1
|
Kumar A, BharathwajChetty B, Manickasamy MK, Unnikrishnan J, Alqahtani MS, Abbas M, Almubarak HA, Sethi G, Kunnumakkara AB. Natural compounds targeting YAP/TAZ axis in cancer: Current state of art and challenges. Pharmacol Res 2024; 203:107167. [PMID: 38599470 DOI: 10.1016/j.phrs.2024.107167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Cancer has become a burgeoning global healthcare concern marked by its exponential growth and significant economic ramifications. Though advancements in the treatment modalities have increased the overall survival and quality of life, there are no definite treatments for the advanced stages of this malady. Hence, understanding the diseases etiologies and the underlying molecular complexities, will usher in the development of innovative therapeutics. Recently, YAP/TAZ transcriptional regulation has been of immense interest due to their role in development, tissue homeostasis and oncogenic transformations. YAP/TAZ axis functions as coactivators within the Hippo signaling cascade, exerting pivotal influence on processes such as proliferation, regeneration, development, and tissue renewal. In cancer, YAP is overexpressed in multiple tumor types and is associated with cancer stem cell attributes, chemoresistance, and metastasis. Activation of YAP/TAZ mirrors the cellular "social" behavior, encompassing factors such as cell adhesion and the mechanical signals transmitted to the cell from tissue structure and the surrounding extracellular matrix. Therefore, it presents a significant vulnerability in the clogs of tumors that could provide a wide window of therapeutic effectiveness. Natural compounds have been utilized extensively as successful interventions in the management of diverse chronic illnesses, including cancer. Owing to their capacity to influence multiple genes and pathways, natural compounds exhibit significant potential either as adjuvant therapy or in combination with conventional treatment options. In this review, we delineate the signaling nexus of YAP/TAZ axis, and present natural compounds as an alternate strategy to target cancer.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan Ali Almubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University, Abha 61421, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
2
|
Kim G, Kim M, Nam EJ, Lee JY, Park E. Application of Small Cell Lung Cancer Molecular Subtyping Markers to Small Cell Neuroendocrine Carcinoma of the Cervix: NEUROD1 as a Poor Prognostic Factor. Am J Surg Pathol 2024; 48:364-372. [PMID: 37981832 DOI: 10.1097/pas.0000000000002155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Cervical small cell neuroendocrine carcinoma (CSCNEC) is a rare, aggressive type of cervical cancer. The treatment for CSCNEC follows the chemotherapeutic regimens used for small cell lung cancer (SCLC), with which it shares similar clinical and histologic features. For the first time, we applied neuroendocrine (NE) and SCLC molecular subtyping immunohistochemical markers [achaete-scute homolog 1 (ASCL1), neurogenic differentiation factor 1 (NEUROD1), POU class 2 homeobox 3 (POU2F3), and yes-associated protein 1] in 45 patients with CSCNEC. For the combined NE score, 51.1% of NE-high and 48.9% of NE-low subtypes were identified. The NE-high subtype tended to show worse progression-free survival and overall survival (OS) than the NE-low subtype ( P =0.059 and P =0.07, respectively). Applying the SCLC molecular subtyping, 53.3% of cases were identified as NEUROD1-dominant, 17.8% as ASCL1-dominant, 13.3% as YAP-dominant, and 4.4% as POU2F3-dominant, while 11.1% of cases showed negative expression for all markers; the distribution was different from that of SCLC. The NEUROD1-dominant subtype exhibited the worst OS, while the POU2F3 subtype exhibited the best OS ( P =0.003), similar to SCLC. In addition, the ASCL1-dominant and NEUROD1-dominant subtypes showed high NE scores, while yes-associated protein 1-dominant and POU2F3-dominant subtypes showed low NE scores ( P =0.008). In multivariate analysis, the NEUROD1 expression was further identified as the independent prognostic factor for worse OS, together with the high FIGO stage. CSCNEC was revealed to be a heterogeneous disease with different biological phenotypes and to share some similarities and differences with SCLC. Regarding the ongoing development of tailored treatments based on biomarkers in SCLC, the application of biomarker-driven individualized therapy would improve clinical outcomes in patients with CSCNEC.
Collapse
Affiliation(s)
- Gilhyang Kim
- Department of Pathology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Milim Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Ji Nam
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunhyang Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|