1
|
Verma VK, Bhardwaj P, Prajapati V, Bhatia A, Purkait S, Arya DS. Flavonoids as therapeutics for myocardial ischemia-reperfusion injury: a comprehensive review on preclinical studies. Lab Anim Res 2024; 40:32. [PMID: 39237965 PMCID: PMC11376054 DOI: 10.1186/s42826-024-00218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/07/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
Ischemic heart disease is the most prevalent cause of death worldwide affecting both the gender of all age groups. The high mortality rate is due to damage of myocardial tissue that emanates at the time of myocardial ischemia and re-oxygenation, thus averting reperfusion injury is recognized as a potential way to reduce acute cardiac injury and subsequent mortality. Flavonoids are polyphenol derivatives of plant origin and empirical shreds of evidence substantiate their numerous activities such as antioxidant, anti-inflammatory, anti-apoptotic, and anti-thrombotic activity, leading to their role in cardio protection. Recent investigations have unveiled the capacity of flavonoids to impede pivotal regulatory enzymes, signaling molecules, and transcription factors that orchestrate the mediators participating in the inflammatory cascade. The present comprehensive review, dwells on the preclinical studies on the effectiveness of flavonoids from the year 2007 to 2023, for the prevention and therapeutics for myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Vipin Kumar Verma
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Priya Bhardwaj
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Vaishali Prajapati
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Avantika Bhatia
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sayani Purkait
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
2
|
Khazdair MR, Moshtagh M, Anaeigoudari A, Jafari S, Kazemi T. Protective effects of carvacrol on lipid profiles, oxidative stress, hypertension, and cardiac dysfunction - A comprehensive review. Food Sci Nutr 2024; 12:3137-3149. [PMID: 38726397 PMCID: PMC11077248 DOI: 10.1002/fsn3.4014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 05/12/2024] Open
Abstract
Cardiovascular diseases (CVDs) are a class of illnesses that affect the heart or blood vessels, leading to the most common causes of death worldwide. In 2017, CVD caused approximately 17.8 million deaths that were increased approximately to 20.5 million deaths in 2021, globally. Also, nearly 80% of worldwide CVD deaths occur in some countries. Some herbs and their constituents due to their several pharmacological activities have been used for medicinal purposes. Carvacrol is a phenolic mono-terpenoid found in the oils of aromatic herbs with several biological properties. The possible therapeutic effects of carvacrol on lipid profiles, oxidative stress, hypertension, and cardiac dysfunction were summarized in the current study. The data from this review article were obtained by searching the terms including; "Carvacrol", "Hypertension", Hypotensive, "Cardiac dysfunction", "Ischemia", "Lipid profile", and Oxidative stress in several web databases such as Web of Sciences, PubMed Central, and Google Scholar, until November 2023. The results of the reviewed studies revealed that carvacrol inhibits acetylcholinesterase (AchE) activity and alters lipid profiles, reducing heart rate as well as systolic and diastolic blood pressure (BP). Carvacrol also decreased the proinflammatory cytokine (IL-1β), while increasing secretion of anti-inflammatory cytokine (IL-10). Moreover, carvacrol improved oxidative stress and mitigated the number of apoptotic cells. The pharmacological effects of carvacrol on CVD might be through its antioxidative, anti-inflammatory, and antiapoptotic effects. The mentioned therapeutic effects of carvacrol on lipid profile, hypertension, and cardiac dysfunction indicate the possible remedy effect of carvacrol for the treatment of CVD.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Cardiovascular Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| | - Mozhgan Moshtagh
- Social Determinants of Health Research CenterBirjand University of Medical SciencesBirjandIran
| | - Akbar Anaeigoudari
- Department of Physiology, School of MedicineJiroft University of Medical SciencesJiroftIran
| | - Shima Jafari
- Cardiovascular Diseases Research CenterBirjand University of Medical SciencesBirjandIran
- Department of Clinical Pharmacy, School of PharmacyBirjand University of Medical SciencesBirjandIran
| | - Toba Kazemi
- Cardiovascular Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| |
Collapse
|
3
|
Pisanu C, Congiu D, Meloni A, Paribello P, Patrinos GP, Severino G, Ardau R, Chillotti C, Manchia M, Squassina A. Dissecting the genetic overlap between severe mental disorders and markers of cellular aging: Identification of pleiotropic genes and druggable targets. Neuropsychopharmacology 2024; 49:1033-1041. [PMID: 38402365 PMCID: PMC11039620 DOI: 10.1038/s41386-024-01822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/17/2024] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
Patients with severe mental disorders such as bipolar disorder (BD), schizophrenia (SCZ) and major depressive disorder (MDD) show a substantial reduction in life expectancy, increased incidence of comorbid medical conditions commonly observed with advanced age and alterations of aging hallmarks. While severe mental disorders are heritable, the extent to which genetic predisposition might contribute to accelerated cellular aging is not known. We used bivariate causal mixture models to quantify the trait-specific and shared architecture of mental disorders and 2 aging hallmarks (leukocyte telomere length [LTL] and mitochondrial DNA copy number), and the conjunctional false discovery rate method to detect shared genetic loci. We integrated gene expression data from brain regions from GTEx and used different tools to functionally annotate identified loci and investigate their druggability. Aging hallmarks showed low polygenicity compared with severe mental disorders. We observed a significant negative global genetic correlation between MDD and LTL (rg = -0.14, p = 6.5E-10), and no significant results for other severe mental disorders or for mtDNA-cn. However, conditional QQ plots and bivariate causal mixture models pointed to significant pleiotropy among all severe mental disorders and aging hallmarks. We identified genetic variants significantly shared between LTL and BD (n = 17), SCZ (n = 55) or MDD (n = 19), or mtDNA-cn and BD (n = 4), SCZ (n = 12) or MDD (n = 1), with mixed direction of effects. The exonic rs7909129 variant in the SORCS3 gene, encoding a member of the retromer complex involved in protein trafficking and intracellular/intercellular signaling, was associated with shorter LTL and increased predisposition to all severe mental disorders. Genetic variants underlying risk of SCZ or MDD and shorter LTL modulate expression of several druggable genes in different brain regions. Genistein, a phytoestrogen with anti-inflammatory and antioxidant effects, was an upstream regulator of 2 genes modulated by variants associated with risk of MDD and shorter LTL. While our results suggest that shared heritability might play a limited role in contributing to accelerated cellular aging in severe mental disorders, we identified shared genetic determinants and prioritized different druggable targets and compounds.
Collapse
Affiliation(s)
- Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| | - Donatella Congiu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Anna Meloni
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Pasquale Paribello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, School of Health Sciences, Department of Pharmacy, University of Patras, Patras, Greece
- College of Medicine and Health Sciences, Department of Genetics and Genomics, United Arab Emirates University, Al‑Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al‑Ain, Abu Dhabi, UAE
| | - Giovanni Severino
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
4
|
Wu Y, Zhang H, Zhu J, Zhang Z, Ma S, Zhao Y, Wang Y, Yuan J, Guo X, Li Y, Zhang S. The Effect of Fermentation on the Chemical Constituents of Gastrodia Tuber Hallimasch Powder (GTHP) Estimated by UHPLC-Q-Orbitrap HRMS and HPLC. Molecules 2024; 29:1663. [PMID: 38611942 PMCID: PMC11013358 DOI: 10.3390/molecules29071663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
OBJECTIVE To compare the effect of fermentation on the chemical constituents of Gastrodia Tuder Halimasch Powder (GTHP), to establish its fingerprinting and multicomponent content determination, and to provide a basis for the processing, handling, and clinical application of this herb. METHODS Ultra-high-performance liquid chromatography-quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) was used to conduct a preliminary analysis of the chemical constituents in GTHP before and after fermentation. High-performance liquid chromatography (HPLC) was used to determine some major differential components of GTHP and establish fingerprints. Cluster analysis (CA), and principal component analysis (PCA) were employed for comprehensive evaluation. RESULTS Seventy-nine compounds were identified, including flavonoids, organic acids, nucleosides, terpenoids, and others. The CA and PCA results showed that ten samples were divided into three groups. Through standard control and HPLC analysis, 10 compounds were identified from 22 peaks, namely uracil, guanosine, adenosine, 5-hydroxymethylfurfural (5-HMF), daidzin, genistin, glycitein, daidzein, genistein, and ergosterol. After fermentation, GTHP exhibited significantly higher contents of uracil, guanosine, adenosine, 5-hydroxymethylfurfural, and ergosterol and significantly lower genistein and daidzein contents. CONCLUSIONS The UHPLC-Q-Orbitrap HRMS and HPLC methods can effectively identify a variety of chemical components before and after the fermentation of GTHP. This study provides a valuable reference for further research on the rational clinical application and quality control improvement of GTHP.
Collapse
Affiliation(s)
- Yaning Wu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Hongwei Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jianguang Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhenling Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou 450046, China
- Henan Engineering Technology Research Center for Integrated Traditional Chinese Medicine Production, Zhengzhou 450046, China
- Henan Engineering Research Center of Traditional Chinese Medicine Characteristic Processing Technology, Zhengzhou 450046, China
| | - Songbo Ma
- Luoyang Wokang Pharmaceutical Co., Ltd., Luoyang 471521, China
| | - Yongqi Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yiming Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jun Yuan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xing Guo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yajing Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Shuai Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
5
|
Sirichaiwetchakoon K, Eumkeb G. Free radical scavenging and anti-isolated human LDL oxidation activities of Butea superba Roxb. extract. BMC Complement Med Ther 2024; 24:75. [PMID: 38310207 PMCID: PMC10837992 DOI: 10.1186/s12906-024-04373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Butea superba Roxb. (B. superba), is an herbal plant traditionally used for rejuvenation. Additionally, there have been reports on its antioxidant properties. Low-density lipoproteins (LDL) oxidation is the leading cause of cardiovascular diseases (CVDs). Natural products with antioxidant properties have the potential to inhibit LDL oxidation. However, no work has been done about the anti-isolated human LDL oxidation of B. superba extract (BSE). This study aimed to investigate the antioxidant potential of BSE and its ability to prevent isolated human (LDL) oxidation induced by free radical agents. METHODS The antioxidant properties were investigated by antioxidant assays, including 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), ferric reducing ability power (FRAP), nitric oxide (NO) and peroxynitrite scavenging assay. More so, anti-isolated human LDL oxidation activities were evaluated by 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) and 3-morpholinosydnonimine hydrochloride (SIN-1) induced LDL oxidation assay. RESULTS BSE exhibited a significant (p < 0.05) antioxidant activity in all the test systems, demonstrating its potential as a potent free radical scavenger. It displayed scavenging effects on DPPH (p < 0.05; IC50 = 487.67 ± 21.94 µg/ml), ABTS (p < 0.05; IC50 = 30.83 ± 1.29 µg/ml). Furthermore, it generated significantly (p < 0.05) increased antioxidant capacity in a dose-dependent manner in FRAP assay and exhibited significantly (p < 0.01) higher percent NO scavenging activity than gallic acid. Besides, BSE at 62.5 µg/ml exhibited a considerable percent peroxynitrite scavenging of 71.40 ± 6.59% after a 2 h period. Moreover, BSE demonstrated anti-isolated human LDL oxidation activity induced by AAPH and SIN-1 (p < 0.05) and revealed scavenging activity similar to ascorbic acid (p > 0.05). Identifying the main constituents of BSE revealed the presence of genistein, daidzein, and biochanin A through Liquid Chromatography-Mass Spectrometer/Mass Spectrometer (LC-MS/MS) analysis. CONCLUSION This is the first report that the presence of isoflavones in BSE could play an important role in its antioxidation and isolated human LDL oxidation scavenging properties. These findings suggest the potential for developing antioxidant herbal supplements. However, further studies must be investigated, including efficacious and safe human dosages.
Collapse
Affiliation(s)
- Kittipot Sirichaiwetchakoon
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree Subdistrict, Nakhon Ratchasima, 30000, Muang District, Thailand
| | - Griangsak Eumkeb
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree Subdistrict, Nakhon Ratchasima, 30000, Muang District, Thailand.
| |
Collapse
|
6
|
Wang Z, Li Q, An Q, Gong L, Yang S, Zhang B, Su B, Yang D, Zhang L, Lu Y, Du G. Optimized solubility and bioavailability of genistein based on cocrystal engineering. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:30. [PMID: 37702849 PMCID: PMC10499772 DOI: 10.1007/s13659-023-00397-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/03/2023] [Indexed: 09/14/2023]
Abstract
With various potential health-promoting bioactivities, genistein has great prospects in treatment of a series of complex diseases and metabolic syndromes such as cancer, diabetes, cardiovascular diseases, menopausal symptoms and so on. However, poor solubility and unsatisfactory bioavailability seriously limits its clinical application and market development. To optimize the solubility and bioavailability of genistein, the cocrystal of genistein and piperazine was prepared by grinding assisted with solvent based on the concept of cocrystal engineering. Using a series of analytical techniques including single-crystal X-ray diffraction, powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis, the cocrystal was characterized and confirmed. Then, structure analysis on the basis of theoretical calculation and a series of evaluation on the stability, dissolution and bioavailability were carried out. The results indicated that the cocrystal of genistein and piperazine improved the solubility and bioavailability of genistein. Compared with the previous studies on the cocrystal of genistein, this is a systematic and comprehensive investigation from the aspects of preparation, characterization, structural analysis, stability, solubility and bioavailability evaluation. As a simple, efficient and green approach, cocrystal engineering can pave a new path to optimize the pharmaceutical properties of natural products for successful drug formulation and delivery.
Collapse
Affiliation(s)
- Zhipeng Wang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Qi Li
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Qi An
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Lixiang Gong
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Shiying Yang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Baoxi Zhang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Bin Su
- Shandong Soteria Pharmaceutical Co., Ltd., Laiwu, 271100, China
| | - Dezhi Yang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.
| | - Li Zhang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.
| | - Yang Lu
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.
| | - Guanhua Du
- Beijing City Key Laboratory of Drug Target and Screening Research, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| |
Collapse
|