers for diagnosis of SCAD. In addition, plasma exosomal miR-335-3p levels coordinated with severity of SCAD.
Collapse
Affiliation(s)
- Jian Han
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaogang Cui
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Tianqi Yuan
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Zhiming Yang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yue Liu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Yajuan Ren
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Changxin Wu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Yunfei Bian
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|