1
|
Jiang B, Hong N, Zhang L, Xu B, He Q, Qian X, Li F, Dong F. MiR-181a-5p may regulate cell proliferation and autophagy in myopia and the associated retinopathy. Exp Eye Res 2024; 241:109829. [PMID: 38354943 DOI: 10.1016/j.exer.2024.109829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/01/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
The mechanism of myopia and the associated retinopathy remains unclear, and dysregulated microRNAs (miRNAs) are implicated in this disease. In this research, we purposed to find out the regulatory function that miRNAs play in myopia and the associated retinopathy. We first performed miRNA microarray analysis in a lens-induced myopia mouse model and found that miR-9-5p, miR-96-5p, miR-182-5p, miR-183-5p, and miR-181a-5p were elevated in the myopic retina. Then, we examined the functions and regulatory mechanisms of miR-181a-5p utilizing the human retinal pigment epithelium (RPE) cell line ARPE-19 by overexpressing miR-181a-5p. RNA sequencing (RNA-Seq) and qRT-PCR analysis were employed to identify differentially expressed genes after transfection. The qRT‒PCR outcomes, immunoblotting, and immunofluorescence indicated that the SGSH expression was significantly hindered through miR-181a-5p overexpression. MiR-181a-5p overexpression has the ability to elevate RPE cell proliferation and induce autophagy by targeting SGSH. We validated the negative influence of miR-181a-5p on the SGSH expression through luciferase reporter assays, which demonstrated its ability to target the 3' untranslated region of SGSH. The reversal of implications of miR-181a-5p overexpression was achieved through SGSH upregulation. We provided novel perspectives into the miR-181a-5p function in regulating myopia development and may serve as a target for therapy and molecular biomarker for myopia.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Nan Hong
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Liyue Zhang
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Baisheng Xu
- Department of Ophthalmology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Qin He
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Xilin Qian
- Department of Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Feidi Li
- Department of Ophthalmology, Beilun People's Hospital of Ningbo City, Ningbo, 315826, Zhejiang, China
| | - Feng Dong
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
2
|
Lei XL, Yang QL, Wei YZ, Qiu X, Zeng HY, Yan AM, Peng K, Li YL, Rao FQ, Chen FH, Xiang L, Wu KC. Identification of a novel ferroptosis-related gene signature associated with retinal degeneration induced by light damage in mice. Heliyon 2023; 9:e23002. [PMID: 38144322 PMCID: PMC10746433 DOI: 10.1016/j.heliyon.2023.e23002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Background Neurodegenerative retinal diseases such as retinitis pigmentosa are serious disorders that may cause irreversible visual impairment. Ferroptosis is a novel type of programmed cell death, and the involvement of ferroptosis in retinal degeneration is still unclear. This study aimed to investigate the related ferroptosis genes in a mice model of retinal degeneration induced by light damage. Methods A public dataset of GSE10528 deriving from the Gene Expression Omnibus database was analyzed to identify the differentially expressed genes (DEGs). Gene set enrichment analysis between light damage and control group was conducted. The differentially expressed ferroptosis-related genes (DE-FRGs) were subsequently identified by intersecting the DEGs with a ferroptosis genes dataset retrieved from the FerrDb database. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were further performed using the DE-FRGs. A protein-protein interaction (PPI) network was constructed to identify hub ferroptosis-related genes (HFRGs). The microRNAs (miRNAs)-HFRGs, transcription factors (TFs)-HFRGs networks as well as target drugs potentially interacting with HFRGs were analyzed utilizing bioinformatics algorithms. Results A total of 932 DEGs were identified between the light damage and control group. Among these, 25 genes were associated with ferroptosis. GO and KEGG analyses revealed that these DE-FRGs were mainly enriched in apoptotic signaling pathway, response to oxidative stress and autophagy, ferroptosis, necroptosis and cytosolic DNA-sensing pathway. Through PPI network analysis, six hub ferroptosis-related genes (Jun, Stat3, Hmox1, Atf3, Hspa5 and Ripk1) were ultimately identified. All of them were upregulated in light damage retinas, as verified by the GSE146176 dataset. Bioinformatics analyses predicated that 116 miRNAs, 23 TFs and several potential therapeutic compounds might interact with the identified HFRGs. Conclusion Our study may provide novel potential biomarkers, therapeutic targets and new insights into the ferroptosis landscape in retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin-Lan Lei
- The Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China
- Aier Eye Hospital of Wuhan University, Wuhan, China
| | - Qiao-Li Yang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yong-Zhao Wei
- The Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China
| | - Xu Qiu
- The Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China
| | - Hui-Yi Zeng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ai-Min Yan
- The Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China
| | - Kai Peng
- The Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China
| | - Ying-Lin Li
- The Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China
| | - Feng-Qin Rao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Feng-Hua Chen
- The Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China
| | - Lue Xiang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Kun-Chao Wu
- The Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Systemic Cytokines in Retinopathy of Prematurity. J Pers Med 2023; 13:jpm13020291. [PMID: 36836525 PMCID: PMC9966226 DOI: 10.3390/jpm13020291] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Retinopathy of prematurity (ROP), a vasoproliferative vitreoretinal disorder, is the leading cause of childhood blindness worldwide. Although angiogenic pathways have been the main focus, cytokine-mediated inflammation is also involved in ROP etiology. Herein, we illustrate the characteristics and actions of all cytokines involved in ROP pathogenesis. The two-phase (vaso-obliteration followed by vasoproliferation) theory outlines the evaluation of cytokines in a time-dependent manner. Levels of cytokines may even differ between the blood and the vitreous. Data from animal models of oxygen-induced retinopathy are also valuable. Although conventional cryotherapy and laser photocoagulation are well established and anti-vascular endothelial growth factor agents are available, less destructive novel therapeutics that can precisely target the signaling pathways are required. Linking the cytokines involved in ROP to other maternal and neonatal diseases and conditions provides insights into the management of ROP. Suppressing disordered retinal angiogenesis via the modulation of hypoxia-inducible factor, supplementation of insulin-like growth factor (IGF)-1/IGF-binding protein 3 complex, erythropoietin, and its derivatives, polyunsaturated fatty acids, and inhibition of secretogranin III have attracted the attention of researchers. Recently, gut microbiota modulation, non-coding RNAs, and gene therapies have shown promise in regulating ROP. These emerging therapeutics can be used to treat preterm infants with ROP.
Collapse
|