1
|
Benkhoucha M, Tran NL, Senoner I, Breville G, Fritah H, Migliorini D, Dutoit V, Lalive PH. c-Met + Cytotoxic T Lymphocytes Exhibit Enhanced Cytotoxicity in Mice and Humans In Vitro Tumor Models. Biomedicines 2023; 11:3123. [PMID: 38137344 PMCID: PMC10740932 DOI: 10.3390/biomedicines11123123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
CD8+ cytotoxic T lymphocytes (CTLs) play a crucial role in anti-tumor immunity. In a previous study, we identified a subset of murine effector CTLs expressing the hepatocyte growth factor (HGF) receptor, c-Met (c-Met+ CTLs), that are endowed with enhanced cytolytic capacity. HGF directly inhibited the cytolytic function of c-Met+ CTLs, both in 2D in vitro assays and in vivo, leading to reduced T cell responses against metastatic melanoma. To further investigate the role of c-Met+ CTLs in a three-dimensional (3D) setting, we studied their function within B16 melanoma spheroids and examined the impact of cell-cell contact on the modulation of inhibitory checkpoint molecules' expression, such as KLRG1, PD-1, and CTLA-4. Additionally, we evaluated the cytolytic capacity of human CTL clones expressing c-Met (c-Met+) and compared it to c-Met- CTL clones. Our results indicated that, similar to their murine counterparts, c-Met+ human CTL clones exhibited increased cytolytic activity compared to c-Met- CTL clones, and this enhanced function was negatively regulated by the presence of HGF. Taken together, our findings highlight the potential of targeting the HGF/c-Met pathway to modulate CTL-mediated anti-tumor immunity. This research holds promise for developing strategies to enhance the effectiveness of CTL-based immunotherapies against cancer.
Collapse
Affiliation(s)
- Mahdia Benkhoucha
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.B.); (N.L.T.); (I.S.); (H.F.)
| | - Ngoc Lan Tran
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.B.); (N.L.T.); (I.S.); (H.F.)
| | - Isis Senoner
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.B.); (N.L.T.); (I.S.); (H.F.)
| | - Gautier Breville
- Department of Clinical Neurosciences, Division of Neurology, University Hospital of Geneva, 1205 Geneva, Switzerland;
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hajer Fritah
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.B.); (N.L.T.); (I.S.); (H.F.)
| | - Denis Migliorini
- Brain Tumor and Immune Cell Engineering Laboratory, Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (D.M.); (V.D.)
- Department of Oncology, Unit of Neuro-Oncology, University Hospital of Geneva, 1205 Geneva, Switzerland
| | - Valérie Dutoit
- Brain Tumor and Immune Cell Engineering Laboratory, Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (D.M.); (V.D.)
| | - Patrice H. Lalive
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.B.); (N.L.T.); (I.S.); (H.F.)
- Department of Clinical Neurosciences, Division of Neurology, University Hospital of Geneva, 1205 Geneva, Switzerland;
| |
Collapse
|
2
|
Cecchi F, Rex K, Schmidt J, Vocke CD, Lee YH, Burkett S, Baker D, Damore MA, Coxon A, Burgess TL, Bottaro DP. Rilotumumab Resistance Acquired by Intracrine Hepatocyte Growth Factor Signaling. Cancers (Basel) 2023; 15:460. [PMID: 36672409 PMCID: PMC9857108 DOI: 10.3390/cancers15020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Drug resistance is a long-standing impediment to effective systemic cancer therapy and acquired drug resistance is a growing problem for molecularly-targeted therapeutics that otherwise have shown unprecedented successes in disease control. The hepatocyte growth factor (HGF)/Met receptor pathway signaling is frequently involved in cancer and has been a subject of targeted drug development for nearly 30 years. To anticipate and study specific resistance mechanisms associated with targeting this pathway, we engineered resistance to the HGF-neutralizing antibody rilotumumab in glioblastoma cells harboring autocrine HGF/Met signaling, a frequent abnormality of this brain cancer in humans. We found that rilotumumab resistance was acquired through an unusual mechanism comprising dramatic HGF overproduction and misfolding, endoplasmic reticulum (ER) stress-response signaling and redirected vesicular trafficking that effectively sequestered rilotumumab and misfolded HGF from native HGF and activated Met. Amplification of MET and HGF genes, with evidence of rapidly acquired intron-less, reverse-transcribed copies in DNA, was also observed. These changes enabled persistent Met pathway activation and improved cell survival under stress conditions. Point mutations in the HGF pathway or other complementary or downstream growth regulatory cascades that are frequently associated with targeted drug resistance in other prevalent cancer types were not observed. Although resistant cells were significantly more malignant, they retained sensitivity to Met kinase inhibition and acquired sensitivity to inhibition of ER stress signaling and cholesterol biosynthesis. Defining this mechanism reveals details of a rapidly acquired yet highly-orchestrated multisystem route of resistance to a selective molecularly-targeted agent and suggests strategies for early detection and effective intervention.
Collapse
Affiliation(s)
- Fabiola Cecchi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karen Rex
- Amgen, Inc., Thousand Oaks, CA 91320, USA
| | | | - Cathy D. Vocke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Young H. Lee
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandra Burkett
- Molecular Cytogenetics Core Facility, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | | - Donald P. Bottaro
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Pothula SP, Xu Z, Goldstein D, Pirola RC, Wilson JS, Apte MV. Targeting HGF/c-MET Axis in Pancreatic Cancer. Int J Mol Sci 2020; 21:9170. [PMID: 33271944 PMCID: PMC7730415 DOI: 10.3390/ijms21239170] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer (pancreatic ductal adenocarcinoma (PDAC/PC)) has been an aggressive disease that is associated with early metastases. It is characterized by dense and collagenous desmoplasia/stroma, predominantly produced by pancreatic stellate cells (PSCs). PSCs interact with cancer cells as well as other stromal cells, facilitating disease progression. A candidate growth factor pathway that may mediate this interaction is the hepatocyte growth factor (HGF)/c-MET pathway. HGF is produced by PSCs and its receptor c-MET is expressed on pancreatic cancer cells and endothelial cells. The current review discusses the role of the MET/HGF axis in tumour progression and dissemination of pancreatic cancer. Therapeutic approaches that were developed targeting either the ligand (HGF) or the receptor (c-MET) have not been shown to translate well into clinical settings. We discuss a two-pronged approach of targeting both the components of this pathway to interrupt the stromal-tumour interactions, which may represent a potential therapeutic strategy to improve outcomes in PC.
Collapse
Affiliation(s)
- Srinivasa P. Pothula
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - David Goldstein
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Romano C. Pirola
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Jeremy S. Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Minoti V. Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| |
Collapse
|
4
|
Nan X, Li HJ, Fang SB, Li QY, Wu YC. Structure-based discovery of novel 4-(2-fluorophenoxy)quinoline derivatives as c-Met inhibitors using isocyanide-involved multicomponent reactions. Eur J Med Chem 2020; 193:112241. [DOI: 10.1016/j.ejmech.2020.112241] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/01/2020] [Accepted: 03/13/2020] [Indexed: 11/29/2022]
|
5
|
Receptor Tyrosine Kinases: Principles and Functions in Glioma Invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:151-178. [PMID: 32034713 DOI: 10.1007/978-3-030-30651-9_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein tyrosine kinases are enzymes that are capable of adding a phosphate group to specific tyrosines on target proteins. A receptor tyrosine kinase (RTK) is a tyrosine kinase located at the cellular membrane and is activated by binding of a ligand via its extracellular domain. Protein phosphorylation by kinases is an important mechanism for communicating signals within a cell and regulating cellular activity; furthermore, this mechanism functions as an "on" or "off" switch in many cellular functions. Ninety unique tyrosine kinase genes, including 58 RTKs, were identified in the human genome; the products of these genes regulate cellular proliferation, survival, differentiation, function, and motility. Tyrosine kinases play a critical role in the development and progression of many types of cancer, in addition to their roles as key regulators of normal cellular processes. Recent studies have revealed that RTKs such as epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), c-Met, Tie, Axl, discoidin domain receptor 1 (DDR1), and erythropoietin-producing human hepatocellular carcinoma (Eph) play a major role in glioma invasion. Herein, we summarize recent advances in understanding the role of RTKs in glioma pathobiology, especially the invasive phenotype, and present the perspective that RTKs are a potential target of glioma therapy.
Collapse
|
6
|
DaSilva JO, Yang K, Perez Bay AE, Andreev J, Ngoi P, Pyles E, Franklin MC, Dudgeon D, Rafique A, Dore A, Delfino FJ, Potocky TB, Babb R, Chen G, MacDonald D, Olson WC, Thurston G, Daly C. A Biparatopic Antibody That Modulates MET Trafficking Exhibits Enhanced Efficacy Compared with Parental Antibodies in MET-Driven Tumor Models. Clin Cancer Res 2019; 26:1408-1419. [PMID: 31848185 DOI: 10.1158/1078-0432.ccr-19-2428] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/01/2019] [Accepted: 12/11/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Recent clinical data demonstrate that tumors harboring MET genetic alterations (exon 14 skip mutations and/or gene amplification) respond to small-molecule tyrosine kinase inhibitors, validating MET as a therapeutic target. Although antibody-mediated blockade of the MET pathway has not been successful in the clinic, the failures are likely the result of inadequate patient selection strategies as well as suboptimal antibody design. Thus, our goal was to generate a novel MET blocking antibody with enhanced efficacy. EXPERIMENTAL DESIGN Here, we describe the activity of a biparatopic MET×MET antibody that recognizes two distinct epitopes in the MET Sema domain. We use a combination of in vitro assays and tumor models to characterize the effect of our antibody on MET signaling, MET intracellular trafficking, and the growth of MET-dependent cells/tumors. RESULTS In MET-driven tumor models, our biparatopic antibody exhibits significantly better activity than either of the parental antibodies or the mixture of the two parental antibodies and outperforms several clinical-stage MET antibodies. Mechanistically, the biparatopic antibody inhibits MET recycling, thereby promoting lysosomal trafficking and degradation of MET. In contrast to the parental antibodies, the biparatopic antibody fails to activate MET-dependent biological responses, consistent with the observation that it recycles inefficiently and induces very transient downstream signaling. CONCLUSIONS Our results provide strong support for the notion that biparatopic antibodies are a promising therapeutic modality, potentially having greater efficacy than that predicted from the properties of the parental antibodies.
Collapse
Affiliation(s)
| | - Katie Yang
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | | | - Peter Ngoi
- UC Santa Cruz, Program for Biomedical Sciences and Engineering, Santa Cruz, California
| | - Erica Pyles
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | - Drew Dudgeon
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | - Anthony Dore
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | | | - Robert Babb
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Gang Chen
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | | | | | | |
Collapse
|
7
|
Yin Y, Guo J, Teng F, Yu L, Jiang Y, Xie K, Jiang M, Fang J. Preparation of a Novel One-Armed Anti-c-Met Antibody with Antitumor Activity Against Hepatocellular Carcinoma. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4173-4184. [PMID: 31849449 PMCID: PMC6911325 DOI: 10.2147/dddt.s224491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022]
Abstract
Introduction Antibody-based c-mesenchymal–epithelial transition factor (c-Met) inhibition is a promising strategy for hepatocellular carcinoma (HCC) treatment, but the intrinsic agonistic activity of the anti-c-Met antibody limits its application in drug development. Constructing a monovalent one-armed antibody has been reported to be an effective way to create an inhibitory anti-c-Met antibody. Materials and methods In the present study, a novel monovalent one-armed anti-c-Met antibody was constructed using the knobs-into-holes technology, and its inhibitory effects against HCC and the underlying mechanisms were explored. Results The one-armed anti-c-Met antibody blocked the hepatocyte growth factor (HGF)/c-Met interaction and the subsequent signal transduction, including phosphorylation of c-Met, Grb2-associated binding protein 1(Gab-1), extracellular regulated protein kinases 1/2(Erk1/2), and Akt, also referred to as protein kinase B (PKB) in HCC cell line HepG2. Furthermore, the autocrine stimulation of HepG2 cell proliferation and HGF-induced HCC cell migration were strongly inhibited by the one-armed anti-c-Met antibody. In addition, the antibody also reduced the HGF-induced proliferation and tube formation of human umbilical vein endothelial cells (HUVECs). Treating HepG2-bearing mice with the one-armed anti-c-Met antibody significantly inhibited the tumor growth in the xenograft nude mouse model. Conclusion The one-armed anti-c-Met antibody derived from the full-length bivalent anti-c-Met antibody might serve as a potential antitumor agent against HCC.
Collapse
Affiliation(s)
- Yanxin Yin
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, People's Republic of China.,Biomedical Research Center, Tongji University Suzhou Institute, Suzhou, Jiangsu 215101, People's Republic of China
| | - Jia Guo
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, People's Republic of China.,Biomedical Research Center, Tongji University Suzhou Institute, Suzhou, Jiangsu 215101, People's Republic of China
| | - Fei Teng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, People's Republic of China.,Biomedical Research Center, Tongji University Suzhou Institute, Suzhou, Jiangsu 215101, People's Republic of China
| | - Lihua Yu
- Biomedical Research Center, Tongji University Suzhou Institute, Suzhou, Jiangsu 215101, People's Republic of China
| | - Yun Jiang
- Biomedical Research Center, Tongji University Suzhou Institute, Suzhou, Jiangsu 215101, People's Republic of China
| | - Kun Xie
- School of Life Science and Technology, Tongji University, Shanghai 200092, People's Republic of China
| | - Ming Jiang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, People's Republic of China.,Biomedical Research Center, Tongji University Suzhou Institute, Suzhou, Jiangsu 215101, People's Republic of China
| | - Jianmin Fang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, People's Republic of China.,Biomedical Research Center, Tongji University Suzhou Institute, Suzhou, Jiangsu 215101, People's Republic of China.,School of Life Science and Technology, Tongji University, Shanghai 200092, People's Republic of China
| |
Collapse
|
8
|
Lv PC, Yang YS, Wang ZC. Recent Progress in the Development of Small Molecule c-Met Inhibitors. Curr Top Med Chem 2019; 19:1276-1288. [PMID: 31526339 DOI: 10.2174/1568026619666190712205353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 02/08/2023]
Abstract
C-Met, also referred to as Hepatocyte Growth Factor Receptor (HGFR), is a heterodimeric
receptor tyrosine kinase. It has been determined that c-Met gene mutations, overexpression, and amplification
also occur in a variety of human tumor types, and these events are closely related to the aberrant
activation of the HGF/c-Met signaling pathway. Meanwhile, high c-Met expression is closely associated
with poor prognosis in cancer patients. The c-Met kinase has emerged as an attractive target for developing
antitumor agents. In this review, we cover the recent advances on the small molecule c-Met inhibitors
discovered from 2018 until now, with a main focus on the rational design, synthesis and structureactivity
relationship analysis.
Collapse
Affiliation(s)
- Peng-Cheng Lv
- Department of Chemistry, Purdue University, West Lafayette, Indiana, IN 47907, United States
| | - Yu-Shun Yang
- Department of Chemistry, Purdue University, West Lafayette, Indiana, IN 47907, United States
| | - Zhong-Chang Wang
- Department of Chemistry, Purdue University, West Lafayette, Indiana, IN 47907, United States
| |
Collapse
|
9
|
Design, synthesis and evaluation of sulfonylurea-containing 4-phenoxyquinolines as highly selective c-Met kinase inhibitors. Bioorg Med Chem 2019; 27:2801-2812. [DOI: 10.1016/j.bmc.2019.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/26/2019] [Accepted: 05/04/2019] [Indexed: 12/20/2022]
|
10
|
Cheng F, Guo D. MET in glioma: signaling pathways and targeted therapies. J Exp Clin Cancer Res 2019; 38:270. [PMID: 31221203 PMCID: PMC6585013 DOI: 10.1186/s13046-019-1269-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Gliomas represent the most common type of malignant brain tumor, among which, glioblastoma remains a clinical challenge with limited treatment options and dismal prognosis. It has been shown that the dysregulated receptor tyrosine kinase (RTK, including EGFR, MET, PDGFRα, ect.) signaling pathways have pivotal roles in the progression of gliomas, especially glioblastoma. Increasing evidence suggests that expression levels of the RTK MET and its specific stimulatory factors are significantly increased in glioblastomas compared to those in normal brain tissues, whereas some negative regulators are found to be downregulated. Mutations in MET, as well as the dysregulation of other regulators of cross-talk with MET signaling pathways, have also been identified. MET and its ligand hepatocyte growth factor (HGF) play a critical role in the proliferation, survival, migration, invasion, angiogenesis, stem cell characteristics, and therapeutic resistance and recurrence of glioblastomas. Therefore, combined targeted therapy for this pathway and associated molecules could be a novel and attractive strategy for the treatment of human glioblastoma. In this review, we highlight progress made in the understanding of MET signaling in glioma and advances in therapies targeting HGF/MET molecules for glioma patients in recent years, in addition to studies on the expression and mutation status of MET.
Collapse
Affiliation(s)
- Fangling Cheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030 China
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030 China
| |
Collapse
|
11
|
Moldovan Loomis C, Dutzar B, Ojala EW, Hendrix L, Karasek C, Scalley-Kim M, Mulligan J, Fan P, Billgren J, Rubin V, Boshaw H, Kwon G, Marzolf S, Stewart E, Jurchen D, Pederson SM, Perrino McCulloch L, Baker B, Cady RK, Latham JA, Allison D, Garcia-Martinez LF. Pharmacologic Characterization of ALD1910, a Potent Humanized Monoclonal Antibody against the Pituitary Adenylate Cyclase-Activating Peptide. J Pharmacol Exp Ther 2019; 369:26-36. [PMID: 30643015 DOI: 10.1124/jpet.118.253443] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/27/2018] [Indexed: 01/10/2023] Open
Abstract
Migraine is a debilitating disease that affects almost 15% of the population worldwide and is the first cause of disability in people under 50 years of age, yet its etiology and pathophysiology remain incompletely understood. Recently, small molecules and therapeutic antibodies that block the calcitonin gene-related peptide (CGRP) signaling pathway have reduced migraine occurrence and aborted acute attacks of migraine in clinical trials and provided prevention in patients with episodic and chronic migraine. Heterogeneity is present within each diagnosis and patient's response to treatment, suggesting migraine as a final common pathway potentially activated by multiple mechanisms, e.g., not all migraine attacks respond to or are prevented by anti-CGRP pharmacological interventions. Consequently, other unique mechanisms central to migraine pathogenesis may present new targets for drug development. Pituitary adenylate cyclase-activating peptide (PACAP) is an attractive novel target for treatment of migraines. We generated a specific, high-affinity, neutralizing monoclonal antibody (ALD1910) with reactivity to both PACAP38 and PACAP27. In vitro, ALD1910 effectively antagonizes PACAP38 signaling through the pituitary adenylate cyclase-activating peptide type I receptor, vasoactive intestinal peptide receptor 1, and vasoactive intestinal peptide receptor 2. ALD1910 recognizes a nonlinear epitope within PACAP and blocks its binding to the cell surface. To test ALD1910 antagonistic properties directed against endogenous PACAP, we developed an umbellulone-induced rat model of neurogenic vasodilation and parasympathetic lacrimation. In vivo, this model demonstrates that the antagonistic activity of ALD1910 is dose-dependent, retaining efficacy at doses as low as 0.3 mg/kg. These results indicate that ALD1910 represents a potential therapeutic antibody to address PACAP-mediated migraine.
Collapse
Affiliation(s)
| | | | | | - Lee Hendrix
- Alder BioPharmaceuticals, Inc., Bothell, Washington
| | | | | | | | - Pei Fan
- Alder BioPharmaceuticals, Inc., Bothell, Washington
| | | | | | - Heidi Boshaw
- Alder BioPharmaceuticals, Inc., Bothell, Washington
| | - Gayle Kwon
- Alder BioPharmaceuticals, Inc., Bothell, Washington
| | - Sam Marzolf
- Alder BioPharmaceuticals, Inc., Bothell, Washington
| | | | | | | | | | - Brian Baker
- Alder BioPharmaceuticals, Inc., Bothell, Washington
| | - Roger K Cady
- Alder BioPharmaceuticals, Inc., Bothell, Washington
| | | | - Dan Allison
- Alder BioPharmaceuticals, Inc., Bothell, Washington
| | | |
Collapse
|
12
|
Zhang QW, Ye ZD, Shen C, Tie HX, Wang L, Shi L. Synthesis of novel 6,7-dimethoxy-4-anilinoquinolines as potent c-Met inhibitors. J Enzyme Inhib Med Chem 2018; 34:124-133. [PMID: 30422010 PMCID: PMC6237173 DOI: 10.1080/14756366.2018.1533822] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
HGF/c-Met signalling pathway plays an important role in the development of cancers. A series of 6,7-dimethoxy-4-anilinoquinolines possessing benzimidazole moiety were synthesised and identified as potent inhibitors of the tyrosine kinase c-Met. Their in vitro biological activities against three cancer cell lines (A549, MCF-7, and MKN-45) were also evaluated. Most of these compounds exhibited moderate to remarkable potency. Among them, compound 12n showed the most potent inhibitory activity against c-Met with IC50 value of 0.030 ± 0.008 µM and it also showed excellent anticancer activity against the tested cancer cell lines at low micromolar concentration. Molecular docking verified the results and revealed the possible binding mode of the most promising compound 12n into the ATP-binding site of c-Met kinase.
Collapse
Affiliation(s)
- Qing-Wen Zhang
- a Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , P. R. China
| | - Zi-Dan Ye
- a Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , P. R. China
| | - Chang Shen
- a Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , P. R. China
| | - Hong-Xia Tie
- a Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , P. R. China
| | - Lei Wang
- a Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , P. R. China
| | - Lei Shi
- a Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , P. R. China
| |
Collapse
|
13
|
Hoang NT, Acevedo LA, Mann MJ, Tolani B. A review of soft-tissue sarcomas: translation of biological advances into treatment measures. Cancer Manag Res 2018; 10:1089-1114. [PMID: 29785138 PMCID: PMC5955018 DOI: 10.2147/cmar.s159641] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Soft-tissue sarcomas are rare malignant tumors arising from connective tissues and have an overall incidence of about five per 100,000 per year. While this diverse family of malignancies comprises over 100 histological subtypes and many molecular aberrations are prevalent within specific sarcomas, very few are therapeutically targeted. Instead of utilizing molecular signatures, first-line sarcoma treatment options are still limited to traditional surgery and chemotherapy, and many of the latter remain largely ineffective and are plagued by disease resistance. Currently, the mechanism of sarcoma oncogenesis remains largely unknown, thus necessitating a better understanding of pathogenesis. Although substantial progress has not occurred with molecularly targeted therapies over the past 30 years, increased knowledge about sarcoma biology could lead to new and more effective treatment strategies to move the field forward. Here, we discuss biological advances in the core molecular determinants in some of the most common soft-tissue sarcomas - liposarcoma, angiosarcoma, leiomyosarcoma, rhabdomyosarcoma, Ewing's sarcoma, and synovial sarcoma - with an emphasis on emerging genomic and molecular pathway targets and immunotherapeutic treatment strategies to combat this confounding disease.
Collapse
Affiliation(s)
- Ngoc T Hoang
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Luis A Acevedo
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Michael J Mann
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Bhairavi Tolani
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
14
|
Immunotherapies: Exploiting the Immune System for Cancer Treatment. J Immunol Res 2018; 2018:9585614. [PMID: 29725606 PMCID: PMC5872614 DOI: 10.1155/2018/9585614] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 12/31/2022] Open
Abstract
Cancer is a condition that has plagued humanity for thousands of years, with the first depictions dating back to ancient Egyptian times. However, not until recent decades have biological therapeutics been developed and refined enough to safely and effectively combat cancer. Three unique immunotherapies have gained traction in recent decades: adoptive T cell transfer, checkpoint inhibitors, and bivalent antibodies. Each has led to clinically approved therapies, as well as to therapies in preclinical and ongoing clinical trials. In this review, we outline the method by which these 3 immunotherapies function as well as any major immunotherapeutic drugs developed for treating a variety of cancers.
Collapse
|
15
|
Recommendations for the Management of Rare Kidney Cancers. Eur Urol 2017; 72:974-983. [DOI: 10.1016/j.eururo.2017.06.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/30/2017] [Indexed: 12/31/2022]
|
16
|
Sánchez-Gastaldo A, Kempf E, González del Alba A, Duran I. Systemic treatment of renal cell cancer: A comprehensive review. Cancer Treat Rev 2017; 60:77-89. [DOI: 10.1016/j.ctrv.2017.08.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/26/2017] [Accepted: 08/26/2017] [Indexed: 12/27/2022]
|
17
|
Glisson B, Besse B, Dols MC, Dubey S, Schupp M, Jain R, Jiang Y, Menon H, Nackaerts K, Orlov S, Paz-Ares L, Ramlau R, Tang R, Zhang Y, Zhu M. A Randomized, Placebo-Controlled, Phase 1b/2 Study of Rilotumumab or Ganitumab in Combination With Platinum-Based Chemotherapy as First-Line Treatment for Extensive-Stage Small-Cell Lung Cancer. Clin Lung Cancer 2017; 18:615-625.e8. [DOI: 10.1016/j.cllc.2017.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 11/28/2022]
|
18
|
Catenacci DVT, Tebbutt NC, Davidenko I, Murad AM, Al-Batran SE, Ilson DH, Tjulandin S, Gotovkin E, Karaszewska B, Bondarenko I, Tejani MA, Udrea AA, Tehfe M, De Vita F, Turkington C, Tang R, Ang A, Zhang Y, Hoang T, Sidhu R, Cunningham D. Rilotumumab plus epirubicin, cisplatin, and capecitabine as first-line therapy in advanced MET-positive gastric or gastro-oesophageal junction cancer (RILOMET-1): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2017; 18:1467-1482. [PMID: 28958504 DOI: 10.1016/s1470-2045(17)30566-1] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Rilotumumab is a fully human monoclonal antibody that selectively targets the ligand of the MET receptor, hepatocyte growth factor (HGF). We aimed to assess the efficacy, safety, and pharmacokinetics of rilotumumab combined with epirubicin, cisplatin, and capecitabine, and to assess potential biomarkers, in patients with advanced MET-positive gastric or gastro-oesophageal junction adenocarcinoma. METHODS This multicentre, randomised, double-blind, placebo-controlled, phase 3 study was done at 152 centres in 27 countries. We recruited adults (aged ≥18 years) with unresectable locally advanced or metastatic gastric or gastro-oesophageal junction adenocarcinoma, an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1, MET-positive tumours (≥25% of tumour cells with membrane staining of ≥1+ staining intensity), and evaluable disease, who had not received previous systemic therapy. Eligible patients were randomly assigned (1:1) via a computerised voice response system to receive rilotumumab 15 mg/kg intravenously or placebo in combination with open-label chemotherapy (epirubicin 50 mg/m2 intravenously; cisplatin 60 mg/m2 intravenously; capecitabine 625 mg/m2 orally twice daily) in 21-day cycles for up to ten cycles. After completion of chemotherapy, patients continued to receive rilotumumab or placebo monotherapy until disease progression, intolerability, withdrawal of consent, or study termination. Randomisation was stratified by disease extent and ECOG performance status. Both patients and physicians were masked to study treatment assignment. The primary endpoint was overall survival, analysed by intention to treat. We report the final analysis. This study is registered with ClinicalTrials.gov, number NCT01697072. FINDINGS Between Nov 7, 2012, and Nov 21, 2014, 609 patients were randomly assigned to rilotumumab plus epirubicin, cisplatin, and capecitabine (rilotumumab group; n=304) or placebo plus epirubicin, cisplatin, and capecitabine (placebo group; n=305). Study treatment was stopped early after an independent data monitoring committee found a higher number of deaths in the rilotumumab group than in the placebo group; all patients in the rilotumumab group subsequently discontinued all study treatment. Median follow-up was 7·7 months (IQR 3·6-12·0) for patients in the rilotumumab group and 9·4 months (5·3-13·1) for patients in the placebo group. Median overall survival was 8·8 months (95% CI 7·7-10·2) in the rilotumumab group compared with 10·7 months (9·6-12·4) in the placebo group (stratified hazard ratio 1·34, 95% CI 1·10-1·63; p=0·003). The most common grade 3 or worse adverse events in the rilotumumab and placebo groups were neutropenia (86 [29%] of 298 patients vs 97 [32%] of 299 patients), anaemia (37 [12%] vs 43 [14%]), and fatigue (30 [10%] vs 35 [12%]). The frequency of serious adverse events was similar in the rilotumumab and placebo groups (142 [48%] vs 149 [50%]). More deaths due to adverse events occurred in the rilotumumab group than the placebo group (42 [14%] vs 31 [10%]). In the rilotumumab group, 33 (11%) of 298 patients had fatal adverse events due to disease progression, and nine (3%) had fatal events not due to disease progression. In the placebo group, 23 (8%) of 299 patients had fatal adverse events due to disease progression, and eight (3%) had fatal events not due to disease progression. INTERPRETATION Ligand-blocking inhibition of the MET pathway with rilotumumab is not effective in improving clinical outcomes in patients with MET-positive gastric or gastro-oesophageal adenocarcinoma. FUNDING Amgen.
Collapse
Affiliation(s)
| | | | - Irina Davidenko
- State Budgetary Healthcare Institution, Clinical Oncology Dispensary #1, Krasnodar Region Ministry of Healthcare, Krasnodar, Russia
| | - André M Murad
- Hospital das Clínicas da Universidade Federal de Minas Gerais, Horizonte, Brazil
| | - Salah-Eddin Al-Batran
- Institute of Clinical Cancer Research, Krankenhaus Nordwest, University Cancer Center, Frankfurt, Germany
| | - David H Ilson
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Evengy Gotovkin
- Regional Budgetary Institution of Public Health Ivanovo Regional Oncology Dispensary, Ivanovo, Russia
| | | | - Igor Bondarenko
- Dnipropetrovsk Medical Academy, City Multifield Clinical Hospital 4, Dnipropetrovsk, Ukraine
| | - Mohamedtaki A Tejani
- University of Rochester Medical Center, James P Wilmot Cancer Center, Rochester, NY, USA
| | | | - Mustapha Tehfe
- Centre Hospitalier de L'Universite de Montreal Notre-Dame, Montreal, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tumor Inhibitory Effect of IRCR201, a Novel Cross-Reactive c-Met Antibody Targeting the PSI Domain. Int J Mol Sci 2017; 18:ijms18091968. [PMID: 28902178 PMCID: PMC5618617 DOI: 10.3390/ijms18091968] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/01/2017] [Accepted: 09/08/2017] [Indexed: 01/03/2023] Open
Abstract
Hepatocyte growth factor receptor (HGFR, c-Met) is an essential member of the receptor tyrosine kinase (RTK) family that is often dysregulated during tumor progression, driving a malignant phenotypic state and modulating important cellular functions including tumor growth, invasion, metastasis, and angiogenesis, providing a strong rationale for targeting HGF/c-Met signaling axis in cancer therapy. Based on its protumorigenic potentials, we developed IRCR201, a potent antagonistic antibody targeting the plexin-semaphorin-integrin (PSI) domain of c-Met, using synthetic human antibody phage libraries. We characterized and evaluated the biochemical properties and tumor inhibitory effect of IRCR201 in vitro and in vivo. IRCR201 is a novel fully-human bivalent therapeutic antibody that exhibits cross-reactivity against both human and mouse c-Met proteins with high affinity and specificity. IRCR201 displayed low agonist activity and rapidly depleted total c-Met protein via the lysosomal degradation pathway, inhibiting c-Met-dependent downstream activation and attenuating cellular proliferation in various c-Met-expressing cancer cells. In vivo tumor xenograft models also demonstrated the superior tumor inhibitory responsiveness of IRCR201. Taken together, IRCR201 provides a promising therapeutic agent for c-Met-positive cancer patients through suppressing the c-Met signaling pathway and tumor growth.
Collapse
|
20
|
DiCara DM, Chirgadze DY, Pope AR, Karatt-Vellatt A, Winter A, Slavny P, van den Heuvel J, Parthiban K, Holland J, Packman LC, Mavria G, Hoffmann J, Birchmeier W, Gherardi E, McCafferty J. Characterization and structural determination of a new anti-MET function-blocking antibody with binding epitope distinct from the ligand binding domain. Sci Rep 2017; 7:9000. [PMID: 28827556 PMCID: PMC5567289 DOI: 10.1038/s41598-017-09460-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/25/2017] [Indexed: 12/18/2022] Open
Abstract
The growth and motility factor Hepatocyte Growth Factor/Scatter Factor (HGF/SF) and its receptor, the product of the MET proto-oncogene, promote invasion and metastasis of tumor cells and have been considered potential targets for cancer therapy. We generated a new Met-blocking antibody which binds outside the ligand-binding site, and determined the crystal structure of the Fab in complex with its target, which identifies the binding site as the Met Ig1 domain. The antibody, 107_A07, inhibited HGF/SF-induced cell migration and proliferation in vitro and inhibited growth of tumor xenografts in vivo. In biochemical assays, 107_A07 competes with both HGF/SF and its truncated splice variant NK1 for MET binding, despite the location of the antibody epitope on a domain (Ig1) not reported to bind NK1 or HGF/SF. Overlay of the Fab-MET crystal structure with the InternalinB-MET crystal structure shows that the 107_A07 Fab comes into close proximity with the HGF/SF-binding SEMA domain when MET is in the “compact”, InternalinB-bound conformation, but not when MET is in the “open” conformation. These findings provide further support for the importance of the “compact” conformation of the MET extracellular domain, and the relevance of this conformation to HGF/SF binding and signaling.
Collapse
Affiliation(s)
- Danielle M DiCara
- MRC Centre, Hills Road, Cambridge, CB2 2QH, UK.,Department of Oncology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK.,Genentech Inc., South San Francisco, 94080, USA
| | - Dimitri Y Chirgadze
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Anthony R Pope
- IONTAS Ltd, Babraham Institute, Babraham, Cambridgeshire, CB22 3AT, UK
| | | | - Anja Winter
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.,Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, UK
| | - Peter Slavny
- IONTAS Ltd, Babraham Institute, Babraham, Cambridgeshire, CB22 3AT, UK
| | - Joop van den Heuvel
- Helmholtz Zentrum für Infektionsforschung, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Kothai Parthiban
- IONTAS Ltd, Babraham Institute, Babraham, Cambridgeshire, CB22 3AT, UK
| | - Jane Holland
- Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Len C Packman
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Georgia Mavria
- Leeds Institute of Cancer and Pathology, University of Leeds, St James' University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Jens Hoffmann
- Experimental Pharmacology & Oncology Berlin-Buch GmbH, Robert-Rössle-Str. 10, 13125, Berlin-Buch, Germany
| | - Walter Birchmeier
- Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Ermanno Gherardi
- MRC Centre, Hills Road, Cambridge, CB2 2QH, UK. .,Department of Oncology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK. .,Division of Immunology and General Pathology, Department of Molecular Medicine, 1 via A Ferrata, 27100, Pavia, Italy.
| | - John McCafferty
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK. .,IONTAS Ltd, Babraham Institute, Babraham, Cambridgeshire, CB22 3AT, UK.
| |
Collapse
|
21
|
A Review of Anti-Angiogenic Targets for Monoclonal Antibody Cancer Therapy. Int J Mol Sci 2017; 18:ijms18081786. [PMID: 28817103 PMCID: PMC5578174 DOI: 10.3390/ijms18081786] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/13/2022] Open
Abstract
Tumor angiogenesis is a key event that governs tumor progression and metastasis. It is controlled by the complicated and coordinated actions of pro-angiogenic factors and their receptors that become upregulated during tumorigenesis. Over the past several decades, vascular endothelial growth factor (VEGF) signaling has been identified as a central axis in tumor angiogenesis. The remarkable advent of recombinant antibody technology has led to the development of bevacizumab, a humanized antibody that targets VEGF and is a leading clinical therapy to suppress tumor angiogenesis. However, despite the clinical efficacy of bevacizumab, its significant side effects and drug resistance have raised concerns necessitating the identification of novel drug targets and development of novel therapeutics to combat tumor angiogenesis. This review will highlight the role and relevance of VEGF and other potential therapeutic targets and their receptors in angiogenesis. Simultaneously, we will also cover the current status of monoclonal antibodies being developed to target these candidates for cancer therapy.
Collapse
|
22
|
Vaidya KS, Oleksijew A, Tucker LA, Pappano WN, Anderson MG, Grinnell CM, Zhang Q, Heighton SJ, Mitten MJ, Mishra S, Palma JP, Wang J, Reilly EB, Boghaert ER. A "Prozone-Like" Effect Influences the Efficacy of the Monoclonal Antibody ABT-700 against the Hepatocyte Growth Factor Receptor. Pharmacology 2017; 100:229-242. [PMID: 28743107 DOI: 10.1159/000478663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/12/2017] [Indexed: 11/19/2022]
Abstract
ABT-700 is a therapeutic antibody against the hepatocyte growth factor receptor (MET). At doses or regimens that lead to exposures exceeding optimum in vivo, the efficacy of ABT-700 is unexpectedly reduced. We hypothesized that this reduction in efficacy was due to a "prozone-like" effect in vivo. A prozone-like effect, which is a reduction in efficacy beyond optimum exposure, is caused due a mechanism similar to the generation of false negative flocculation tests by excessive antibody titres. In vitro, we demonstrate that at higher ABT-700 concentrations, this "prozone-like" effect is mediated by a progressive conversion from bivalent to ineffective monovalent binding of the antibody. In vivo, the efficacy of ABT-700 is dependent on an optimum range of exposure as well. Our data suggest that the "prozone-like" effect is operative and independent of target expression. ABT-700 dose, regimen, exposure, and tumor burden are interdependent variables influencing the "prozone-like" effect and mediating and in vivo efficacy. By optimization of dosage and regimen we demonstrate that the "prozone-like" effect can be alleviated and ABT-700 efficacy at varying tumor loads can be further extended in combination with cisplatin. Our results suggest that optimization of exposure taking tumor burden into account may alleviate "prozone-like" effects without compromising efficacy.
Collapse
|
23
|
Rothenberger NJ, Stabile LP. Hepatocyte Growth Factor/c-Met Signaling in Head and Neck Cancer and Implications for Treatment. Cancers (Basel) 2017; 9:cancers9040039. [PMID: 28441771 PMCID: PMC5406714 DOI: 10.3390/cancers9040039] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/14/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022] Open
Abstract
Aberrant signaling of the hepatocyte growth factor (HGF)/c-Met pathway has been identified as a promoter of tumorigenesis in several tumor types including head and neck squamous cell carcinoma (HNSCC). Despite a relatively low c-Met mutation frequency, overexpression of HGF and its receptor c-Met has been observed in more than 80% of HNSCC tumors, with preclinical and clinical studies linking overexpression with cellular proliferation, invasion, migration, and poor prognosis. c-Met is activated by HGF through a paracrine mechanism to promote cellular morphogenesis enabling cells to acquire mesenchymal phenotypes in part through the epithelial-mesenchymal transition, contributing to metastasis. The HGF/c-Met pathway may also act as a resistance mechanism against epidermal growth factor receptor (EGFR) inhibition in advanced HNSCC. Furthermore, with the identification of a biologically distinct subset of HNSCC tumors acquired from human papillomavirus (HPV) infection that generally portends a good prognosis, high expression of HGF or c-Met in HPV-negative tumors has been associated with worse prognosis. Dysregulated HGF/c-Met signaling results in an aggressive HNSCC phenotype which has led to clinical investigations for targeted inhibition of this pathway. In this review, HGF/c-Met signaling, pathway alterations, associations with clinical outcomes, and preclinical and clinical therapeutic strategies for targeting HGF/c-Met signaling in HNSCC are discussed.
Collapse
Affiliation(s)
- Natalie J Rothenberger
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Laura P Stabile
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
- University of Pittsburgh Cancer Center, Pittsburgh, PA 15213, USA.
| |
Collapse
|
24
|
Wang X, Jiang N, Zhao S, Xi S, Wang J, Jing T, Zhang W, Guo M, Gong P, Zhai X. Design, synthesis and biological evaluation of novel 4-(2-fluorophenoxy)quinoline derivatives as selective c-Met inhibitors. Bioorg Med Chem 2017; 25:886-896. [DOI: 10.1016/j.bmc.2016.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/02/2016] [Indexed: 11/29/2022]
|
25
|
Zhang Y, Kuchimanchi M, Zhu M, Doshi S, Hoang T, Kasichayanula S. Assessment of pharmacokinetic interaction between rilotumumab and epirubicin, cisplatin and capecitabine (ECX) in a Phase 3 study in gastric cancer. Br J Clin Pharmacol 2016; 83:1048-1055. [PMID: 27966237 DOI: 10.1111/bcp.13179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/20/2016] [Accepted: 10/27/2016] [Indexed: 02/06/2023] Open
Abstract
AIMS Rilotumumab is a fully human monoclonal antibody investigated for the treatment of MET-positive gastric cancer. The aim of this study was to evaluate the potential pharmacokinetic (PK)-based drug-drug interaction (DDI) between rilotumumab and epirubicin (E), cisplatin(C) and capecitabine (X). METHODS This was a Phase 3 double-blind, placebo-controlled study, in which rilotumumab, epirubicin and cisplatin were administered intravenously at 15 mg kg-1 , 50 mg m-2 , and 60 mg m-2 Q3W, respectively, while capecitabine was given orally at 625 mg m-2 twice daily. Rilotumumab PK samples were taken at pre-dose and at the end-of-infusion from all patients in cycles 1, 3, 5 and 7. ECX PK samples were taken in cycle 3 from patients who participated in the intensive PK assessment. ECX PK was assessed by non-compartmental (NCA) analyses and PK parameters were compared between two arms. Rilotumumab PK was assessed by comparing the observed rilotumumab serum concentrations with model-predicted concentrations using a population PK model developed from previous Phase 1 and Phase 2 studies. RESULTS The study enrolled 609 patients. ECX plasma concentrations in the presence and absence of rilotumumab were similar, as demonstrated by the geometric mean ratios for Cmax and AUC, which were close to 1.0, suggesting ECX PK was not affected by co-administration of rilotumumab. The observed rilotumumab serum concentrations were similar to the values predicted by population PK modelling on the basis of a prediction-corrected visual predictive check, indicating rilotumumab exposure was not affected by co-administration of ECX. CONCLUSIONS The results suggest lack of PK-based DDI between rilotumumab and ECX.
Collapse
Affiliation(s)
- Yilong Zhang
- Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, California, 91320
| | - Mita Kuchimanchi
- Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, California, 91320
| | - Min Zhu
- Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, California, 91320
| | - Sameer Doshi
- Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, California, 91320
| | - Tien Hoang
- Clinical Development, Amgen Inc., Thousand Oaks, California, 91320
| | | |
Collapse
|
26
|
Greenall SA, Adams TE, Johns TG. Incomplete target neutralization by the anti-cancer antibody rilotumumab. MAbs 2016; 8:246-52. [PMID: 26750997 DOI: 10.1080/19420862.2015.1122149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The antibody rilotumumab, which has been tested in multiple Phase 2 and Phase 3 trials, has been reported to neutralize hepatocyte growth factor (HGF), the ligand for the oncogene MET. However, we report that rilotumumab does not prevent HGF from directly binding to MET on conventional and primary patient-derived human gliomasphere lines, a trait driven by the HGF α-chain, which remains free to engage cell-surface glycosaminoglycans and the receptor MET. This binding induces MET phosphorylation, initiates robust AKT and ERK signaling and potentiates biological effects such as cell scattering. This partial antagonism was highly exacerbated in the presence of activated epidermal growth factor receptor, which is common in several cancers. Hence, we confirm that rilotumumab is only a partial antagonist of HGF activity, a finding that has considerable implications for the therapeutic use of rilotumumab.
Collapse
Affiliation(s)
- Sameer A Greenall
- a Oncogenic Signalling Laboratory and Brain Cancer Discovery Collaborative, Centre for Cancer Research, Hudson Institute of Medical Research , 27-31 Wright Street, Clayton , VIC 3168 , Australia.,b Monash University, Wellington Parade , Clayton , VIC 3800 , Australia.,c Biomedical Manufacturing Program, Commonwealth Scientific and Industrial Research Organisation , 343 Royal Parade, Parkville , VIC 3052 , Australia
| | - Timothy E Adams
- c Biomedical Manufacturing Program, Commonwealth Scientific and Industrial Research Organisation , 343 Royal Parade, Parkville , VIC 3052 , Australia
| | - Terrance G Johns
- a Oncogenic Signalling Laboratory and Brain Cancer Discovery Collaborative, Centre for Cancer Research, Hudson Institute of Medical Research , 27-31 Wright Street, Clayton , VIC 3168 , Australia.,b Monash University, Wellington Parade , Clayton , VIC 3800 , Australia
| |
Collapse
|
27
|
Yap TA, Smith AD, Ferraldeschi R, Al-Lazikani B, Workman P, de Bono JS. Drug discovery in advanced prostate cancer: translating biology into therapy. Nat Rev Drug Discov 2016; 15:699-718. [DOI: 10.1038/nrd.2016.120] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Gonzalez A, Broussas M, Beau-Larvor C, Haeuw JF, Boute N, Robert A, Champion T, Beck A, Bailly C, Corvaïa N, Goetsch L. A novel antagonist anti-cMet antibody with antitumor activities targeting both ligand-dependent and ligand-independent c-Met receptors. Int J Cancer 2016; 139:1851-63. [PMID: 27144973 DOI: 10.1002/ijc.30174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 12/11/2022]
Abstract
c-Met is a prototypic member of a sub-family of RTKs. Inappropriate c-Met activation plays a crucial role in tumor formation, proliferation and metastasis. Using a key c-Met dimerization assay, a set of 12 murine whole IgG1 monoclonal antibodies was selected and a lead candidate, m224G11, was humanized by CDR-grafting and engineered to generate a divalent full antagonist humanized IgG1 antibody, hz224G11. Neither m224G11 nor hz224G11 bind to the murine c-Met receptor. Their antitumor activity was investigated in vitro in a set of experiments consistent with the reported pleiotropic effects mediated by c-Met and, in vivo, using several human tumor xenograft models. Both m224G11 and hz224G11 exhibited nanomolar affinities for the receptor and inhibited HGF binding, c-Met phosphorylation, and receptor dimerization in a similar fashion, resulting in a profound inhibition of all c-Met functions in vitro. These effects were presumably responsible for the inhibition of c-Met's major functions including cell proliferation, migration, invasion scattering, morphogenesis and angiogenesis. In addition to these in vitro properties, hz224G11 dramatically inhibits the growth of autocrine, partially autophosphorylated and c-Met amplified cell lines in vivo. Pharmacological studies performed on Hs746T gastric cancer xenografts demonstrate that hz224G11 strongly downregulates c-Met expression and phosphorylation. It also decreases the tumor mitotic index (Ki67) and induces apoptosis. Taken together, the in vitro and in vivo data suggest that hz224G11 is a promising candidate for the treatment of tumors. This antibody, now known as ABT-700 and currently in Phase I clinical trials, may provide a novel therapeutic approach to c-Met-expressing cancers.
Collapse
Affiliation(s)
- Alexandra Gonzalez
- Centre D'Immunologie Pierre Fabre 5, IRPF, Av Napoléon III, F-74164, Saint-Julien-en-Genevois, France
| | - Matthieu Broussas
- Centre D'Immunologie Pierre Fabre 5, IRPF, Av Napoléon III, F-74164, Saint-Julien-en-Genevois, France
| | - Charlotte Beau-Larvor
- Centre D'Immunologie Pierre Fabre 5, IRPF, Av Napoléon III, F-74164, Saint-Julien-en-Genevois, France
| | - Jean-François Haeuw
- Centre D'Immunologie Pierre Fabre 5, IRPF, Av Napoléon III, F-74164, Saint-Julien-en-Genevois, France
| | - Nicolas Boute
- Centre D'Immunologie Pierre Fabre 5, IRPF, Av Napoléon III, F-74164, Saint-Julien-en-Genevois, France
| | - Alain Robert
- Centre D'Immunologie Pierre Fabre 5, IRPF, Av Napoléon III, F-74164, Saint-Julien-en-Genevois, France
| | - Thierry Champion
- Centre D'Immunologie Pierre Fabre 5, IRPF, Av Napoléon III, F-74164, Saint-Julien-en-Genevois, France
| | - Alain Beck
- Centre D'Immunologie Pierre Fabre 5, IRPF, Av Napoléon III, F-74164, Saint-Julien-en-Genevois, France
| | - Christian Bailly
- Centre D'Immunologie Pierre Fabre 5, IRPF, Av Napoléon III, F-74164, Saint-Julien-en-Genevois, France
| | - Nathalie Corvaïa
- Centre D'Immunologie Pierre Fabre 5, IRPF, Av Napoléon III, F-74164, Saint-Julien-en-Genevois, France
| | - Liliane Goetsch
- Centre D'Immunologie Pierre Fabre 5, IRPF, Av Napoléon III, F-74164, Saint-Julien-en-Genevois, France
| |
Collapse
|
29
|
Zhang Y, Du Z, Zhang M. Biomarker development in MET-targeted therapy. Oncotarget 2016; 7:37370-37389. [PMID: 27013592 PMCID: PMC5095083 DOI: 10.18632/oncotarget.8276] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 03/14/2016] [Indexed: 12/16/2022] Open
Abstract
Activation of the MET receptor tyrosine kinase by its ligand, hepatocyte growth factor (HGF), has been implicated in a variety of cellular processes, including cell proliferation, survival, migration, motility and invasion, all of which may be enhanced in human cancers. Aberrantly activated MET/HGF signaling correlates with tumorigenesis and metastasis, and is regarded as a robust target for the development of novel anti-cancer treatments. Various clinical trials were conducted to evaluate the safety and efficacy of selective HGF/MET inhibitors in cancer patients. There is currently no optimal or standardized method for accurate and reliable assessment of MET levels, or other biomarkers that are predictive of the patient response to MET-targeted therapeutics. In this review, we discuss the importance of accurate HGF/MET signal detection as a predictive biomarker to guide patient selection for clinical trials of MET-targeted therapies in human cancers.
Collapse
Affiliation(s)
- Yanni Zhang
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd, Shanghai, China
| | - Zhiqiang Du
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd, Shanghai, China
| | - Mingqiang Zhang
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd, Shanghai, China
| |
Collapse
|
30
|
Erichsen R, Kelsh MA, Oliner KS, Nielsen KB, Frøslev T, Lænkholm AV, Vyberg M, Acquavella J, Sørensen HT. Prognostic impact of tumor MET expression among patients with stage IV gastric cancer: a Danish cohort study. Ann Epidemiol 2016; 26:500-503. [PMID: 27318530 DOI: 10.1016/j.annepidem.2016.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 04/13/2016] [Accepted: 05/01/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE We aimed to investigate the prevalence and prognostic impact of tumor mesenchymal epithelial transition factor (MET) expression in stage IV gastric cancers in a real-world clinical setting because existing evidence is sparse. METHODS The study included archived cancer specimens from 103 stage IV gastric cancer patients (2003-2010). We analyzed MET-protein expression by immunohistochemistry (MET-positive if ≥25% of tumor cells showed MET expression). We calculated overall survival using the Kaplan-Meier method and hazard ratios comparing mortality among MET-positive and MET-negative patients using Cox regression adjusted for age, gender, and comorbidity. RESULTS We found that 62.1% (95% confidence interval, 52.0-71.5) of patients had MET-positive tumors. Median survival was lower among patients with MET-positive tumors (3.5 months) than among patients with MET-negative tumors (9.6 months), corresponding to an adjusted hazard ratio of 2.2 (95% confidence interval, 1.3-3.7). CONCLUSIONS Tumor MET expression is prevalent and has substantial prognostic impact in stage IV gastric cancer patients.
Collapse
Affiliation(s)
- Rune Erichsen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus N, Denmark.
| | - Michael A Kelsh
- Center for Observational Research, Amgen Inc., Thousand Oaks, CA
| | | | | | - Trine Frøslev
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Mogens Vyberg
- Institute of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | - John Acquavella
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus N, Denmark; Center for Observational Research, Amgen Inc., Thousand Oaks, CA
| | - Henrik Toft Sørensen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
31
|
Hughes PE, Rex K, Caenepeel S, Yang Y, Zhang Y, Broome MA, Kha HT, Burgess TL, Amore B, Kaplan-Lefko PJ, Moriguchi J, Werner J, Damore MA, Baker D, Choquette DM, Harmange JC, Radinsky R, Kendall R, Dussault I, Coxon A. In Vitro and In Vivo Activity of AMG 337, a Potent and Selective MET Kinase Inhibitor, in MET-Dependent Cancer Models. Mol Cancer Ther 2016; 15:1568-79. [PMID: 27196782 DOI: 10.1158/1535-7163.mct-15-0871] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/01/2016] [Indexed: 11/16/2022]
Abstract
The MET receptor tyrosine kinase is involved in cell growth, survival, and invasion. Clinical studies with small molecule MET inhibitors have shown the role of biomarkers in identifying patients most likely to benefit from MET-targeted therapy. AMG 337 is an oral, small molecule, ATP-competitive, highly selective inhibitor of the MET receptor. Herein, we describe AMG 337 preclinical activity and mechanism of action in MET-dependent tumor models. These studies suggest MET is the only therapeutic target for AMG 337. In an unbiased tumor cell line proliferation screen (260 cell lines), a closely related analogue of AMG 337, Compound 5, exhibited activity in 2 of 260 cell lines; both were MET-amplified. Additional studies examining the effects of AMG 337 on the proliferation of a limited panel of cell lines with varying MET copy numbers revealed that high-level focal MET amplification (>12 copies) was required to confer MET oncogene addiction and AMG 337 sensitivity. One MET-amplified cell line, H1573 (>12 copies), was AMG 337 insensitive, possibly because of a downstream G12A KRAS mutation. Mechanism-of-action studies in sensitive MET-amplified cell lines demonstrated that AMG 337 inhibited MET and adaptor protein Gab-1 phosphorylation, subsequently blocking the downstream PI3K and MAPK pathways. AMG 337 exhibited potency in pharmacodynamic assays evaluating MET signaling in tumor xenograft models; >90% inhibition of Gab-1 phosphorylation was observed at 0.75 mg/kg. These findings describe the preclinical activity and mechanism of action of AMG 337 in MET-dependent tumor models and indicate its potential as a novel therapeutic for the treatment of MET-dependent tumors. Mol Cancer Ther; 15(7); 1568-79. ©2016 AACR.
Collapse
Affiliation(s)
| | - Karen Rex
- Amgen Inc., Thousand Oaks, California
| | | | | | | | | | - Hue T Kha
- Amgen Inc., Thousand Oaks, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lee J, Tran P, Klempner SJ. Targeting the MET Pathway in Gastric and Oesophageal Cancers: Refining the Optimal Approach. Clin Oncol (R Coll Radiol) 2016; 28:e35-44. [PMID: 26880063 DOI: 10.1016/j.clon.2016.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/09/2015] [Accepted: 12/10/2015] [Indexed: 12/21/2022]
Abstract
Gastric and oesophageal cancers are a major cause of global cancer-related morbidity and mortality. Improvements in treatment for locoregional and metastatic gastric and oesophageal cancer have been incremental and the overall prognosis remains poor. Increasingly, molecular classification has identified recurrent, therapeutically relevant, somatic alterations in gastroesophageal malignancies. However, other than ERBB2 amplification, molecularly directed therapies have not translated to improved survival. Amplification of the receptor tyrosine kinase MET is found in about 5% of gastroesophageal cancers and represents an oncogenic driver and therapeutic target. Small series have shown activity of MET-directed tyrosine kinase inhibitors, but the clinical benefit of anti-MET antibodies has been disappointing. Here we discuss the MET pathway in gastroesophageal cancers, the clinical data for MET small molecule tyrosine kinase inhibitors, anti-MET antibodies and future clinical directions for targeting MET in gastric and oesophageal cancers. To our knowledge, this is the most comprehensive review of the clinical experience with MET-directed therapies in gastric and oesophageal cancers.
Collapse
Affiliation(s)
- J Lee
- Department of Medicine, University of California Irvine, Orange, CA, USA
| | - P Tran
- Division of Hematology-Oncology, University of California Irvine, Orange, CA, USA
| | - S J Klempner
- Division of Hematology-Oncology, University of California Irvine, Orange, CA, USA.
| |
Collapse
|
33
|
Park CH, Cho SY, Ha JD, Jung H, Kim HR, Lee CO, Jang IY, Chae CH, Lee HK, Choi SU. Novel c-Met inhibitor suppresses the growth of c-Met-addicted gastric cancer cells. BMC Cancer 2016; 16:35. [PMID: 26801760 PMCID: PMC4722623 DOI: 10.1186/s12885-016-2058-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 01/10/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND c-Met signaling has been implicated in oncogenesis especially in cells with c-met gene amplification. Since 20 % of gastric cancer patients show high level of c-Met expression, c-Met has been identified as a good candidate for targeted therapy in gastric cancer. Herein, we report our newly synthesized c-Met inhibitor by showing its efficacy both in vitro and in vivo. METHODS Compounds with both triazolopyrazine and pyridoxazine scaffolds were synthesized and tested using HTRF c-Met kinase assay. We performed cytotoxic assay, cellular phosphorylation assay, and cell cycle assay to investigate the cellular inhibitory mechanism of our compounds. We also conducted mouse xenograft assay to see efficacy in vivo. RESULTS KRC-00509 and KRC-00715 were selected as excellent c-Met inhibitors through biochemical assay, and exhibited to be exclusively selective to c-Met by kinase panel assay. Cytotoxic assays using 18 gastric cancer cell lines showed our c-Met inhibitors suppressed specifically the growth of c-Met overexpressed cell lines, not that of c-Met low expressed cell lines, by inducing G1/S arrest. In c-met amplified cell lines, c-Met inhibitors reduced the downstream signals including Akt and Erk as well as c-Met activity. In vivo Hs746T xenograft assay showed KRC-00715 reduced the tumor size significantly. CONCLUSIONS Our in vitro and in vivo data suggest KRC-00715 is a potent and highly selective c-Met inhibitor which may have therapeutic potential in gastric tumor with c-Met overexpression.
Collapse
Affiliation(s)
- Chi Hoon Park
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon, 305-600, Republic of Korea.,Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, 305-350, Republic of Korea
| | - Sung Yun Cho
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon, 305-600, Republic of Korea.,Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, 305-350, Republic of Korea
| | - Jae Du Ha
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon, 305-600, Republic of Korea
| | - Heejung Jung
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon, 305-600, Republic of Korea.,Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, 305-350, Republic of Korea
| | - Hyung Rae Kim
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon, 305-600, Republic of Korea
| | - Chong Ock Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon, 305-600, Republic of Korea
| | - In-Young Jang
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon, 305-600, Republic of Korea
| | - Chong Hak Chae
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon, 305-600, Republic of Korea
| | - Heung Kyoung Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon, 305-600, Republic of Korea
| | - Sang Un Choi
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon, 305-600, Republic of Korea.
| |
Collapse
|
34
|
Abstract
Resistance to chemotherapy is among the most important issues in the management of ovarian cancer. Unlike cancer cells, which are heterogeneous as a result of remarkable genetic instability, stromal cells are considered relatively homogeneous. Thus, targeting the tumor microenvironment is an attractive approach for cancer therapy. Arguably, anti-vascular endothelial growth factor (anti-VEGF) therapies hold great promise, but their efficacy has been modest, likely owing to redundant and complementary angiogenic pathways. Components of platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and other pathways may compensate for VEGF blockade and allow angiogenesis to occur despite anti-VEGF treatment. In addition, hypoxia induced by anti-angiogenesis therapy modifies signaling pathways in tumor and stromal cells, which induces resistance to therapy. Because of tumor cell heterogeneity and angiogenic pathway redundancy, combining cytotoxic and targeted therapies or combining therapies targeting different pathways can potentially overcome resistance. Although targeted therapy is showing promise, much more work is needed to maximize its impact, including the discovery of new targets and identification of individuals most likely to benefit from such therapies.
Collapse
|
35
|
Jiang WG, Sanders AJ, Katoh M, Ungefroren H, Gieseler F, Prince M, Thompson SK, Zollo M, Spano D, Dhawan P, Sliva D, Subbarayan PR, Sarkar M, Honoki K, Fujii H, Georgakilas AG, Amedei A, Niccolai E, Amin A, Ashraf SS, Ye L, Helferich WG, Yang X, Boosani CS, Guha G, Ciriolo MR, Aquilano K, Chen S, Azmi AS, Keith WN, Bilsland A, Bhakta D, Halicka D, Nowsheen S, Pantano F, Santini D. Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Semin Cancer Biol 2015; 35 Suppl:S244-S275. [PMID: 25865774 DOI: 10.1016/j.semcancer.2015.03.008] [Citation(s) in RCA: 351] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 12/12/2022]
Abstract
Cancer is a key health issue across the world, causing substantial patient morbidity and mortality. Patient prognosis is tightly linked with metastatic dissemination of the disease to distant sites, with metastatic diseases accounting for a vast percentage of cancer patient mortality. While advances in this area have been made, the process of cancer metastasis and the factors governing cancer spread and establishment at secondary locations is still poorly understood. The current article summarizes recent progress in this area of research, both in the understanding of the underlying biological processes and in the therapeutic strategies for the management of metastasis. This review lists the disruption of E-cadherin and tight junctions, key signaling pathways, including urokinase type plasminogen activator (uPA), phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene (PI3K/AKT), focal adhesion kinase (FAK), β-catenin/zinc finger E-box binding homeobox 1 (ZEB-1) and transforming growth factor beta (TGF-β), together with inactivation of activator protein-1 (AP-1) and suppression of matrix metalloproteinase-9 (MMP-9) activity as key targets and the use of phytochemicals, or natural products, such as those from Agaricus blazei, Albatrellus confluens, Cordyceps militaris, Ganoderma lucidum, Poria cocos and Silybum marianum, together with diet derived fatty acids gamma linolenic acid (GLA) and eicosapentanoic acid (EPA) and inhibitory compounds as useful approaches to target tissue invasion and metastasis as well as other hallmark areas of cancer. Together, these strategies could represent new, inexpensive, low toxicity strategies to aid in the management of cancer metastasis as well as having holistic effects against other cancer hallmarks.
Collapse
Affiliation(s)
- W G Jiang
- Cardiff University, Cardiff, United Kingdom.
| | | | - M Katoh
- National Cancer Center, Tokyo, Japan
| | - H Ungefroren
- University Hospital Schleswig-Holstein, Lübeck, Germany
| | - F Gieseler
- University Hospital Schleswig-Holstein, Lübeck, Germany
| | - M Prince
- University of Michigan, Ann Arbor, MI, USA
| | | | - M Zollo
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Naples, Italy; CEINGE Biotecnologie Avanzate, Naples, Italy
| | - D Spano
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - P Dhawan
- University of Nebraska Medical Center, Omaha, USA
| | - D Sliva
- Purdue Research Park, Indianapolis, IN, USA
| | | | - M Sarkar
- University of Miami, Miami, FL, USA
| | - K Honoki
- Nara Medical University, Kashihara, Japan
| | - H Fujii
- Nara Medical University, Kashihara, Japan
| | - A G Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - A Amedei
- University of Florence, Florence, Italy
| | | | - A Amin
- United Arab Emirates University, Al Ain, United Arab Emirates and Faculty of Science, Cairo University, Egypt
| | - S S Ashraf
- United Arab Emirates University, Al Ain, United Arab Emirates and Faculty of Science, Cairo University, Egypt
| | - L Ye
- Cardiff University, Cardiff, United Kingdom
| | - W G Helferich
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - X Yang
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - G Guha
- SASTRA University, Thanjavur, India
| | | | - K Aquilano
- University of Rome Tor Vergata, Rome, Italy
| | - S Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Surrey, United Kingdom
| | - A S Azmi
- Wayne State University, Detroit, MI, USA
| | - W N Keith
- University of Glasgow, Glasgow, United Kingdom
| | - A Bilsland
- University of Glasgow, Glasgow, United Kingdom
| | - D Bhakta
- SASTRA University, Thanjavur, India
| | - D Halicka
- New York Medical College, Valhalla, NY, USA
| | - S Nowsheen
- Mayo Clinic College of Medicine, Rochester, MN, USA
| | - F Pantano
- University Campus Bio-Medico, Rome, Italy
| | - D Santini
- University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
36
|
Chen L, Li C, Zhu Y. The HGF inhibitory peptide HGP-1 displays promising in vitro and in vivo efficacy for targeted cancer therapy. Oncotarget 2015; 6:30088-101. [PMID: 26254225 PMCID: PMC4745783 DOI: 10.18632/oncotarget.3937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/28/2015] [Indexed: 12/15/2022] Open
Abstract
HGF/MET pathway mediates cancer initiation and development. Thus, inhibition on HGF-initiated MET signaling pathway would provide a new approach to cancer targeted therapeutics. In our study, we identified a targeting peptide candidate binding to HGF which was named HGF binding peptide-1 (HGP-1) via bacterial surface display methods coupled with fluorescence-activated cell sorting (FACS). HGP-1 showed the moderate affinity when determined with surface plasmon resonance (SPR) technique and high specificity in binding to HGF while assessed by fluorescence-based ELISA assay. The results from MTT and in vitro migration assay indicated that HGF-dependent cell proliferation and migration could be inhibited by HGP-1. In vivo administration of HGP-1 led to an effective inhibitory effect on tumor growth in A549 tumor xenograft models. Moreover, findings from Western Blots revealed that HGP-1 could down-regulated the phosphorylation levels of MET and ERK1/2 initiated by HGF, which suggested that HGP-1 could disrupt the activation of HGF/MET signaling to influence the cell activity. All the data highlighted the potential of HGP-1 to be a potent inhibitor for HGF/MET signaling.
Collapse
Affiliation(s)
- Lisha Chen
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlin Li
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yimin Zhu
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
37
|
Cecchi F, Lih CJ, Lee YH, Walsh W, Rabe DC, Williams PM, Bottaro DP. Expression array analysis of the hepatocyte growth factor invasive program. Clin Exp Metastasis 2015; 32:659-76. [PMID: 26231668 DOI: 10.1007/s10585-015-9735-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 07/13/2015] [Indexed: 02/17/2023]
Abstract
Signaling by human hepatocyte growth factor (hHGF) via its cell surface receptor (MET) drives mitogenesis, motogenesis and morphogenesis in a wide spectrum of target cell types and embryologic, developmental and homeostatic contexts. Oncogenic pathway activation also contributes to tumorigenesis and cancer progression, including tumor angiogenesis and metastasis, in several prevalent malignancies. The HGF gene encodes full-length hHGF and two truncated isoforms known as NK1 and NK2. NK1 induces all three HGF activities at modestly reduced potency, whereas NK2 stimulates only motogenesis and enhances HGF-driven tumor metastasis in transgenic mice. Prior studies have shown that mouse HGF (mHGF) also binds with high affinity to human MET. Here we show that, like NK2, mHGF stimulates cell motility, invasion and spontaneous metastasis of PC3M human prostate adenocarcinoma cells in mice through human MET. To identify target genes and signaling pathways associated with motogenic and metastatic HGF signaling, i.e., the HGF invasive program, gene expression profiling was performed using PC3M cells treated with hHGF, NK2 or mHGF. Results obtained using Ingenuity Pathway Analysis software showed significant overlap with networks and pathways involved in cell movement and metastasis. Interrogating The Cancer Genome Atlas project also identified a subset of 23 gene expression changes in PC3M with a strong tendency for co-occurrence in prostate cancer patients that were associated with significantly decreased disease-free survival.
Collapse
Affiliation(s)
- Fabiola Cecchi
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-1501, USA
| | - Chih-Jian Lih
- Molecular Characterization and Clinical Assay Development Laboratory, Leidos Biomedical Research, Inc. and Frederick National Laboratory for Cancer Research, Frederick, MD, 21702-1201, USA
| | - Young H Lee
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-1501, USA
| | - William Walsh
- Molecular Characterization and Clinical Assay Development Laboratory, Leidos Biomedical Research, Inc. and Frederick National Laboratory for Cancer Research, Frederick, MD, 21702-1201, USA
| | - Daniel C Rabe
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-1501, USA
| | - Paul M Williams
- Molecular Characterization and Clinical Assay Development Laboratory, Leidos Biomedical Research, Inc. and Frederick National Laboratory for Cancer Research, Frederick, MD, 21702-1201, USA
| | - Donald P Bottaro
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-1501, USA. .,Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bldg 10 CRC Rm 2-3952, 10 Center Drive MSC 1107, Bethesda, MD, 20892-1107, USA.
| |
Collapse
|
38
|
Womeldorff M, Gillespie D, Jensen RL. Hypoxia-inducible factor-1 and associated upstream and downstream proteins in the pathophysiology and management of glioblastoma. Neurosurg Focus 2015; 37:E8. [PMID: 25581937 DOI: 10.3171/2014.9.focus14496] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with an exceptionally poor patient outcome despite aggressive therapy including surgery, radiation, and chemotherapy. This aggressive phenotype may be associated with intratumoral hypoxia, which probably plays a key role in GBM tumor growth, development, and angiogenesis. A key regulator of cellular response to hypoxia is the protein hypoxia-inducible factor–1 (HIF-1). An examination of upstream hypoxic and nonhypoxic regulation of HIF-1 as well as a review of the downstream HIF-1– regulated proteins may provide further insight into the role of this transcription factor in GBM pathophysiology. Recent insights into upstream regulators that intimately interact with HIF-1 could provide potential therapeutic targets for treatment of this tumor. The same is potentially true for HIF-1–mediated pathways of glycolysis-, angiogenesis-, and invasion-promoting proteins. Thus, an understanding of the relationship between HIF-1, its upstream protein regulators, and its downstream transcribed genes in GBM pathogenesis could provide future treatment options for the care of patients with these tumors.
Collapse
|
39
|
Yu Y, Chen Y, Ding G, Wang M, Wu H, Xu L, Rui X, Zhang Z. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts. Biochem Biophys Res Commun 2015; 464:154-60. [PMID: 26093299 DOI: 10.1016/j.bbrc.2015.06.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/15/2015] [Indexed: 01/14/2023]
Abstract
The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacy and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer.
Collapse
Affiliation(s)
- Yanlan Yu
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yicheng Chen
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guoqing Ding
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mingchao Wang
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haiyang Wu
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liwei Xu
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xuefang Rui
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhigen Zhang
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
40
|
Zhang Y, Doshi S, Zhu M. Pharmacokinetics and pharmacodynamics of rilotumumab: a decade of experience in preclinical and clinical cancer research. Br J Clin Pharmacol 2015; 80:957-64. [PMID: 25912961 DOI: 10.1111/bcp.12663] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/06/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022] Open
Abstract
Rilotumumab is a fully human monoclonal antibody against hepatocyte growth factor, the only known ligand of the MET receptor. Over the last decade, rilotumumab has been extensively tested in preclinical studies and in clinical studies in a variety of cancer types. In this review, we examine the pharmacokinetic and pharmacodynamic data that have been collected in the rilotumumab programme to date, and discuss retrospectively how the knowledge acquired in this programme can be applied to a number of key issues in oncology drug development, including: (i) using preclinical data to inform first-in-human study design; (ii) the role of biomarkers in the identification of a target patient population; (iii) the potential for drug interactions between therapeutic proteins and other anticancer agents; and (iv) pharmacokinetic and pharmacodynamic considerations in phase 3 study design.
Collapse
Affiliation(s)
- Y Zhang
- Department of Clinical Pharmacology, Modeling, and Simulation, Amgen Inc, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - S Doshi
- Department of Clinical Pharmacology, Modeling, and Simulation, Amgen Inc, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - M Zhu
- Department of Clinical Pharmacology, Modeling, and Simulation, Amgen Inc, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| |
Collapse
|
41
|
Vasconcelos AC, Wagner VP, Meurer L, Vargas PA, de Souza LB, Fonseca FP, Squarize CH, Castilho RM, Martins MD. Immunoprofile of c-MET/PI3K signaling in human salivary gland tumors. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 120:238-47. [PMID: 26117810 DOI: 10.1016/j.oooo.2015.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/11/2015] [Accepted: 04/08/2015] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The aim of this study was to analyze the expression pattern of proteins in the HGF/c-MET/PI3K signaling pathway in salivary gland tumors (SGTs) and to correlate the findings with the proliferative index and clinical parameters. STUDY DESIGN We assembled tissue microarrays (TMAs) of 108 cases of SGTs, including 69 cases of pleomorphic adenoma (PA), 24 cases of adenoid cystic carcinoma (AdCC), and 15 cases of mucoepidermoid carcinoma (MEC). An immunohistochemical analysis of hepatocyte growth factor (HGF), MET phosphorylation (p-MET), protein kinase B (AKT) phosphorylation (p-AKT), and Ki-67 proteins was performed. RESULTS Benign and malignant SGTs presented similar scores of HGF-positive cells (P = .36), whereas, malignant SGTs exhibited higher levels of p-MET (P = .001) and p-AKT (P = .001) than benign SGTs. No correlation of HGF, p-MET, or p-AKT expression was observed with clinical parameters. PA had a lower proliferative index than either AdCC (P = .001) or MEC (P = .001). CONCLUSIONS The salivary gland carcinomas exhibited increased activation of the HGF pathway, as evidenced by the phosphorylation of the MET receptor, and increased activation of the PI3K pathway, as indicated by p-AKT. These data suggest that the HGF/c-MET/PI3K signaling pathway is active in SGTs, especially in malignant neoplasms.
Collapse
Affiliation(s)
- Artur Cunha Vasconcelos
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Vivian Petersen Wagner
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luise Meurer
- Department of Pathology, Hospital de Clínicas de Porto Alegre (HCPA/UFRGS), Porto Alegre, Rio Grande do Sul, RS, Brazil
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Lélia Batista de Souza
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Felipe Paiva Fonseca
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Cristiane Helena Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Rogerio Moraes Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Manoela Domingues Martins
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
42
|
Zhang Y, Jain RK, Zhu M. Recent Progress and Advances in HGF/MET-Targeted Therapeutic Agents for Cancer Treatment. Biomedicines 2015; 3:149-181. [PMID: 28536405 PMCID: PMC5344234 DOI: 10.3390/biomedicines3010149] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 12/31/2022] Open
Abstract
The hepatocyte growth factor (HGF): MET axis is a ligand-mediated receptor tyrosine kinase pathway that is involved in multiple cellular functions, including proliferation, survival, motility, and morphogenesis. Aberrancy in the HGF/MET pathway has been reported in multiple tumor types and is associated with tumor stage and prognosis. Thus, targeting the HGF/MET pathway has become a potential therapeutic strategy in oncology development in the last two decades. A number of novel therapeutic agents-either as therapeutic proteins or small molecules that target the HGF/MET pathway-have been tested in patients with different tumor types in clinical studies. In this review, recent progress in HGF/MET pathway-targeted therapy for cancer treatment, the therapeutic potential of HGF/MET-targeted agents, and challenges in the development of such agents will be discussed.
Collapse
Affiliation(s)
- Yilong Zhang
- Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | - Rajul K Jain
- Kite Pharma, Inc., 2225 Colorado Avenue, Santa Monica, CA 90404, USA.
| | - Min Zhu
- Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
43
|
Doshi S, Gisleskog PO, Zhang Y, Zhu M, Oliner KS, Loh E, Perez Ruixo JJ. Rilotumumab exposure-response relationship in patients with advanced or metastatic gastric cancer. Clin Cancer Res 2015; 21:2453-61. [PMID: 25712685 DOI: 10.1158/1078-0432.ccr-14-1661] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 02/07/2015] [Indexed: 12/14/2022]
Abstract
PURPOSE Rilotumumab is an investigational, fully human monoclonal antibody to hepatocyte growth factor. In a randomized phase II study, trends toward improved survival were observed with rilotumumab (7.5 or 15 mg/kg) plus epirubicin, cisplatin, and capecitabine (ECX) versus placebo plus ECX in gastric/gastroesophageal junction (GEJ) cancer patients, especially in MET-positive patients. Here, we quantitatively characterized the longitudinal exposure-response [tumor growth (TG) and overall survival (OS)] relationship for rilotumumab. EXPERIMENTAL DESIGN Rilotumumab concentrations, tumor sizes, and survival time from the phase II study were pooled to develop a longitudinal exposure versus TG model and parametric OS model that explored predictive/prognostic/treatment effects (MET expression, rilotumumab exposure, relative tumor size). Model evaluation included visual predictive checks, nonparametric bootstrap, and normalized prediction distribution errors. Simulations were undertaken to predict the relationship between rilotumumab dose and OS. RESULTS Rilotumumab exhibited linear time-independent pharmacokinetics not affected by MET expression. The TG model adequately described tumor size across arms. A Weibull distribution best described OS. Rilotumumab exposure and change in tumor size from baseline at week 24 were predictive of OS. MET-positive patients showed shorter survival and responded better to rilotumumab than MET-negative patients. Simulations predicted a median (95% confidence interval) HR of 0.38 (0.18-0.60) in MET-positive patients treated with 15 mg/kg rilotumumab Q3W. CONCLUSIONS Rilotumumab plus ECX demonstrated concentration-dependent effects on OS, influenced by MET expression, and tumor size in gastric/GEJ cancer patients. These findings support the phase II testing of rilotumumab 15 mg/kg every 3 weeks in MET-positive gastric/GEJ cancer (RILOMET-1; NCT01697072).
Collapse
Affiliation(s)
| | | | | | - Min Zhu
- Amgen Inc., Thousand Oaks, California
| | | | - Elwyn Loh
- Amgen Inc., South San Francisco, California
| | | |
Collapse
|
44
|
Exposure-response analysis of rilotumumab in gastric cancer: the role of tumour MET expression. Br J Cancer 2015; 112:429-37. [PMID: 25584489 PMCID: PMC4453660 DOI: 10.1038/bjc.2014.649] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/17/2014] [Accepted: 12/08/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rilotumumab, an investigational, monoclonal antibody, inhibits MET-mediated signalling. In a randomized phase 2 trial of rilotumumab±epirubicin/cisplatin/capecitabine in gastric or oesophagogastric junction cancer, patients receiving rilotumumab showed a trend towards improved survival, especially in MET-positive patients, but no clear dose-response relationship was observed. Exposure-response and biomarker analyses were used for dose selection and to differentiate patient subpopulations that may benefit most from treatment. Here, we analyse rilotumumab exposure-survival and exposure-safety and the impact of MET expression on these relationships. METHODS Individual rilotumumab exposure parameters were generated using population pharmacokinetic modelling. Relationships among rilotumumab dose (7.5 and 15 mg kg(-1)), exposure, and clinical outcomes (progression-free survival (PFS) and overall survival (OS)) were evaluated with Cox regression models and Kaplan-Meier plots. MET status and other baseline covariates were evaluated in subgroup and multivariate analyses. Treatment-emergent adverse events were summarised by exposure. RESULTS Among MET-positive patients, higher rilotumumab exposure, vs placebo and low exposure, was associated with improved median PFS (80% CI: 7.0 (5.7-9.7) vs 4.4 (2.9-4.9) and 5.5 (4.2-6.8) months) and OS (13.4 (10.6-18.6) vs 5.7 (4.7-10.2) and 8.1 (6.9-11.1) months) without increased toxicity. No rilotumumab benefit was seen among MET-negative patients. CONCLUSIONS Rilotumumab had an exposure-dependent treatment effect in patients with MET-positive gastric or oesophagogastric junction cancer.
Collapse
|
45
|
Zhou S, Liao H, Liu M, Feng G, Fu B, Li R, Cheng M, Zhao Y, Gong P. Discovery andw biological evaluation of novel 6,7-disubstituted-4-(2-fluorophenoxy)quinoline derivatives possessing 1,2,3-triazole-4-carboxamide moiety as c-Met kinase inhibitors. Bioorg Med Chem 2014; 22:6438-52. [DOI: 10.1016/j.bmc.2014.09.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 10/24/2022]
|
46
|
Lee JK, Joo KM, Lee J, Yoon Y, Nam DH. Targeting the epithelial to mesenchymal transition in glioblastoma: the emerging role of MET signaling. Onco Targets Ther 2014; 7:1933-44. [PMID: 25364264 PMCID: PMC4211615 DOI: 10.2147/ott.s36582] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common human primary brain malignancy and has a dismal prognosis. Aggressive treatments using maximal surgical resection, radiotherapy, and temozolomide result in median survival of only 14.6 months in patients with GBM. Numerous clinical approaches using small molecule inhibitors have shown disappointing results because of the genetic heterogeneity of GBM. The epithelial to mesenchymal transition (EMT) is a crucial biological process occurring in the early development stages of many species. However, cancer cells often obtain the ability to invade and metastasize through the EMT, which triggers the scattering of cells. The hepatocyte growth factor (HGF)/MET signaling pathway is indicative of the EMT during both embryogenesis and the invasive growth of tumors, because HGF potently induces mesenchymal transition in epithelial-driven cells. Activation of MET signaling or co-overexpression of HGF and MET frequently represents aggressive growth and poor prognosis of various cancers, including GBM. Thus, efforts to treat cancers by inhibiting MET signaling using neutralizing antibodies or small molecule inhibitors have progressed during the last decade. In this review, we discuss HGF/MET signaling in the development of diseases, including cancers, as well as updates on MET inhibition therapy.
Collapse
Affiliation(s)
- Jin-Ku Lee
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea ; Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyeung Min Joo
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeongwu Lee
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yeup Yoon
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea ; Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Sylvester PW. Targeting met mediated epithelial-mesenchymal transition in the treatment of breast cancer. Clin Transl Med 2014; 3:30. [PMID: 26932375 PMCID: PMC4883993 DOI: 10.1186/s40169-014-0030-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/19/2014] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal epithelial transition factor receptor (Met) is a receptor tyrosine kinase that plays a critical role in promoting cancer cell malignant progression. Met is activated by its ligand hepatocyte growth factor (HGF). HGF-dependent Met activation plays an important role in stimulating epithelial-mesenchymal transition (EMT) in tumor cells, resulting in increased tumor cell proliferation, survival, motility, angiogenesis, invasion, and metastasis. The HGF/Met axis has thus attracted great interest as a potential target in the development of novel cancer therapies. In an effort to suppress tumor cell malignant progression, efforts have been made to develop agents capable of inhibiting inhibit Met-induced EMT, including specific Met tyrosine kinase inhibitors, HGF antagonists that interfere with HGF binding to Met, and antibodies that prevent Met activation and/or dimerization. Tocotrienols, a subgroup within the vitamin E family of compounds, display potent anticancer activity that results, at least in part, from inhibition of HGF-dependent Met activation and signaling. The present review will provide a brief summary of the increasing importance of the HGF/Met axis as an attractive target for cancer chemotherapy and the role of tocotrienols in suppressing Met activation, signaling and HGF-induced EMT in breast cancer cells. Evidence provided suggests that γ-tocotrienol therapy may afford significant benefit in the treatment of breast cancers characterized by Met dysregulation.
Collapse
Affiliation(s)
- Paul W Sylvester
- School of Pharmacy, University of Louisiana at Monroe, 700 University Avenue, Monroe, 71209-0470, LA, USA.
| |
Collapse
|
48
|
Liu L, Zeng W, Wortinger MA, Yan SB, Cornwell P, Peek VL, Stephens JR, Tetreault JW, Xia J, Manro JR, Credille KM, Ballard DW, Brown-Augsburger P, Wacheck V, Chow CK, Huang L, Wang Y, Denning I, Davies J, Tang Y, Vaillancourt P, Lu J. LY2875358, a neutralizing and internalizing anti-MET bivalent antibody, inhibits HGF-dependent and HGF-independent MET activation and tumor growth. Clin Cancer Res 2014; 20:6059-70. [PMID: 25231402 DOI: 10.1158/1078-0432.ccr-14-0543] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE MET, the receptor for hepatocyte growth factor (HGF), has been implicated in driving tumor proliferation and metastasis. High MET expression is correlated with poor prognosis in multiple cancers. Activation of MET can be induced either by HGF-independent mechanisms such as gene amplification, specific genetic mutations, and transcriptional upregulation or by HGF-dependent autocrine or paracrine mechanisms. EXPERIMENTAL DESIGN/RESULTS Here, we report on LY2875358, a novel humanized bivalent anti-MET antibody that has high neutralization and internalization activities, resulting in inhibition of both HGF-dependent and HGF-independent MET pathway activation and tumor growth. In contrast to other bivalent MET antibodies, LY2875358 exhibits no functional agonist activity and does not stimulate biologic activities such as cell proliferation, scattering, invasion, tubulogenesis, or apoptosis protection in various HGF-responsive cells and no evidence of inducing proliferation in vivo in a monkey toxicity study. LY2875358 blocks HGF binding to MET and HGF-induced MET phosphorylation and cell proliferation. In contrast to the humanized one-armed 5D5 anti-MET antibody, LY2875358 induces internalization and degradation of MET that inhibits cell proliferation and tumor growth in models where MET is constitutively activated. Moreover, LY2875358 has potent antitumor activity in both HGF-dependent and HGF-independent (MET-amplified) xenograft tumor models. Together, these findings indicate that the mechanism of action of LY2875358 is different from that of the one-armed MET antibody. CONCLUSIONS LY2875358 may provide a promising therapeutic strategy for patients whose tumors are driven by both HGF-dependent and HGF-independent MET activation. LY2875358 is currently being investigated in multiple clinical studies.
Collapse
Affiliation(s)
- Ling Liu
- Biotechnology Discovery Research,
| | - Wei Zeng
- Biotechnology Discovery Research
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yong Wang
- Discovery Chemistry Research and Technologies. Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | | | | | | | | | | |
Collapse
|
49
|
The Hepatocyte Growth Factor (HGF)/Met Axis: A Neglected Target in the Treatment of Chronic Myeloproliferative Neoplasms? Cancers (Basel) 2014; 6:1631-69. [PMID: 25119536 PMCID: PMC4190560 DOI: 10.3390/cancers6031631] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 12/17/2022] Open
Abstract
Met is the receptor of hepatocyte growth factor (HGF), a cytoprotective cytokine. Disturbing the equilibrium between Met and its ligand may lead to inappropriate cell survival, accumulation of genetic abnormalities and eventually, malignancy. Abnormal activation of the HGF/Met axis is established in solid tumours and in chronic haematological malignancies, including myeloma, acute myeloid leukaemia, chronic myelogenous leukaemia (CML), and myeloproliferative neoplasms (MPNs). The molecular mechanisms potentially responsible for the abnormal activation of HGF/Met pathways are described and discussed. Importantly, inCML and in MPNs, the production of HGF is independent of Bcr-Abl and JAK2V617F, the main molecular markers of these diseases. In vitro studies showed that blocking HGF/Met function with neutralizing antibodies or Met inhibitors significantly impairs the growth of JAK2V617F-mutated cells. With personalised medicine and curative treatment in view, blocking activation of HGF/Met could be a useful addition in the treatment of CML and MPNs for those patients with high HGF/MET expression not controlled by current treatments (Bcr-Abl inhibitors in CML; phlebotomy, hydroxurea, JAK inhibitors in MPNs).
Collapse
|
50
|
Vigna E, Comoglio PM. Targeting the oncogenic Met receptor by antibodies and gene therapy. Oncogene 2014; 34:1883-9. [PMID: 24882574 DOI: 10.1038/onc.2014.142] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 12/31/2022]
Abstract
The receptor for hepatocyte growth factor (HGF), a tyrosine kinase encoded by the Met oncogene, has a crucial role in cancer growth, invasion and metastasis. It is a validated therapeutic target for 'personalized' treatment of a number of malignancies. Therapeutic tools prompting selective, robust and highly effective Met inhibition potentially represent a major step in the battle against cancer. Antibodies targeting either Met or its ligand HGF, although challenging, demonstrate to be endowed with promising features. Here we briefly review and discuss the state of the art in the field.
Collapse
Affiliation(s)
- E Vigna
- University of Torino, Department of Oncology, and Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | - P M Comoglio
- University of Torino, Department of Oncology, and Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| |
Collapse
|