1
|
Kido M, Idogaki H, Nishikawa K, Omasa T. Low-concentration staurosporine improves recombinant antibody productivity in Chinese hamster ovary cells without inducing cell death. J Biosci Bioeng 2020; 130:525-532. [PMID: 32800439 DOI: 10.1016/j.jbiosc.2020.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/23/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Chinese hamster ovary (CHO) cells are used as host cells for biopharmaceutical production, including monoclonal antibodies (mAbs). Arresting the cell cycle with chemical compounds is an effective approach to improve biopharmaceutical productivity. In a previous study, potential new cell cycle-arresting compounds were screened from marine-derived microorganism culture extracts, and it was suggested that staurosporine might improve mAb productivity in CHO cells via cell cycle arrest. The purpose of this study was to demonstrate the effectiveness of staurosporine as a cell-cycle arresting compound to improve mAb productivity. The optimal staurosporine concentration range was initially investigated using batch cultures. Thereafter, the effects on the culture profile and mAb productivity were evaluated using fed-batch cultures. Staurosporine at concentrations ≥10 nM induced cell death, but at concentrations ≤5 nM did not. In the range of 2-4 nM, cell growth was inhibited, whereas the specific production rate (Qp) and cell longevity were improved in a dose-dependent manner. The Qp and maximum mAb concentration with 4 nM staurosporine improved by 36.3 and 5.2%, respectively, compared to those with control conditions. Cell viability post-culture without staurosporine was 40.0 ± 0.3%, whereas with 4 nM staurosporine, it was 90.1 ± 1.0%. Flow cytometric analysis indicated cell-cycle arrest at the G1/G0 phase with 4 nM staurosporine addition. The present study highlighted the efficacy of staurosporine in improving mAb production by causing cell-cycle arrest. Further research into staurosporine analogs and how to use them will lead to development of more effective industrial production technologies of biopharmaceuticals.
Collapse
Affiliation(s)
- Masahide Kido
- Research and Development Division, OSAKA SODA Co., Ltd., Amagasaki, Hyogo 660-0842, Japan; Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hideaki Idogaki
- Research and Development Division, OSAKA SODA Co., Ltd., Amagasaki, Hyogo 660-0842, Japan
| | - Kouji Nishikawa
- Research and Development Division, OSAKA SODA Co., Ltd., Amagasaki, Hyogo 660-0842, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Kido M, Idogaki H, Nishikawa K, Motoishi K, Omasa T. Screening of new cell cycle suppressive compounds from marine-derived microorganisms in Chinese hamster ovary cells. J Biosci Bioeng 2020; 130:106-113. [PMID: 32253091 DOI: 10.1016/j.jbiosc.2020.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Monoclonal antibodies (mAbs) are active pharmaceutical ingredients in antibody drugs, produced mainly using recombinant Chinese hamster ovary (CHO) cells. The regulation of recombinant CHO cell proliferation can improve the productivity of heterologous proteins. Chemical compound approaches for cell cycle regulation have the advantages of simplicity and ease of use in industrial processes. However, CHO cells have genetic and phenotypic diversity, and the effects of such compounds might depend on cell line and culture conditions. Increasing the variety of cell cycle inhibitors is a promising strategy to overcome the dependency. Marine microorganisms are a vast and largely undeveloped source of secondary metabolites with physiological activity. In this study, we focused on secondary metabolites of marine microorganisms and evaluated their effectiveness as cell cycle inhibitory compounds. Of 720 extracts from microorganisms (400 actinomycetes and 320 filamentous fungi) collected from the Okinawan Sea, we identified nine extracts that decreased the specific growth rate and increased the specific production rate without reducing cell viability. After fractionating the extracts, the components of active fractions were estimated using time-of-flight mass spectrometry analysis. Then, four compounds, including staurosporine and undecylprodigiosin were deduced to be active compounds. These compounds have been reported to exert a cell cycle inhibitory effect on mammalian cells. These compounds might serve as additives to improve mAb production in CHO cells. This study indicates that secondary metabolites of marine microorganisms are a useful source for new cell cycle inhibitory compounds that can increase mAb production in CHO cells.
Collapse
Affiliation(s)
- Masahide Kido
- Research and Development Division of OSAKA SODA Co., Ltd., Amagasaki, Hyogo 660-0842, Japan; Graduate School of Engineering. Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hideaki Idogaki
- Research and Development Division of OSAKA SODA Co., Ltd., Amagasaki, Hyogo 660-0842, Japan
| | - Kouji Nishikawa
- Research and Development Division of OSAKA SODA Co., Ltd., Amagasaki, Hyogo 660-0842, Japan
| | - Kana Motoishi
- Research and Development Division of OSAKA SODA Co., Ltd., Amagasaki, Hyogo 660-0842, Japan
| | - Takeshi Omasa
- Graduate School of Engineering. Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
3
|
Jagot-Lacoussiere L, Faye A, Bruzzoni-Giovanelli H, Villoutreix BO, Rain JC, Poyet JL. DNA damage-induced nuclear translocation of Apaf-1 is mediated by nucleoporin Nup107. Cell Cycle 2016; 14:1242-51. [PMID: 25695197 DOI: 10.1080/15384101.2015.1014148] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Beside its central role in the mitochondria-dependent cell death pathway, the apoptotic protease activating factor 1 (Apaf-1) is involved in the DNA damage response through cell-cycle arrest induced by genotoxic stress. This non-apoptotic function requires a nuclear translocation of Apaf-1 during the G1-to-S transition. However, the mechanisms that trigger the nuclear accumulation of Apaf-1 upon DNA damage remain to be investigated. Here we show that the main 4 isoforms of Apaf-1 can undergo nuclear translocation and restore Apaf-1 deficient MEFs cell cycle arrest in the S phase following genotoxic stress through activation of Chk-1. Interestingly, DNA damage-dependent nuclear accumulation of Apaf-1 occurs independently of p53 and the retinoblastoma (pRb) pathway. We demonstrated that Apaf-1 associates with the nucleoporin Nup107 and this association is necessary for Apaf-1 nuclear import. The CED-4 domain of Apaf-1 directly binds to the central domain of Nup107 in an ATR-regulated, phosphorylation-dependent manner. Interestingly, expression of the Apaf-1-interacting domain of Nup107 interfered with Apaf-1 nuclear translocation upon genotoxic stress, resulting in a marked reduction of Chk-1 activation and cell cycle arrest. Thus, our results confirm the crucial role of Apaf-1 nuclear relocalization in mediating cell-cycle arrest induced by genotoxic stress and implicate Nup107 as a critical regulator of the DNA damage-induced intra-S phase checkpoint response.
Collapse
Affiliation(s)
- Léonard Jagot-Lacoussiere
- a INSERM UMRS1160; Université Denis Diderot; Institut Universitaire d'Hématologie ; Hôpital Saint-Louis ; Paris , France
| | | | | | | | | | | |
Collapse
|
4
|
Battistelli M, Salucci S, Olivotto E, Facchini A, Minguzzi M, Guidotti S, Pagani S, Flamigni F, Borzì RM, Facchini A, Falcieri E. Cell death in human articular chondrocyte: a morpho-functional study in micromass model. Apoptosis 2015; 19:1471-83. [PMID: 25015553 DOI: 10.1007/s10495-014-1017-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chondrocyte death and loss of extracellular matrix are the central features in articular cartilage degeneration during osteoarthritis pathogenesis. Cartilage diseases and, in particular, osteoarthritis are widely correlated to apoptosis but, chondrocytes undergoing apoptosis "in vivo" more often display peculiar features that correspond to a distinct process of programmed cell death termed "chondroptosis". Programmed cell death of primary human chondrocyte has been here investigated in micromasses, a tridimensional culture model, that represents a convenient means for studying chondrocyte biology. Cell death has been induced by different physical or chemical apoptotic agents, such as UVB radiation, hyperthermia and staurosporine delivered at both 1 and 3 weeks maturation. Conventional electron microscopy was used to analyse morphological changes. Occurrence of DNA fragmentation and caspase involvement were also investigated. At Transmission Electron Microscopy, control cells appear rounding or slightly elongated with plurilobated nucleus and diffusely dispersed chromatin. Typically UVB radiation and staurosporine induce chromatin apoptotic features, while hyperthermia triggers the "chondroptotic" phenotype. A weak TUNEL positivity appears in control, correlated to the well known cell death patterns occurring along cartilage differentiation. UVB radiation produces a strong positivity, mostly localized at the micromass periphery. After hyperthermia a higher number of fluorescent nuclei appears, in particular at 3 weeks. Staurosporine evidences a diffuse, but reduced, positivity. Therefore, DNA fragmentation is a common pattern in dying chondrocytes, both in apoptotic and "chondroptotic" cells. Moreover, all triggers induce caspase pathway activation, even if to a different extent, suggesting a fundamental role of apoptotic features, in chondrocyte cell death.
Collapse
Affiliation(s)
- M Battistelli
- DiSTeVA, Campus Scientifico Enrico Mattei, Università degli Studi di Urbino Carlo Bo, Via Ca' le Suore 2, 61029, Urbino, PU, Italy,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Murmann T, Carrillo-García C, Veit N, Courts C, Glassmann A, Janzen V, Madea B, Reinartz M, Harzen A, Nowak M, Perner S, Winter J, Probstmeier R. Staurosporine and extracellular matrix proteins mediate the conversion of small cell lung carcinoma cells into a neuron-like phenotype. PLoS One 2014; 9:e86910. [PMID: 24586258 PMCID: PMC3938400 DOI: 10.1371/journal.pone.0086910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/17/2013] [Indexed: 11/23/2022] Open
Abstract
Small cell lung carcinomas (SCLCs) represent highly aggressive tumors with an overall five-year survival rate in the range of 5 to 10%. Here, we show that four out of five SCLC cell lines reversibly develop a neuron-like phenotype on extracellular matrix constituents such as fibronectin, laminin or thrombospondin upon staurosporine treatment in an RGD/integrin-mediated manner. Neurite-like processes extend rapidly with an average speed of 10 µm per hour. Depending on the cell line, staurosporine treatment affects either cell cycle arrest in G2/M phase or induction of polyploidy. Neuron-like conversion, although not accompanied by alterations in the expression pattern of a panel of neuroendocrine genes, leads to changes in protein expression as determined by two-dimensional gel electrophoresis. It is likely that SCLC cells already harbour the complete molecular repertoire to convert into a neuron-like phenotype. More extensive studies are needed to evaluate whether the conversion potential of SCLC cells is suitable for therapeutic interventions.
Collapse
Affiliation(s)
- Tamara Murmann
- Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, University Hospital of Bonn, Bonn, Germany
| | | | - Nadine Veit
- Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, University Hospital of Bonn, Bonn, Germany
| | | | | | - Viktor Janzen
- Department of Hematology and Oncology, University Hospital of Bonn, Bonn, Germany
| | - Burkhard Madea
- Institute of Legal Medicine, University of Bonn, Bonn, Germany
| | - Markus Reinartz
- Oral Cell Biology Group, Department of Periodontology, Operative and Preventive Dentistry, Bonn, Germany
| | - Anne Harzen
- Proteomics Group, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | - Michael Nowak
- Department of Prostate Cancer Research, Institute of Pathology, University Hospital of Bonn, Bonn, Germany
| | - Sven Perner
- Department of Prostate Cancer Research, Institute of Pathology, University Hospital of Bonn, Bonn, Germany
| | - Jochen Winter
- Oral Cell Biology Group, Department of Periodontology, Operative and Preventive Dentistry, Bonn, Germany
| | - Rainer Probstmeier
- Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, University Hospital of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
6
|
Murray MM, Bui T, Smith M, Bagheri-Yarmand R, Wingate H, Hunt KK, Keyomarsi K. Staurosporine is chemoprotective by inducing G1 arrest in a Chk1- and pRb-dependent manner. Carcinogenesis 2013; 34:2244-52. [PMID: 23722650 DOI: 10.1093/carcin/bgt186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chemotherapeutic agents have been the mainstay of cancer therapy for years. However, their effectiveness has been limited by toxicities they impart on normal cells. Staurosporine (ST) has been shown to arrest normal, but not breast cancer, cells in G1. Therefore, ST may become a chemoprotective agent, arresting normal cells while allowing tumor cells to enter cell cycle phases where they are sensitive to chemotherapeutic agents. Understanding the mechanism of ST-mediated G1 arrest may allow for a beneficial chemoprotective treatment strategy for patients. We utilized 76NE6 (pRb+/p53-), 76NF2V (pRb+/p53+) and 76NE7 (pRb-/P53+) non-tumorigenic human mammary epithelial cell lines to understand the role of the Rb and p53 pathways in ST-directed G1 arrest. CDK4 was downregulated by ST in Rb+ cells, but its presence could not reverse the arrest, neither did its stable downregulation alter ST-mediated cellular response. ST-mediated G1 arrest required pRb, which in turn initiated a cascade of events leading to inhibition of CDK4. Further assessment of this pathway revealed that Chk1 expression and activity were required for the Rb-dependent arrest. For example, pRb+ cells with small interfering RNA to Chk1 had approximately 60% less cells in G1 phase compared with controls and pRb- cells do not arrest upon ST. Furthermore, Chk1 expression facilitates the release of the Rb+ cells from G1 arrest. Collectively, our data suggest that pRb cooperates with Chk1 to mediate a G1 arrest only in pRb+ cells. The elucidation of this pathway can help identify novel agents to protect cancer patients against the debilitating effects of chemotherapy.
Collapse
|
7
|
Hutterer C, Wandinger SK, Wagner S, Müller R, Stamminger T, Zeitträger I, Godl K, Baumgartner R, Strobl S, Marschall M. Profiling of the kinome of cytomegalovirus-infected cells reveals the functional importance of host kinases Aurora A, ABL and AMPK. Antiviral Res 2013; 99:139-48. [PMID: 23648710 DOI: 10.1016/j.antiviral.2013.04.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/19/2013] [Accepted: 04/24/2013] [Indexed: 12/20/2022]
Abstract
Human cytomegalovirus infection can lead to life-threatening clinical manifestations particularly in the immunocompromised host. Current therapy options face severe limitations leading to a continued search for alternative drug candidates. Viral replication is dependent on a balanced interaction between viral and cellular proteins. Especially protein kinases are important regulators of virus-host interaction indicated by remarkable kinome alterations induced upon HCMV infection. Here we report a novel approach of kinome profiling with an outcome that suggests an important role of specific cellular protein kinases, such as AMPK, ABL2 and Aurora A. Inhibition of AMPK and ABL kinases showed a significant reduction, whereas inhibition of Aurora A kinase led to a slight activation of HCMV replication, as measured in a GFP reporter-based replication assay. Furthermore, analysis of the mode of antiviral action suggested a substantial benefit for the efficiency of viral replication at the immediate early (AMPK) or early-late (ABL) phases of HCMV gene expression. In contrast, inhibition of Aurora A kinase promoted an enhancement of viral early-late gene expression, suggesting a putative role of Aurora A signaling in host defense. Thus, the combined data provide new information on host cell kinases involved in viral replication and uncovered potential targets for future antiviral strategies.
Collapse
Affiliation(s)
- Corina Hutterer
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Synergistic growth inhibition of cancer cells harboring the RET/PTC1 oncogene by staurosporine and rotenone involves enhanced cell death. J Biosci 2011; 36:639-48. [DOI: 10.1007/s12038-011-9100-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Caruso JA, Hunt KK, Keyomarsi K. The neutrophil elastase inhibitor elafin triggers rb-mediated growth arrest and caspase-dependent apoptosis in breast cancer. Cancer Res 2010; 70:7125-36. [PMID: 20823156 DOI: 10.1158/0008-5472.can-10-1547] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Elafin, an endogenous inhibitor of neutrophil elastase, is expressed in human mammary epithelial cells but is transcriptionally downregulated in breast cancer cells. We hypothesized that elafin may exert a tumor-suppressive activity in the context of breast cancer. In this study, we show that the retinoblastoma (Rb) pathway governs the antitumor properties of elafin. In breast cancer cells with functional Rb, the expression of elafin triggered Rb-dependent cell cycle arrest. Elafin also exhibited suppressive activity in breast cancer cell lines lacking Rb, but this was associated with an induction of caspase-3-dependent, p53-independent apoptotic cell death. Normal mammary epithelial cells were not affected by elafin. Collectively, these results argue that elafin mediates tumor-suppressive effects that are cytostatic or cytotoxic depending on the Rb status. Our findings suggest that elafin could be engineered as a therapeutic modality to treat breast cancer without toxicity to normal proliferating cells.
Collapse
Affiliation(s)
- Joseph A Caruso
- Departments of Experimental Radiation Oncology and Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030-4095, USA
| | | | | |
Collapse
|
10
|
Bandi N, Zbinden S, Gugger M, Arnold M, Kocher V, Hasan L, Kappeler A, Brunner T, Vassella E. miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Res 2009; 69:5553-9. [PMID: 19549910 DOI: 10.1158/0008-5472.can-08-4277] [Citation(s) in RCA: 297] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNA) are negative regulators of gene expression at the posttranscriptional level, which are involved in tumorigenesis. Two miRNAs, miR-15a and miR-16, which are located at chromosome 13q14, have been implicated in cell cycle control and apoptosis, but little information is available about their role in solid tumors. To address this question, we established a protocol to quantify miRNAs from laser capture microdissected tissues. Here, we show that miR-15a/miR-16 are frequently deleted or down-regulated in squamous cell carcinomas and adenocarcinomas of the lung. In these tumors, expression of miR-15a/miR-16 inversely correlates with the expression of cyclin D1. In non-small cell lung cancer (NSCLC) cell lines, cyclins D1, D2, and E1 are directly regulated by physiologic concentrations of miR-15a/miR-16. Consistent with these results, overexpression of these miRNAs induces cell cycle arrest in G(1)-G(0). Interestingly, H2009 cells lacking Rb are resistant to miR-15a/miR-16-induced cell cycle arrest, whereas reintroduction of functional Rb resensitizes these cells to miRNA activity. In contrast, down-regulation of Rb in A549 cells by RNA interference confers resistance to these miRNAs. Thus, cell cycle arrest induced by these miRNAs depends on the expression of Rb, confirming that G(1) cyclins are major targets of miR-15a/miR-16 in NSCLC. Our results indicate that miR-15a/miR-16 are implicated in cell cycle control and likely contribute to the tumorigenesis of NSCLC.
Collapse
Affiliation(s)
- Nora Bandi
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wingate H, Puskas A, Duong M, Bui T, Richardson D, Liu Y, Tucker SL, Van Pelt C, Meijer L, Hunt K, Keyomarsi K. Low molecular weight cyclin E is specific in breast cancer and is associated with mechanisms of tumor progression. Cell Cycle 2009; 8:1062-8. [PMID: 19305161 DOI: 10.4161/cc.8.7.8119] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Low molecular weight (LMW) isoforms of cyclin E are post-translationally generated in breast cancer cells and are associated with aggressive disease and poor prognosis. In this study, the specificity of LMW cyclin E to cancer cells was determined by measuring cyclin E expression in tumor and non-tumor tissue from 340 breast cancer patients. Our results reveal the LMW isoforms were detected significantly more frequently in breast tumor tissue than in adjacent non-tumor breast tissues (p < 0.0001). The biologic consequences of the LMW isoforms were studied using a non-tumorigenic mammary epithelial cell line transfected with the cyclin E isoforms and resulted in increased clonogenicity, the inability to enter quiescence in response to growth factor deprivation and genomic instability compared to the full-length cyclin E. Biochemical differences between the full-length and the LMW isoforms were also evident. Biacore analyses show that the LMW isoforms have more efficient binding to CDK2 compared to full-length cyclin E, which could account for the unique biologic consequences observed with the expression of LMW cyclin E. The LMW isoforms of cyclin E are tumor specific, and are biochemically and biologically distinct from the full-length cyclin E which could provide a novel role in breast cancer progression.
Collapse
Affiliation(s)
- Hannah Wingate
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The retinoblastoma tumour suppressor (RB) is a crucial regulator of cell-cycle progression that is invoked in response to a myriad of anti-mitogenic signals. It has been hypothesized that perturbations of the RB pathway confer a synonymous proliferative advantage to tumour cells; however, recent findings demonstrate context-specific outcomes associated with such lesions. Particularly, loss of RB function is associated with differential response to wide-ranging therapeutic agents. Thus, the status of this tumour suppressor may be particularly informative in directing treatment regimens.
Collapse
Affiliation(s)
- Erik S Knudsen
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | |
Collapse
|
13
|
Heffeter P, Jakupec M, Körner W, Chiba P, Pirker C, Dornetshuber R, Elbling L, Sutterlüty H, Micksche M, Keppler B, Berger W. Multidrug-resistant cancer cells are preferential targets of the new antineoplastic lanthanum compound KP772 (FFC24). Biochem Pharmacol 2007; 73:1873-86. [PMID: 17445775 PMCID: PMC3371634 DOI: 10.1016/j.bcp.2007.03.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 02/08/2007] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
Recently, we have introduced [tris(1,10-phenanthroline)lanthanum(III)] trithiocyanate (KP772, FFC24) as a new lanthanum compound which has promising anticancer properties in vivo and in vitro. Aim of this study was to investigate the impact of ABC transporter-mediated multidrug resistance (MDR) on the anticancer activity of KP772. Here, we demonstrate that all MDR cell models investigated, overexpressing ABCB1 (P-glycoprotein), ABCC1 (multidrug resistance protein 1), or ABCG2 (breast cancer resistance protein) either due to drug selection or gene transfection, were significantly hypersensitive against KP772. Using ABCB1-overexpressing KBC-1 cells as MDR model, KP772 hypersensitivity was demonstrated to be based on stronger apoptosis induction and/or cell cycle arrest at unaltered cellular drug accumulation. KP772 did neither stimulate ABCB1 ATPase activity nor alter rhodamine 123 accumulation arguing against a direct interaction with ABCB1. Accordingly, several drug resistance modulators did not sensitize but rather protect MDR cells against KP772-induced cytotoxicity. Moreover, long-term KP772 treatment of KBC-1 cells at subtoxic concentrations led within 20 passages to a complete loss of drug resistance based on blocked MDR1 gene expression. When exposing parental KB-3-1 cells to subtoxic, stepwise increasing KP772 concentrations, we observed, in contrast to several other metallo-drugs, no acquisition of KP772 resistance. Summarizing, our data demonstrate that KP772 is hyperactive in MDR cells and might have chemosensitizing properties by blocking ABCB1 expression. Together with the disability of tumor cells to acquire KP772 resistance, our data suggest that KP772 should be especially active against notoriously drug-resistant tumor types and as second line treatment after standard chemotherapy failure.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/metabolism
- Adenocarcinoma/drug therapy
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Breast Neoplasms/drug therapy
- Carcinoma, Small Cell/drug therapy
- Cell Cycle/drug effects
- Cell Line, Tumor
- Dose-Response Relationship, Drug
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Formazans/metabolism
- HL-60 Cells
- Humans
- Lanthanum/chemistry
- Lanthanum/pharmacology
- Lanthanum/therapeutic use
- Lung Neoplasms/drug therapy
- Molecular Structure
- Neoplasm Proteins/metabolism
- Organic Anion Transporters/metabolism
- Organometallic Compounds/chemistry
- Organometallic Compounds/pharmacology
- Organometallic Compounds/therapeutic use
- Phenanthrolines/chemistry
- Phenanthrolines/pharmacology
- Phenanthrolines/therapeutic use
- Sensitivity and Specificity
- Tetrazolium Salts/metabolism
Collapse
Affiliation(s)
- P. Heffeter
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - M.A. Jakupec
- Institute of Inorganic Chemistry, University of Vienna, Austria
| | - W. Körner
- Institute for Geological Sciences, University of Vienna, Austria
| | - P. Chiba
- Institute of Medical Chemistry, Department of Physiology and Pathophysiology, Medical University of Vienna, Austria
| | - C. Pirker
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - R. Dornetshuber
- Department of Pharmacology and Toxicology, University of Vienna, Austria
| | - L. Elbling
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - H. Sutterlüty
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - M. Micksche
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - B.K. Keppler
- Institute of Inorganic Chemistry, University of Vienna, Austria
| | - W. Berger
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Corresponding author. Tel.: +43 1 4277 65173; fax: +43 1 4277 65169. (W. Berger)
| |
Collapse
|