2
|
Foley AR, Bolduc V, Guirguis F, Donkervoort S, Hu Y, Orbach R, McCarty RM, Sarathy A, Norato G, Cummings BB, Lek M, Sarkozy A, Butterfield RJ, Kirschner J, Nascimento A, Benito DND, Quijano-Roy S, Stojkovic T, Merlini L, Comi G, Ryan M, McDonald D, Munot P, Yoon G, Leung E, Finanger E, Leach ME, Collins J, Tian C, Mohassel P, Neuhaus SB, Saade D, Cocanougher BT, Chu ML, Scavina M, Grosmann C, Richardson R, Kossak BD, Gospe SM, Bhise V, Taurina G, Lace B, Troncoso M, Shohat M, Shalata A, Chan SH, Jokela M, Palmio J, Haliloğlu G, Jou C, Gartioux C, Solomon-Degefa H, Freiburg CD, Schiavinato A, Zhou H, Aguti S, Nevo Y, Nishino I, Jimenez-Mallebrera C, Lamandé SR, Allamand V, Gualandi F, Ferlini A, MacArthur DG, Wilton SD, Wagener R, Bertini E, Muntoni F, Bönnemann CG. The recurrent deep intronic pseudoexon-inducing variant COL6A1 c.930+189C>T results in a consistently severe phenotype of COL6-related dystrophy: Towards clinical trial readiness for splice-modulating therapy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.29.24304673. [PMID: 38585825 PMCID: PMC10996746 DOI: 10.1101/2024.03.29.24304673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Collagen VI-related dystrophies (COL6-RDs) manifest with a spectrum of clinical phenotypes, ranging from Ullrich congenital muscular dystrophy (UCMD), presenting with prominent congenital symptoms and characterised by progressive muscle weakness, joint contractures and respiratory insufficiency, to Bethlem muscular dystrophy, with milder symptoms typically recognised later and at times resembling a limb girdle muscular dystrophy, and intermediate phenotypes falling between UCMD and Bethlem muscular dystrophy. Despite clinical and immunohistochemical features highly suggestive of COL6-RD, some patients had remained without an identified causative variant in COL6A1, COL6A2 or COL6A3. With combined muscle RNA-sequencing and whole-genome sequencing we uncovered a recurrent, de novo deep intronic variant in intron 11 of COL6A1 (c.930+189C>T) that leads to a dominantly acting in-frame pseudoexon insertion. We subsequently identified and have characterised an international cohort of forty-four patients with this COL6A1 intron 11 causative variant, one of the most common recurrent causative variants in the collagen VI genes. Patients manifest a consistently severe phenotype characterised by a paucity of early symptoms followed by an accelerated progression to a severe form of UCMD, except for one patient with somatic mosaicism for this COL6A1 intron 11 variant who manifests a milder phenotype consistent with Bethlem muscular dystrophy. Characterisation of this individual provides a robust validation for the development of our pseudoexon skipping therapy. We have previously shown that splice-modulating antisense oligomers applied in vitro effectively decreased the abundance of the mutant pseudoexon-containing COL6A1 transcripts to levels comparable to the in vivo scenario of the somatic mosaicism shown here, indicating that this therapeutic approach carries significant translational promise for ameliorating the severe form of UCMD caused by this common recurrent COL6A1 causative variant to a Bethlem muscular dystrophy phenotype.
Collapse
Affiliation(s)
- A. Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Véronique Bolduc
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Fady Guirguis
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Rotem Orbach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
- Dana-Dwek Children’s Hospital, Tel Aviv 64239, Israel
| | - Riley M. McCarty
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Apurva Sarathy
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Gina Norato
- Clinical Trials Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | | | - Monkol Lek
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London WC1N 1EH, UK
| | - Russell J. Butterfield
- Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, UT 84132, USA
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg 79110, Germany
| | - Andrés Nascimento
- Neuromuscular Unit, Neuropediatrics Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu. CIBERER ISCIII. Barcelona 08950, Spain
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Neuropediatrics Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu. CIBERER ISCIII. Barcelona 08950, Spain
| | - Susana Quijano-Roy
- Garches Neuromuscular Reference Center, Child Neurology and ICU Department, APHP Raymond Poincare University Hospital (UVSQ Paris Saclay), Garches 92380, France
| | - Tanya Stojkovic
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Île-de-France, Institut de Myologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris 75013, France
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40126, Italy
| | - Giacomo Comi
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Monique Ryan
- Department of Neurology, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Denise McDonald
- Department of Neurodisability, Children’s Health Ireland at Tallaght, Dublin 24 Ireland
| | - Pinki Munot
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London WC1N 1EH, UK
| | - Grace Yoon
- Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Edward Leung
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
| | - Erika Finanger
- Department of Pediatrics and Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Meganne E. Leach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
- Department of Pediatrics and Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - James Collins
- Divisions of Neurology and Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Cuixia Tian
- Divisions of Neurology and Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Sarah B. Neuhaus
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Dimah Saade
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Benjamin T. Cocanougher
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Mary-Lynn Chu
- Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Mena Scavina
- Division of Neurology, Nemours Children’s Hospital Delaware, Wilmington, DE 19803, USA
| | - Carla Grosmann
- Department of Neurology, Rady Children’s Hospital University of California San Diego, San Diego, CA 92123, USA
| | - Randal Richardson
- Department of Neurology, Gillette Children’s Specialty Healthcare, St Paul, MN 55101, USA
| | - Brian D. Kossak
- Department of Neurology, Dartmouth Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Sidney M. Gospe
- Department of Neurology and Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - Vikram Bhise
- Departments of Pediatrics and Neurology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Gita Taurina
- Children’s Clinical University Hospital, Medical Genetics and Prenatal Diagnostic Clinic, Riga 1004, Latvia
| | - Baiba Lace
- Riga East Clinical University, Institute of Clinical and Preventive Medicine of the University of Latvia, Riga 1586, Latvia
| | - Monica Troncoso
- Pediatric Neuropsychiatry Service, Hospital Clínico San Borja Arriarán, Pediatric Department, Universidad de Chile, Santiago 1234, Chile
| | - Mordechai Shohat
- The Genomics Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Adel Shalata
- The Simon Winter Institute for Human Genetics, Bnai Zion Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Sophelia H.S. Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Manu Jokela
- Clinical Neurosciences, University of Turku, Turku, Finland and Neurocenter, Turku University Hospital, Turku 20520, Finland
- Neuromuscular Research Center, Tampere University and Tampere University Hospital, Tampere 33101, Finland
| | - Johanna Palmio
- Neuromuscular Research Center, Tampere University and Tampere University Hospital, Tampere 33101, Finland
| | - Göknur Haliloğlu
- Division of Pediatric Neurology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey
| | - Cristina Jou
- Pathology department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona 08950, Spain
| | - Corine Gartioux
- INSERM, Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, Paris 75013, France
| | | | - Carolin D. Freiburg
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Alvise Schiavinato
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Haiyan Zhou
- National Institute of Health Research, Great Ormond Street Hospital Biomedical Research Centre, Genetics and Genomic Medicine Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Sara Aguti
- Neurodegenerative Disease Department, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Yoram Nevo
- Institute of Pediatric Neurology, Schneider Children’s Medical Center of Israel, Petach Tikva, Israel, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Cecilia Jimenez-Mallebrera
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, Barcelona 08950, Spain
| | - Shireen R. Lamandé
- Department of Paediatrics, University of Melbourne, The Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Valérie Allamand
- INSERM, Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, Paris 75013, France
| | - Francesca Gualandi
- Unit of Medical Genetics, Department of Medical Sciences and Department of Mother and Child, University Hospital S. Anna Ferrara, Ferrara 44121, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences and Department of Mother and Child, University Hospital S. Anna Ferrara, Ferrara 44121, Italy
| | | | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University; Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Raimund Wagener
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Enrico Bertini
- Research Unit of Neuromuscular and Neurodegenerative Disorders, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London WC1N 1EH, UK
- National Institute of Health Research, Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Carsten G. Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Bolduc V, Guirguis F, Lubben B, Trank L, Silverstein S, Brull A, Nalls M, Cheng J, Garrett L, Bönnemann CG. A humanized knock-in Col6a1 mouse recapitulates a deep-intronic splice-activating variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.581572. [PMID: 38585878 PMCID: PMC10996637 DOI: 10.1101/2024.03.21.581572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Antisense therapeutics such as splice-modulating antisense oligonucleotides (ASOs) are promising tools to treat diseases caused by splice-altering intronic variants. However, their testing in animal models is hampered by the generally poor sequence conservation of the intervening sequences between human and other species. Here we aimed to model in the mouse a recurrent, deep-intronic, splice-activating, COL6A1 variant, associated with a severe form of Collagen VI-related muscular dystrophies (COL6-RDs), for the purpose of testing human-ready antisense therapeutics in vivo. The variant, c.930+189C>T, creates a donor splice site and inserts a 72-nt-long pseudoexon, which, when translated, acts in a dominant-negative manner, but which can be skipped with ASOs. We created a unique humanized mouse allele (designated as "h"), in which a 1.9 kb of the mouse genomic region encoding the amino-terminus (N-) of the triple helical (TH) domain of collagen a1(VI) was swapped for the human orthologous sequence. In addition, we also created an allele that carries the c.930+189C>T variant on the same humanized knock-in sequence (designated as "h+189T"). We show that in both models, the human exons are spliced seamlessly with the mouse exons to generate a chimeric mouse-human collagen a1(VI) protein. In homozygous Col6a1 h+189T/h+189T mice, the pseudoexon is expressed at levels comparable to those observed in heterozygous patients' muscle biopsies. While Col6a1h/h mice do not show any phenotype compared to wildtype animals, Col6a1 h/h+189T and Col6a1 h+189T/h+189T mice have smaller muscle masses and display grip strength deficits detectable as early as 4 weeks of age. The pathogenic h+189T humanized knock-in mouse allele thus recapitulates the pathogenic splicing defects seen in patients' biopsies and allows testing of human-ready precision antisense therapeutics aimed at skipping the pseudoexon. Given that the COL6A1 N-TH region is a hot-spot for COL6-RD variants, the humanized knock-in mouse model can be utilized as a template to introduce other COL6A1 pathogenic variants. This unique humanized mouse model thus represents a valuable tool for the development of antisense therapeutics for COL6-RDs.
Collapse
Affiliation(s)
- Véronique Bolduc
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Fady Guirguis
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Berit Lubben
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Lindsey Trank
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Sarah Silverstein
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Astrid Brull
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Matthew Nalls
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Jun Cheng
- NHGRI Transgenic and Gene Editing Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Lisa Garrett
- NHGRI Transgenic and Gene Editing Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Carsten G. Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|