Lai FL, Gao F. LSA-ac4C: A hybrid neural network incorporating double-layer LSTM and self-attention mechanism for the prediction of N4-acetylcytidine sites in human mRNA.
Int J Biol Macromol 2023;
253:126837. [PMID:
37709212 DOI:
10.1016/j.ijbiomac.2023.126837]
[Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/08/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
N4-acetylcytidine (ac4C) is a vital constituent of the epitranscriptome and plays a crucial role in the regulation of mRNA expression. Numerous studies have established correlations between ac4C and the incidence, progression and prognosis of various cancers. Therefore, accurately predicting ac4C sites is an important step towards comprehending the biological functions of this modification and devising effective therapeutic interventions. Wet experiments are primary methods for studying ac4C, but computational methods have emerged as a promising supplement due to their cost-effectiveness and shorter research cycles. However, current models still have inherent limitations in terms of predictive performance and generalization ability. Here, we utilized automated machine learning technology to establish a reliable baseline and constructed a deep hybrid neural network, LSA-ac4C, which combines double-layer Long Short-Term Memory (LSTM) and self-attention mechanism for accurate ac4C sites prediction. Benchmarking comparisons demonstrate that LSA-ac4C exhibits superior performance compared to the current state-of-the-art method, with ACC, MCC and AUROC improving by 2.89 %, 5.96 % and 1.53 %, respectively, on an independent test set. Overall, LSA-ac4C serves as a powerful tool for predicting ac4C sites in human mRNA, thus benefiting research on RNA modification. For the convenience of the research community, a web server has been established at http://tubic.org/ac4C.
Collapse