1
|
Gan Y, Tong J, Zhou X, Long X, Pan Y, Liu W, Zhao X. Hepatoprotective Effect of Lactobacillus plantarum HFY09 on Ethanol-Induced Liver Injury in Mice. Front Nutr 2021; 8:684588. [PMID: 34249992 PMCID: PMC8264191 DOI: 10.3389/fnut.2021.684588] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/28/2021] [Indexed: 01/30/2023] Open
Abstract
Lactobacillus plantarum is a bacterial strain that is used as a probiotic with health-promoting effects. Our study investigated the hepatoprotective effect of Lactobacillus plantarum HFY09 (LP-HFY09) in mice with ethanol-induced liver injury. The protection afforded by LP-HFY09 was evaluated by observing the morphology of hepatic tissue and measuring liver lipid indexes and function indexes, levels of anti-oxidative enzymes, and anti-inebriation enzymes, as well as oxidative metabolism-related gene expression. Gavage administration of LP-HFY09 [1 × 109 CFU/kg body weight (bw)] limited the loss of bw, alcohol damage to the liver, and maintained the normal hepatic tissue morphology. Lactobacillus plantarum HFY09 intervention in ethanol-induced mice led to decreases in serum triglyceride (TG), total cholesterol (TC), aspartic transaminase, alanine transaminase, hyaluronidase (HAase), and precollagen III (PC III), and increases in liver alcohol dehydrogenase (ADH), and acetaldehyde dehydrogenase (ALDH). Lactobacillus plantarum HFY09 assisted with alleviating inflammation by elevating the level of interleukin 10 (IL-10) and decreasing the levels of pro-inflammatory factors [IL-6, IL-1β, and tumor necrosis factor-α (TNF)-α]. Lactobacillus plantarum HFY09 significantly elevated hepatic levels of superoxide dismutase (SOD) and glutathione (GSH), and decreased liver malondialdehyde (MDA) from 3.45 to 1.64 nmol/mg protein. Lactobacillus plantarum HFY09 exhibited an overall strong regulatory effect on liver protection when compared to that of commercial Lactobacillus delbrueckii subsp. bulgaricus. The hepatoprotective effect of LP-HFY09 was reflected by the upregulated expression of peroxisome proliferator activated-receptors α, SOD1, SOD2, glutathione peroxidase (GSH-Px), nicotinamide adenine dinucleotide phosphate (NADPH), and catalase (CAT), and the downregulated expression of cyclooxygenase-1 (COX1), c-Jun N-terminal kinase (JNK), and extracellular regulated protein kinases (ERK). Administration of LP-HFY09 at a concentration of 1.0 × 109 CFU/kg bw could be a potential intervention, for people who frequently consume alcohol.
Collapse
Affiliation(s)
- Yi Gan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Jin Tong
- Department of Gastroenterology and Hepatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Yanni Pan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Weiwei Liu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
2
|
Li L, Jiang M, Li Y, Su J, Li L, Qu X, Fan L. 1H-NMR Metabolomics Analysis of the Effect of Rubusoside on Serum Metabolites of Golden Hamsters on a High-Fat Diet. Molecules 2020; 25:molecules25061274. [PMID: 32168894 PMCID: PMC7143983 DOI: 10.3390/molecules25061274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/30/2023] Open
Abstract
Rubusoside is a natural sweetener and the active component of Rubus suavissimus. The preventive and therapeutic effect of rubusoside on high-fat diet-induced (HFD) serum metabolite changes in golden hamsters was analyzed by 1H-NMR metabolomics to explore the underlying mechanism of lipid metabolism regulation. 1H-NMR serum metabolomics analyses revealed a disturbed amino acid-, sugar-, fat-, and energy metabolism in HFD animals. Animals supplemented with rubusoside can partly reverse the metabolism disorders induced by high-fat diet and exerted good anti-hypertriglyceridemia effect by intervening in some major metabolic pathways, involving amino acid metabolism, synthesis of ketone bodies, as well as choline and 4-hydroxyphenylacetate metabolism. This study indicates that rubusoside can interfere with and normalize high-fat diet-induced metabolic changes in serum and could provide a theoretical basis to establish rubusoside as a potentially therapeutic tool able to revert or prevent lipid metabolism disorders.
Collapse
Affiliation(s)
- Li Li
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, China; (L.L.); (M.J.); (Y.L.); (L.L.)
| | - Manjing Jiang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, China; (L.L.); (M.J.); (Y.L.); (L.L.)
| | - Yaohua Li
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, China; (L.L.); (M.J.); (Y.L.); (L.L.)
| | - Jian Su
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530001, China;
| | - Li Li
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, China; (L.L.); (M.J.); (Y.L.); (L.L.)
| | - Xiaosheng Qu
- National Engineering Laboratory of Southwest Endangered Medicinal Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
- Correspondence: (X.Q.); (L.F.); Tel./Fax: +86-771-560-1290 (X.Q.); +86-771-495-3513 (L.F.)
| | - Lanlan Fan
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, China; (L.L.); (M.J.); (Y.L.); (L.L.)
- Correspondence: (X.Q.); (L.F.); Tel./Fax: +86-771-560-1290 (X.Q.); +86-771-495-3513 (L.F.)
| |
Collapse
|