1
|
Wu Z, Zhang Y, Zhou C, Zhang G, He L, Tang M. Unraveling the role of HIF-1α in allergic rhinitis: A key regulator of epithelial barrier integrity via PI3K pathway. Tissue Cell 2025; 95:102898. [PMID: 40187003 DOI: 10.1016/j.tice.2025.102898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/13/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Allergic rhinitis (AR) ranks among the most prevalent nasal disorders worldwide. Epithelial cells are the initial physiological barrier against allergen entry, and play a vital protective role. The precise role of hypoxia-inducible factor 1-alpha (HIF-1α) inhibitors in nasal epithelial cell injury in AR is still unknown, despite their confirmed association with nasal inflammation in AR models. METHODS An interleukin-13 (IL-13)-induced AR cell model has been employed to investigate how HIF-1α inhibition impacts nasal epithelial cells (JME/CF15). Cell viability, inflammatory cytokines, mucosal remodeling factors, and the tight junction protein zonula occludens-1 (ZO-1) were evaluated using cell counting kit-8, enzyme-linked immunosorbent assay, Western blot, and immunofluorescence. The influences of phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways have been examined. RESULTS PX-478 (a HIF-1α inhibitor) alleviated IL-13-induced epithelial barrier dysfunction by upregulating ZO-1 and reducing levels of inflammatory and remodeling factors. Mechanistically, HIF-1α activated the PI3K/MEK signaling pathway, exacerbating epithelial barrier disruption and inflammatory responses. Knockdown of HIF-1α suppressed PI3K pathway activation, mitigating inflammation and restoring barrier integrity. However, these protective effects were reversed by a PI3K agonist. CONCLUSIONS HIF-1α aggravates AR by promoting inflammation, mucosal remodeling, and epithelial barrier dysfunction via PI3K pathway activation. This finding not only enriches our understanding of AR pathophysiology but also highlights HIF-1α and its downstream signaling pathways as prospective therapeutic targets for AR.
Collapse
Affiliation(s)
- Zhuo Wu
- Department of Otolaryngology Head and Neck surgery, Women and Children's Hospital of Ningbo University, China
| | - Yongbo Zhang
- Department of Otolaryngology Head and Neck surgery, Women and Children's Hospital of Ningbo University, China
| | - Changzeng Zhou
- Department of Otolaryngology Head and Neck surgery, Women and Children's Hospital of Ningbo University, China
| | - Guxuan Zhang
- Department of Otolaryngology Head and Neck surgery, Women and Children's Hospital of Ningbo University, China
| | - Lei He
- Department of Pediatric Internal Medicine, Women and Children's Hospital of Ningbo University, China
| | - Ming Tang
- Department of Otolaryngology Head and Neck surgery, Women and Children's Hospital of Ningbo University, China.
| |
Collapse
|
2
|
Li B, Jiao K, Wang B, Gou H, Chai C, Lu Y, Liu J. Sulfur Dioxide Alleviates Organ Damage and Inflammatory Response in Cecal Ligation and Puncture-Induced Sepsis Rat. Mol Biotechnol 2025; 67:1908-1923. [PMID: 38829503 DOI: 10.1007/s12033-024-01168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/02/2024] [Indexed: 06/05/2024]
Abstract
The study aimed to elucidate the mechanisms by which sulfur dioxide (SO2) alleviates organ damage during sepsis using RNA-Seq technology. A cecal ligation and puncture (CLP) sepsis model was established in rats, and the effects of SO2 treatment on organ damage were assessed through histopathological examinations. RNA-Seq was performed to analyze differentially expressed genes (DEGs), and subsequent functional annotations and enrichment analyses were conducted. The CLP model successfully induced sepsis symptoms in rats. Histopathological evaluation revealed that SO2 treatment considerably reduced tissue damage across the heart, kidney, liver, and lungs. RNA-Seq identified 950 DEGs between treated and untreated groups, with significant enrichment in genes associated with ribosomal and translational activities, amino acid metabolism, and PI3K-Akt signaling. Furthermore, gene set enrichment analysis (GSEA) showcased enrichments in pathways related to transcriptional regulation, cellular migration, proliferation, and calcium-ion binding. In conclusion, SO2 effectively mitigates multi-organ damage induced by CLP sepsis, potentially through modulating gene expression patterns related to critical biological processes and signaling pathways. These findings highlight the therapeutic promise of SO2 in managing sepsis-induced organ damage.
Collapse
Affiliation(s)
- Bin Li
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 73000, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Keping Jiao
- Department of Neurology, Gansu Provincial Hospital, Lanzhou, 73000, Gansu, China
| | - Binsheng Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Hongzhong Gou
- Department of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Chen Chai
- Department of General Surgery, The People's Hospital of Suzhou New District, Suzhou, 215000, Jiangsu, China
| | - Yan Lu
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 73000, Gansu, China
| | - Jian Liu
- Department of Intensive Care Medicine, The First Clinical Medical College of Lanzhou University, Lanzhou, 73000, Gansu, China.
- Gansu Province Maternal and Child Health Hospital/Gansu Province Central Hospital, Lanzhou, 73000, Gansu, China.
- , No.1 Donggang West Road, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
3
|
Ma J, Zhong X, Li Z, Jiang Y, Jiang Y, Liu X, Hu Y, Yang Z, Zhai G. Di-Dang-Tang suppresses ferroptosis in the hippocampal CA1 region by targeting PGK1/NRF2/GPX4 signaling pathway to exert neuroprotection in vascular dementia. Int Immunopharmacol 2025; 150:114233. [PMID: 39946772 DOI: 10.1016/j.intimp.2025.114233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 03/03/2025]
Abstract
Increasing evidence has emphasized the crucial role of ferroptosis in the pathogenesis of Vascular dementia (VaD). Di-Dang-Tang (DDT) has the effects of removing blood stasis according to the theory of Traditional Chinese medicine (TCM), while its effects on ferroptosis and mechanisms remain unclear. To elucidate whether the neuroprotective effect of DDT treatment is associated with ferroptosis mediated by the Phosphoglycerate kinase 1 (PGK1)/ Nuclear Factor Erythroid 2-related factor (NRF2)/ Glutathione Peroxidase 4 (GPX4) signaling pathway in the hippocampal CA1 region of rats with the 2-vessel occlusion (2VO) model, we conducted a series of experiments. Nissl staining, HE staining and FJB staining were used to assess the effects of DDT on the degeneration and apoptosis of neurons in the CA1 region of the hippocampus. DDT's suppression on ferroptosis and its protective effects were also evaluated by ELISA and DHE fluorescence. Immunofluorescence assay, immunohistochemistry examination, and western blot analysis further validated DDT's regulatory effects on ferroptosis via PGK1/NRF2/GPX4 pathway. Additionally, we explored the key mediating role of PGK1 in the DDT treatment of VaD by overexpressing PGK1 using AAV-OE-PGK1 plasmid injection. DDT significantly attenuated neuronal apoptosis and degeneration in CA1 region and ameliorated cognitive dysfunctions in VaD rats. DDT inhibited ferroptosis in this brain region, as evidenced by an up-regulation of GPX4 and SLC7A11, and a decline in ferroptosis-related indices. Further, DDT activated protein expression of the PGK1/NRF2/GPX4 pathway, alleviating the lipid peroxidation. Notably, the inhibition of ferroptosis by DDT was achieved by suppression of the PGK1 axis signaling pathway.
Collapse
MESH Headings
- Animals
- Ferroptosis/drug effects
- NF-E2-Related Factor 2/metabolism
- Dementia, Vascular/drug therapy
- Dementia, Vascular/metabolism
- Dementia, Vascular/pathology
- Signal Transduction/drug effects
- Male
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Phosphoglycerate Kinase/metabolism
- Phosphoglycerate Kinase/genetics
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Rats
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/pathology
- CA1 Region, Hippocampal/metabolism
- Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
- Rats, Sprague-Dawley
- Disease Models, Animal
Collapse
Affiliation(s)
- Junjie Ma
- School of Intergrative Medicine, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing City, Jiangsu 210000, China
| | - Xinxin Zhong
- School of Intergrative Medicine, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing City, Jiangsu 210000, China
| | - Zhiyuan Li
- School of Intergrative Medicine, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing City, Jiangsu 210000, China
| | - Yongxia Jiang
- Lianyungang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, No. 160, Chaoyang Middle Road, Haizhou District, Lianyungang City, Jiangsu 222004, China
| | - Yongqu Jiang
- Lianyungang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, No. 160, Chaoyang Middle Road, Haizhou District, Lianyungang City, Jiangsu 222004, China
| | - Xiaoli Liu
- Lianyungang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, No. 160, Chaoyang Middle Road, Haizhou District, Lianyungang City, Jiangsu 222004, China
| | - Yue Hu
- School of Intergrative Medicine, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing City, Jiangsu 210000, China
| | - Zhou Yang
- Lianyungang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, No. 160, Chaoyang Middle Road, Haizhou District, Lianyungang City, Jiangsu 222004, China
| | - Guojie Zhai
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, No. 2666, Ludang Road, Wujiang District, Suzhou City, Jiangsu 215200, China.
| |
Collapse
|
4
|
Ulaş N, Üstündağ H, Özkanlar S, Erbaş E, Kara A, Özkanlar Y. D-carvone attenuates LPS-induced acute lung injury via TLR4/NF-κB and Nrf2/HO-1 signaling pathways in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04024-y. [PMID: 40116872 DOI: 10.1007/s00210-025-04024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/05/2025] [Indexed: 03/23/2025]
Abstract
Acute lung injury (ALI) is a severe respiratory disorder associated with high morbidity and mortality. Lipopolysaccharide (LPS) is widely used to induce ALI in animal models. D-carvone, a natural monoterpene, has been reported to possess anti-inflammatory and antioxidant properties. This study aimed to investigate the protective effects of D-carvone on LPS-induced ALI in rats. Thirty-six male rats were randomly divided into six groups (n = 6): control, D-carvone (10 mg/kg and 20 mg/kg p.o.), LPS (10 mg/kg E. coli lipopolysaccharide i.p.), and LPS + D-carvone (LPS with either 10 or 20 mg/kg D-carvone). D-carvone was administered orally once daily for 10 days. On day 10, sepsis was induced with LPS administration, and samples were collected after 6 h under deep anesthesia. LPS administration caused significant lung injury, as evidenced by increased histopathological scores, upregulation of pro-inflammatory markers (TLR4, IL-1β, TNF-α), and oxidative stress (increased MDA, decreased GSH and SOD). Treatment with D-carvone at both doses significantly attenuated these changes. D-carvone downregulated pro-inflammatory markers, upregulated anti-inflammatory (NRF2) and anti-apoptotic (Bcl-2) proteins, and reduced the levels of pro-inflammatory cytokines (IL-1β, TNF-α, IL-8) in lung tissues. In conclusion, D-carvone protects against LPS-induced ALI in rats, possibly through its anti-inflammatory and antioxidant properties. These findings suggest that D-carvone could be a potential therapeutic candidate for preventing and treating ALI.
Collapse
Affiliation(s)
- Nergis Ulaş
- Department of Internal Medicine, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Hilal Üstündağ
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey.
| | - Seçkin Özkanlar
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Elif Erbaş
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Adem Kara
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Yunusemre Özkanlar
- Department of Internal Medicine, Faculty of Veterinary, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
5
|
Cordiano R, Caserta S, Minciullo PL, Allegra A, Gangemi S. Anthraquinones and Aloe Vera Extracts as Potential Modulators of Inflammaging Mechanisms: A Translational Approach from Autoimmune to Onco-Hematological Diseases. Molecules 2025; 30:1251. [PMID: 40142026 PMCID: PMC11944353 DOI: 10.3390/molecules30061251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Inflammaging is a chronic, low-grade inflammatory state that contributes to age-related diseases, including cardiovascular disorders, osteoporosis, neurodegeneration, and cancer. This process involves immunosenescence, oxidative stress, and immune aging, all of which contribute to the breakdown of immune tolerance and the onset of autoimmune disorders. Aloe vera (AV) has recently gained attention for its immunomodulatory, anti-inflammatory, and antioxidant properties. This review explores the effects of AV extracts and anthraquinones (e.g., aloe-emodin, emodin, aloin) on key inflammaging-driven mechanisms in autoimmunity. Our analysis highlights AV's ability to regulate hormone balance, autoantibody production, and cytokine/chemokine signaling (such as interleukin-1β, tumor necrosis factor-α, and interferon-γ). It modulates inflammatory pathways, including mitogen-activated protein kinases (MAPKs) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), thereby inhibiting nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) activation. Additionally, AV enhances antioxidant defenses and restores immune balance by reducing Th1/Th17 subsets while promoting Th2-mediated regulation. Notably, AV also modulates inflammasome-mediated mechanisms and counteracts immunosenescence, which is driven by autophagy-related processes. These effects position AV as a potential integrative approach to mitigating inflammaging-driven autoimmunity. Furthermore, as inflammaging is increasingly recognized in onco-hematological diseases, AV-based strategies may offer novel therapeutic avenues. Future studies should focus on clinical validation, optimizing formulations, and expanding applications to broader age-related and immune-mediated disorders.
Collapse
Affiliation(s)
- Raffaele Cordiano
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.C.); (S.G.)
| | - Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| | - Paola Lucia Minciullo
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.C.); (S.G.)
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| | - Sebastiano Gangemi
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.C.); (S.G.)
| |
Collapse
|
6
|
Wen Y, Liu Q, Xu W. Identification of amino acid metabolism‑related genes as diagnostic and prognostic biomarkers in sepsis through machine learning. Exp Ther Med 2025; 29:36. [PMID: 39776890 PMCID: PMC11705229 DOI: 10.3892/etm.2024.12786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/14/2024] [Indexed: 01/11/2025] Open
Abstract
Previous research has highlighted the critical role of amino acid metabolism (AAM) in the pathophysiology of sepsis. The present study aimed to explore the potential diagnostic and prognostic value of AAM-related genes (AAMGs) in sepsis, as well as their underlying molecular mechanisms. Gene expression profiles from the Gene Expression Omnibus (GSE65682, GSE185263 and GSE154918 datasets) were analyzed. Based on weighted gene co-expression network analysis and machine learning algorithms, hub AAMGs were identified in the GSE65682 database. Subsequently, hub AAMGs were evaluated for their expression levels and diagnostic and prognostic significance in sepsis, as well as their interactions with regulatory pathways and role in immune cell infiltration. Additionally, trends in AAMG expression were validated using clinical samples, and their functions in sepsis were confirmed through an in vitro model. In total, four AAMGs were identified, two of which, methionine synthase (MTR) and methionine-R-isomerase 1 (MRI1), demonstrated significant differential expression in the GSE65682, GSE185263 and GSE154918 datasets, which was further validated using clinical samples. A diagnostic nomogram based on MTR and MRI1 expression demonstrated strong diagnostic effectiveness across the three aforementioned databases. Moreover, the expression of both genes were negatively correlated with sepsis prognosis and showed stratified prognostic capabilities. Newly identified pathways included KRAS and IL-2/STAT5 signaling. MTR and MRI1 negatively correlated with the infiltration of inflammatory cells, such as M1 macrophages and neutrophils, and positively correlated with anti-inflammatory cells, such as CD8+ T and dendritic cells. In vitro experiments further demonstrated that overexpression of MTR could mitigate the inhibition of cloning and proliferation induced by LPS and ATP in RAW 264.7 cells. These findings highlighted the potential of MTR and MRI1 as biomarkers for diagnosing and prognosticating sepsis, potentially acting through the regulation of methionine in the pathophysiology of this disease. The present study provided new insights into the role of AAM in the mechanisms underlying sepsis and in the potential development of future targeted therapies.
Collapse
Affiliation(s)
- Ye Wen
- Department of Emergency, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei 437199, P.R. China
| | - Qian Liu
- Department of Emergency, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei 437199, P.R. China
| | - Wei Xu
- Department of Emergency, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei 437199, P.R. China
| |
Collapse
|
7
|
Su J, Deng X, Hu S, Lin X, Xie L, Ye H, Lin C, Zhou F, Wu S, Zheng L. Aloe-emodin plus TIENAM ameliorate cecal ligation and puncture-induced sepsis in mice by attenuating inflammation and modulating microbiota. Front Microbiol 2024; 15:1491169. [PMID: 39726955 PMCID: PMC11669710 DOI: 10.3389/fmicb.2024.1491169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Despite the high sepsis-associated mortality, effective and specific treatments remain limited. Using conventional antibiotics as TIENAM (imipenem and cilastatin sodium for injection, TIE) is challenging due to increasing bacterial resistance, diminishing their efficacy and leading to adverse effects. We previously found that aloe-emodin (AE) exerts therapeutic effects on sepsis by reducing systemic inflammation and regulating the gut microbiota. Here, we investigated whether administering AE and TIE post-sepsis onset, using a cecal ligation and puncture (CLP)-induced sepsis model, extends survival and improves physiological functions. Survival rates, inflammatory cytokines, tissue damage, immune cell populations, ascitic fluid microbiota, and key signaling pathways were assessed. Combining AE and TIE significantly enhanced survival rates, and reduced inflammation and bacterial load in septic mice, indicating potent antimicrobial properties. Moreover, substantial improvements in survival rates of AE + TIE-treated mice (10% to 60%) within 168 h were observed relative to the CLP group. This combination therapy also effectively modulated inflammatory marker (interleukin [IL]-6, IL-1β, and tumor necrosis factor [TNF]-α) levels and immune cell counts by decreasing those of B, NK, and TNFR2+ Treg cells, while increasing that of CD8+ T cells; alleviated tissue damage; reduced bacterial load in the peritoneal cavity; and suppressed the NF-κB signaling pathway. We also observed a significantly altered peritoneal cavity microbiota composition post-treatment, characterized by reduced pathogenic bacteria (Bacteroides) abundance. Our findings underscore the potential of AE + TIE in treating sepsis, and encourage further research and possible clinical implementations to surmount the limitations of TIE and amplify the therapeutic potential of AE.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiaohui Deng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Shan Hu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xinrui Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Lian Xie
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Hui Ye
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Congfan Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Liling Zheng
- First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
8
|
Yang D, Ge T, Zhou J, Li H, Zhang Y. Aloe-emodin alleviates inflammatory bowel disease in mice by modulating intestinal microbiome homeostasis via the IL-4/IL-13 axis. Heliyon 2024; 10:e34932. [PMID: 39157379 PMCID: PMC11328045 DOI: 10.1016/j.heliyon.2024.e34932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Inflammatory bowel disease (IBD) is a global health concern. Aloe-emodin (AE) has diverse pharmacological benefits, including anti-inflammatory effects. However, its role in IBD remains unclear, prompting our investigation of its regulatory effects and mechanisms in an IBD mouse model. Methods We studied the therapeutic efficacy of AE in alleviating symptoms and modulating cytokine secretion in a murine model of dextran sulfate sodium (DSS)-induced colitis. BALB/c mice were administered DSS to induce colitis and were subsequently treated with varying doses of AE. Changes in body weight, fecal lipocalin-2 (LCN2) levels, colon tissue histology, and serum cytokine concentrations were evaluated to assess the effects of AE treatment. Additionally, 16 S rRNA sequencing was used to analyze alterations in the composition of the gut microbiota following AE intervention. Finally, the database was used to analyze the signaling pathways associated with IBD in AE and to detect the expression levels of interleukin (IL)-4 pathway using real-time quantitative reverse transcription PCR. Exogenous IL-4 was used in rescue experiments to observe its effects on the disease process of IBD under AE regulation. Results AE treatment resulted in a dose-dependent mitigation of weight loss, reduction in fecal LCN2 levels, and amelioration of histological damage in DSS-induced colitis in mice. The levels of superoxide dismutase and catalase increased, whereas malondialdehyde decreased following AE treatment, indicating a dose-dependent alleviation of colitis symptoms. Furthermore, AE administration attenuated the secretion of pro-inflammatory cytokines, including IL-17, tumor necrosis factor-alpha (TNF-α), and chemokine ligand 1, while promoting the expression of anti-inflammatory cytokines IL-4 and IL-13. Analysis of the gut microbiota revealed that AE effectively suppressed the overgrowth of colitis-associated bacterial species and restored microbial homeostasis. Finally, we found that overexpression of IL-4 was able to reverse the therapeutic effect of AE for DSS-induced IBD. Conclusion AE shows promise in alleviating colitis severity, influencing inflammatory cytokines, and modulating the gut microbiota in an IBD mouse model via the IL-4/IL-13 pathway, suggesting its potential as a natural IBD remedy.
Collapse
Affiliation(s)
| | | | - Jingyi Zhou
- Department of Anorectal Surgery, The First People's Hospital of Lianyungang, NO.6 Zhenhua East Road, Haizhou District, Lianyungang, 222061, Jiangsu, China
| | - Huazhuan Li
- Department of Anorectal Surgery, The First People's Hospital of Lianyungang, NO.6 Zhenhua East Road, Haizhou District, Lianyungang, 222061, Jiangsu, China
| | - Yonggang Zhang
- Department of Anorectal Surgery, The First People's Hospital of Lianyungang, NO.6 Zhenhua East Road, Haizhou District, Lianyungang, 222061, Jiangsu, China
| |
Collapse
|
9
|
Srdić T, Đurašević S, Lakić I, Ružičić A, Vujović P, Jevđović T, Dakić T, Đorđević J, Tosti T, Glumac S, Todorović Z, Jasnić N. From Molecular Mechanisms to Clinical Therapy: Understanding Sepsis-Induced Multiple Organ Dysfunction. Int J Mol Sci 2024; 25:7770. [PMID: 39063011 PMCID: PMC11277140 DOI: 10.3390/ijms25147770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Sepsis-induced multiple organ dysfunction arises from the highly complex pathophysiology encompassing the interplay of inflammation, oxidative stress, endothelial dysfunction, mitochondrial damage, cellular energy failure, and dysbiosis. Over the past decades, numerous studies have been dedicated to elucidating the underlying molecular mechanisms of sepsis in order to develop effective treatments. Current research underscores liver and cardiac dysfunction, along with acute lung and kidney injuries, as predominant causes of mortality in sepsis patients. This understanding of sepsis-induced organ failure unveils potential therapeutic targets for sepsis treatment. Various novel therapeutics, including melatonin, metformin, palmitoylethanolamide (PEA), certain herbal extracts, and gut microbiota modulators, have demonstrated efficacy in different sepsis models. In recent years, the research focus has shifted from anti-inflammatory and antioxidative agents to exploring the modulation of energy metabolism and gut microbiota in sepsis. These approaches have shown a significant impact in preventing multiple organ damage and mortality in various animal sepsis models but require further clinical investigation. The accumulation of this knowledge enriches our understanding of sepsis and is anticipated to facilitate the development of effective therapeutic strategies in the future.
Collapse
Affiliation(s)
- Tijana Srdić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Siniša Đurašević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Iva Lakić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Aleksandra Ružičić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Predrag Vujović
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tanja Jevđović
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tamara Dakić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Jelena Đorđević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tomislav Tosti
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sofija Glumac
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (S.G.); (Z.T.)
| | - Zoran Todorović
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (S.G.); (Z.T.)
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| |
Collapse
|
10
|
Liu Y, Ji T, Jiang H, Chen M, Liu W, Zhang Z, He X. Emodin alleviates intestinal ischemia-reperfusion injury through antioxidant stress, anti-inflammatory responses and anti-apoptosis effects via Akt-mediated HO-1 upregulation. J Inflamm (Lond) 2024; 21:25. [PMID: 38982499 PMCID: PMC11232135 DOI: 10.1186/s12950-024-00392-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/08/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Intestinal ischemia-reperfusion (I/R) injury is a severe vascular emergency. Previous research indicated the protective effects of Emodin on I/R injury. Our study aims to explore the effect of Emodin on intestinal I/R (II/R) injury and elucidate the underlying mechanisms. METHODS C57BL/6 mice and Caco-2 cells were used for in vivo and in vitro studies. We established an animal model of II/R injury by temporarily occluding superior mesenteric artery. We constructed an oxygen-glucose deprivation/reoxygenation (OGD/R) cell model using a hypoxia-reoxygenation incubator. Different doses of Emodin were explored to determine the optimal therapeutic dose. Additionally, inhibitors targeting the protein kinase B (Akt) or Heme oxygenase-1 (HO-1) were administered to investigate their potential protective mechanisms. RESULTS Our results demonstrated that in animal experiments, Emodin mitigated barrier disruption, minimized inflammation, reduced oxidative stress, and inhibited apoptosis. When Akt or HO-1 was inhibited, the protective effect of Emodin was eliminated. Inhibiting Akt also reduced the level of HO-1. In cell experiments, Emodin reduced inflammation and apoptosis in the OGD/R cell model. Additionally, when Akt or HO-1 was inhibited, the protective effect of Emodin was weakened. CONCLUSIONS Our findings suggest that Emodin may protect the intestine against II/R injury through the Akt/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Yinyin Liu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, East Lake Road, Wuhan, Hubei, 430071, China
| | - Tuo Ji
- Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, China
| | - Haixing Jiang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, East Lake Road, Wuhan, Hubei, 430071, China
| | - Meng Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, East Lake Road, Wuhan, Hubei, 430071, China
- Department of Anesthesiology, Hubei Maternal and Child Health Hospital, Wuhan, Hubei, 430070, China
| | - Wanli Liu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, East Lake Road, Wuhan, Hubei, 430071, China
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, East Lake Road, Wuhan, Hubei, 430071, China.
| | - Xianghu He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, East Lake Road, Wuhan, Hubei, 430071, China.
- Department of Anesthesiology, Jiayu Hospital, Zhongnan Hospital of Wuhan University, Xianning, Hubei, 437200, China.
| |
Collapse
|
11
|
Cheng X, Zhu Y, Huang J, Li Y, Jiang X, Yang Q. A neutral polysaccharide from Persicaria hydropiper (L.) Spach ameliorates lipopolysaccharide-induced intestinal barrier injury via regulating the gut microbiota and modulating AKT/PI3K/mTOR and MAPK signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117403. [PMID: 37952732 DOI: 10.1016/j.jep.2023.117403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Persicaria hydropiper (L.) Spach, a herb that is prevalent across Asia and Europe, finds utility as both a culinary ingredient and medicinal herb. In China, P. hydropiper decoction is commonly employed to alleviate dysentery, gastroenteritis, and diarrhea symptoms. AIM OF THE STUDY To assess the effects of a neutral polysaccharide from P. hydropiper (PHP) on the intestinal barrier (IB) injury induced by lipopolysaccharide (LPS) in mice, and elucidate the molecular mechanisms involved. MATERIALS AND METHODS PHP was extracted from dried P. hydropiper herb using hot water extraction, followed by ethanol precipitation. The extract underwent successive isolation and purification steps involving anion-exchange and gel filtration chromatography. The primary structure of PHP was determined using Fourier-transformed infrared spectroscopy, ion chromatography, gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) spectroscopy. Male BALB/c mice were randomly assigned to control (CON), model (MOD), berberine hydrochloride (BBR), and PHP (20, 40 and 80 mg/kg) groups. Histopathological changes in jejunal tissues were assessed through hematoxylin and eosin (HE) staining. The expression levels of proteins and genes involved in AKT/PI3K/mTOR and MAPK signaling pathways were evaluated using qRT-PCR and Western blotting, respectively. The composition and abundance of the gut microbiota in mice were analyzed using high-throughput 16S rRNA gene sequencing. Additionally, the concentrations of short-chain fatty acids (SCFAs) were determined using GC-MS. RESULTS The main components of PHP included arabinose, galactose, and glucose (molar ratio = 1.00:5.52:11.39). The backbone of PHP consisted of →4)-Glcp-(1→, →4,6)-Glcp-(1→, →4)-Galp-(1→, →4,6)-Galp-(1→. The branched chains primarily consisted of 5)-Araf-(1→ residues, which were attached to the backbone through →6)-Glcp-(1→ and →6)-Galp-(1→ at the 6-position. Histological analysis demonstrated that PHP exhibited a mitigating effect on intestinal damage induced by LPS. PHP could markedly reduce the mRNA levels of PI3K, AKT, mTOR, p70 S6K, Ras, Raf1, MEK1/2, p38, ERK1/2, and JNK, while downregulating the protein levels of p-mTOR, p-PI3K, p-AKT, p-p38, p-ERK, and p-JNK. PHP also modulated the diversities and abundances of the gut microbiota, resulting in an increase in the abundances of Lactobacillaceae, Anaerovoracaceae, Lachnospiraceae, Eggerthellaceae, and Desulfovibrionaceae and a decrease in the abundances of Muribaculaceae, Prevotellaceae, and Rikenellaceae. Additionally, PHP significantly increased the content of various SCFAs. CONCLUSION PHP emerges as a pivotal factor in the repair of IB injury by virtue of its ability to regulate the gut microbiota, elevate SCFA levels, and inhibit the MAPK and AKT/PI3K/mTOR pathways. It is worth noting that the therapeutic effect of high-dose PHP was remarkably significant, surpassing even the positive control of berberine hydrochloride.
Collapse
Affiliation(s)
- Xuanxuan Cheng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China; Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangzhou, China; Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials, Guangzhou, China.
| | - Yuehua Zhu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China; Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangzhou, China; Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials, Guangzhou, China.
| | - Jiahuan Huang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China; Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangzhou, China; Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials, Guangzhou, China.
| | - Yufei Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China; Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangzhou, China; Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials, Guangzhou, China.
| | - Xiaolin Jiang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China; Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangzhou, China; Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials, Guangzhou, China.
| | - Quan Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China; Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangzhou, China; Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials, Guangzhou, China.
| |
Collapse
|
12
|
Zhang LZ, Gong JG, Li JH, Hao YS, Xu HJ, Liu YC, Feng ZH. Dietary resveratrol supplementation on growth performance, immune function and intestinal barrier function in broilers challenged with lipopolysaccharide. Poult Sci 2023; 102:102968. [PMID: 37586190 PMCID: PMC10450988 DOI: 10.1016/j.psj.2023.102968] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/18/2023] Open
Abstract
This study discusses the effects of resveratrol (RES) on the productive performance, immune function and intestinal barrier function of broiler chickens challenged with lipopolysaccharide (LPS). Two hundred and forty 1-day-old male Arbor Acres broilers were randomly divided into 4 groups of 6 replicates each, with 10 broilers per replicate. This experiment used a 2 × 2 factorial design with dietary factors (basal diets or basal diets supplemented with 400 mg/kg RES were administered from d 1 to 21) and stress factors (intraperitoneal injection of 0.5 mg/kg BW of saline or LPS at 16, 18 and 20 d of age). The results showed that LPS challenge had a significant adverse effect on average daily gain (ADG) in broilers at 16 to 21 d of age (P < 0.05), whereas the addition of RES to the diet inhibited the LPS-induced decrease in ADG (P < 0.05). RES also alleviated LPS-induced immune function damage in broilers, which was manifested by the decrease of spleen index (P < 0.05) and the recovery of serum immunoglobulin M and ileal secretory immunoglobulin A content (P < 0.05). The LPS challenge also disrupts intestinal barrier function and inflammation, and RES mitigates these adverse effects in different ways. RES attenuated LPS-induced reduction of villus height in the jejunum and ileum of broilers (P < 0.05). LPS also caused an abnormal increase in plasma D-lactic acid levels in broilers (P < 0.05), which was effectively mitigated by RES (P < 0.05). LPS challenge resulted in a significant decrease in mRNA expression of occludin in the intestinal mucosa (P < 0.05), which was mitigated by the addition of RES (P < 0.05). RES significantly decreased the mRNA expression of toll-like receptor 4, nuclear factor kappa-B and tumor necrosis factor alpha in the ileum tissue stimulated by LPS (P < 0.05). Taken together, this study shows that RES exerts its beneficial effect on broilers challenged with LPS by alleviating immune function damage, relieving intestinal inflammation and barrier damage, and thus improving growth performance.
Collapse
Affiliation(s)
- Lei-Zheng Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jian-Gang Gong
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jia-Hui Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Yan-Shuang Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Hong-Jian Xu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Yan-Ci Liu
- Baoding Vocational and Technical College, Baoding, Hebei 071001, China
| | - Zhi-Hua Feng
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
13
|
Su J, Chen S, Xiao J, Feng Z, Hu S, Su Q, Chen Q, Chen D. Aloe-Emodin Ameliorates Cecal Ligation and Puncture-Induced Sepsis. Int J Mol Sci 2023; 24:11972. [PMID: 37569344 PMCID: PMC10418438 DOI: 10.3390/ijms241511972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Sepsis remains a major challenge owing to its severe adverse effects and high mortality, against which specific pharmacological interventions with high efficacy are limited. Mitigation of hyperactive inflammatory responses is a key factor in enhancing the likelihood of survival in patients with sepsis. The Aloe genus has several health benefits, including anti-inflammatory properties. The toxicological implications of aloe-emodin (AE), extracted from various Aloe species, remain uncertain in clinical contexts. However, AE has been shown to inhibit inflammatory responses in lipopolysaccharide-induced mice, indicating its potential as a therapeutic approach for sepsis treatment. Nonetheless, there is a paucity of data regarding the therapeutic benefits of AE in the widely recognized cecal ligation and puncture (CLP)-induced sepsis model, which is commonly used as the gold standard model for sepsis research. This study demonstrates the potential benefits of AE in the treatment of CLP-induced sepsis and investigates its underlying mechanism, along with the efficacy of postoperative AE treatment in mice with CLP-induced sepsis. The results of this study suggest that AE can mitigate sepsis in mice by diminishing systemic inflammation and regulating the gut microbiota. The study provides novel insights into the molecular mechanisms underlying the anti-inflammatory effects of AE.
Collapse
Affiliation(s)
- Jingqian Su
- Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Z.F.); (S.H.); (Q.S.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Siyuan Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (S.C.); (J.X.)
| | - Jianbin Xiao
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (S.C.); (J.X.)
| | - Zhihua Feng
- Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Z.F.); (S.H.); (Q.S.)
| | - Shan Hu
- Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Z.F.); (S.H.); (Q.S.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Qiaofen Su
- Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Z.F.); (S.H.); (Q.S.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Qi Chen
- Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Z.F.); (S.H.); (Q.S.)
| | - Duo Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (S.C.); (J.X.)
| |
Collapse
|
14
|
Liu J, Yin J, Huang X, Liu C, Hu L, Huang Y, Geng F, Nie S. Anthraquinone Removal from Cassia obtusifolia Seed Water Extract Using Baking, Stir-Frying, and Adsorption Treatments: Effects on the Chemical Composition, Physicochemical Properties of Polysaccharides, and Antioxidant Activities of the Water Extract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5721-5732. [PMID: 36971230 DOI: 10.1021/acs.jafc.3c00345] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Safety issues of the controversial anthraquinones from Cassia obtusifolia seed water extracts (CWEs) limit its application. This work aimed to remove the anthraquinones of CWEs by baking treatment (BT), stir-frying treatment (ST), and adsorption treatment (AT). Effects of these treatments on the chemical composition, physicochemical properties of polysaccharides, and antioxidant activities of CWEs were analyzed and compared. Results indicated that AT exhibited the best removal effect on the total anthraquinone among the three treatments. After AT, the contents of rhein, emodin, aloe-emodin, and aurantio-obtusin of the CWE were below the limit of detection. In addition, AT increased the contents of neutral sugars in CWEs in comparison to BT and ST. None of the treatments had an obvious influence on the structural characteristics of polysaccharides. However, AT decreased the antioxidant activity of CWEs due to their lower anthraquinone content. In summary, AT was considered as an efficient and simple method to remove anthraquinones, while retaining the features of polysaccharides.
Collapse
Affiliation(s)
- Jinjin Liu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi 330047, China
| | - Junyi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi 330047, China
| | - Cencen Liu
- Infinitus (China) Co. Ltd, Guangzhou 510263, China
| | - Liuyun Hu
- Infinitus (China) Co. Ltd, Guangzhou 510263, China
| | | | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi 330047, China
- Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| |
Collapse
|
15
|
Multiple Beneficial Effects of Aloesone from Aloe vera on LPS-Induced RAW264.7 Cells, Including the Inhibition of Oxidative Stress, Inflammation, M1 Polarization, and Apoptosis. Molecules 2023; 28:molecules28041617. [PMID: 36838606 PMCID: PMC9960963 DOI: 10.3390/molecules28041617] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Aloesone is a major metabolic compound in Aloe vera, which has been widely used as a food source and therapeutic agent in several countries. Our recent study demonstrated that aloesone has anti-epileptic effects on glutamate-induced neuronal injury by suppressing the production of reactive oxygen species (ROS). Unless ROS are naturally neutralized by the endogenous antioxidant system, they lead to the activation of inflammation, polarization, and apoptosis. This study aimed to identify the multiple beneficial effects of aloesone and explore its molecular mechanism in macrophages. Hence, the murine macrophage cell line RAW264.7 was pretreated with aloesone and then exposed to lipopolysaccharides (LPS). The results demonstrated that aloesone, within a dosage range of 0.1-100 µM, dramatically decreased the LPS-induced elevation of ROS production, reduced nitric oxide (NO) release, inhibited the M1 polarization of RAW264.7 cells, and prevented cells from entering the LPS-induced early and late phases of apoptosis in a dose-dependent manner. Simultaneously, aloesone significantly decreased the mRNA expression of inflammation-related genes (iNOS, IL-1ꞵ, TNF-α) and increased the expression of antioxidant enzymes (Gpx-1 and SOD-1). The core genes HSP90AA1, Stat3, Mapk1, mTOR, Fyn, Ptk2b, and Lck were closely related to these beneficial effects of aloesone. Furthermore, immunofluorescence staining and flow cytometry data confirmed that aloesone significantly repressed the activation of mTOR, p-mTOR, and HIF-1α induced by LPS and inhibited the protein expression of TLR4, which is the target of LPS. In conclusion, aloesone demonstrated multiple protective effects against LPS-induced oxidative stress, inflammation, M1 polarization, and apoptosis in macrophages, suggesting its potential as a prodrug.
Collapse
|
16
|
Lu J, Tang X, Zhang D, Lan T, Huang Q, Xu P, Liu M, Liu L, Wang J. Didang Tang inhibits intracerebral hemorrhage-induced neuronal injury via ASK1/MKK7/JNK signaling pathway, network pharmacology-based analyses combined with experimental validation. Heliyon 2022; 8:e11407. [PMID: 36387497 PMCID: PMC9647469 DOI: 10.1016/j.heliyon.2022.e11407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022] Open
Abstract
Background Intracerebral hemorrhage (ICH) is an acute cerebrovascular disease, which is also a principal consideration for disability. Didang tang (DDT) is a classic traditional Chinese medicine formula for treating ICH. However, its pharmacological mechanism of action has not been elucidated. Materials and methods The TCMSP and BATMAN-TCM databases were used to collect chemical compounds and predict targets of DDT. Protein targets in ICH were identified by GeneCards, OMIM, and DrugBank databases. DDT compounds-ICH targets and protein-protein interaction (PPI) networks were constructed for topological analysis and hub-targets screening. Further, Key biological processes and signaling pathways were identified by GO and KEGG enrichment analyses. Then, an ICH rat model and a Cobaltous Chloride (CoCl2)-induced PC12 cells model were established. Cell viability and lactate dehydrogenase (LDH) release were detected using cck8 and LDH kits. Apoptosis levels were detected by TUNEL assessment and flow cytometry. IL-1β levels were detected by ELISA, while key protein expressions were determined by Western blot. Results A total of 126 active compounds related to DDT and 3,263 therapeutic targets for ICH were predicted. The functional enrichment of the GO and KEGG pathways combined with literature studies suggested that DDT is most likely to influence MAPK and apoptotic signaling pathways for ICH treatment. In vitro and in vivo experiments have shown that DDT remarkably inhibited apoptosis and increased the expression of Bcl-2, while inhibiting Bax and cleaved-Caspase 3. For other enriched core proteins, DDT suppressed the phosphorylation of Src and the expression of c-Myc and IL-1β, and up-regulated the level of MMP-9. The further results showed that, DDT decreased the phosphorylation of ASK1, MKK7, JNK and c-JUN. Conclusion Based on network pharmacology and experimental validation results, our in vivo and in vitro study indicated that ASK1/MKK7/JNK pathway might be the critical target for DDT against ICH.
Collapse
|