1
|
Heydari N, Mahdizadeh M, Jafari SM. The evolving landscape of involvement of DTYMK enzymes in cancer. Med Oncol 2023; 40:213. [PMID: 37358701 DOI: 10.1007/s12032-023-02086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
Cancer cells require continuous synthesis of nucleotides for their uncontrolled proliferation. Deoxy thymidylate kinase (DTYMK) belongs to the thymidylate kinase family and is concerned with pyrimidine metabolism. DTYMK catalyzes the ATP-based conversion of deoxy-TMP to deoxy-TDP in both de novo and salvage pathways. Different studies demonstrated that DTYMK was increased in various types of cancers such as hepatocellular carcinoma, colon cancer, lung cancer, etc. Increased level of DTYMK was associated with poorer survival and prognosis, stage, grade and size of tumor, cell proliferation, colony formation, enhanced sensitivity to chemotherapy drugs, migration. Some studies were showed that knockdown of DTYMK reduced the signaling pathway of PI3K/AKT and downregulated expression of CART, MAPKAPK2, AKT1 and NRF1. Moreover, some microRNAs could suppress DTYMK expressions. On the other hand based on the TIMER database, the infiltration of macrophages, dendritic cells, neutrophils, B cells, CD4+ T cell and CD8+ T cell is affected by DTYMK. In the present review, we describe the genomic location, protein structure and isoforms of DTYMK and focus on its role in cancer development.
Collapse
Affiliation(s)
- Nadia Heydari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Islamic Republic of Iran
- Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Islamic Republic of Iran
| | - Mahsa Mahdizadeh
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Islamic Republic of Iran
- Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Islamic Republic of Iran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Islamic Republic of Iran.
- Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Islamic Republic of Iran.
| |
Collapse
|
2
|
Aloliqi AA, Fararjeh AF, Al-Khader A, Kaddumi E, Eisa AA, Jaradat W. The Impact of DTYMK as a Prognostic Marker in Colorectal Cancer. World J Oncol 2023; 14:84-93. [PMID: 36895992 PMCID: PMC9990730 DOI: 10.14740/wjon1571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 03/01/2023] Open
Abstract
Background Overexpression of deoxythymidylate kinase (DTYMK) has been associated with more aggressiveness and pathological behaviors in hepatocellular carcinoma (HCC) and non-small cell lung cancer (NSCLC). However, the expression of DTYMK and its prognostic significance in colorectal cancer (CRC) patients are yet unknown. The goal of this study was to investigate the DTYMK immunohistochemistry reactivity in CRC tissues and to see how it correlated with various histological and clinical features as well as survival. Methods Several bioinformatics databases and two tissue microarrays (TMAs) of 227 cases were used in this study. Immunohistochemistry assay was used to study the protein expression of DTYMK. Results Based on the GEPIA, UALCAN, and Oncomine databases, DTYMK expression has increased in tumor tissues at both RNA and protein levels in colorectal adenocarcinoma (COAD) compared to normal tissues. A high DTYMK H-score was found in 122/227 (53%) of the cases, whereas a low DTYMK H-score was found in 105/227. The age at diagnosis (P = 0.036), stage of the disease (P = 0.038), and site of origin (P = 0.032) were all linked to a high DTYMK H-score. Patients with high level of DTYMK had bad overall survival. Interestingly, high DTYMK protein level was associated with PSM2 (P = 0.002) and MSH2 (P = 0.003), but not with MLH2 or MSH6. Conclusion This is the first study to cover the expression and prognostic significance of DTYMK in CRC. DTYMK was upregulated in CRC and could be considered as a prognostic biomarker.
Collapse
Affiliation(s)
- Abdulaziz A Aloliqi
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.,These authors contributed equally to this article
| | - Abdul-Fattah Fararjeh
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-salt, Jordan.,These authors contributed equally to this article
| | - Ali Al-Khader
- Department of Pathology and Forensic Medicine, Faculty of Medicine, Al-Balqa Applied University, Al-salt, Jordan.,Department of pathology, Al-Hussein Salt Hospital, Al-salt, Jordan
| | - Ezidin Kaddumi
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-salt, Jordan
| | - Alaa Abdulaziz Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Weam Jaradat
- Department of Medical Laboratory Sciences, Faculty of Graduate Study, Al-Balqa Applied University, Al-Salt, Jordan
| |
Collapse
|
3
|
Lan T, Wang Y, Miao J, Guo H, Wang Z, Wang J, Zhang C, Yang P, Zhang Z, Dunmall LC, Wang Y. Deoxythymidylate Kinase as a Promising Marker for Predicting Prognosis and Immune Cell Infiltration of Pan-cancer. Front Mol Biosci 2022; 9:887059. [PMID: 35903153 PMCID: PMC9315941 DOI: 10.3389/fmolb.2022.887059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Deoxythymidylate kinase (DTYMK) serves as a pyrimidine metabolic rate-limiting enzyme that catalyzes deoxythymidine monophosphate (dTMP) to generate deoxythymidine diphosphate (dTDP). It remains unclear whether DTYMK expression has the potential to predict outcome and immune cell infiltration in cancers. Methods: DTYMK expression profile was analyzed using Oncomine, TIMER, GEPIA and UALCAN databases. The influence of DTYMK on immune infiltration was examined using TIMER and TISIDB databases. DTYMK interactive gene hub and co-expressing genes were obtained and analyzed by STRING and Linkedomics, respectively. The relationship between DTYMK expression and patient prognosis was validated using GEPIA, Kaplan-Meier plotter, and PrognoScan databases. The functions of DTYMK in cancer cells were also biologically validated in vitro. Results: DTYMK expression was elevated in tumor tissues compared with their control counterparts. DTYMK expression varied in different stages and discriminatorily distributed in different immune and molecular subtypes. Higher expression of DTYMK predicted worse outcome in several cancer types such as liver hepatocellular carcinoma (LIHC) and lung adenocarcinoma (LUAD). High DTYMK expression was positively or negatively correlated with immune cell infiltration, including B cell, CD8+ cell, CD4+ T cell, macrophage, neutrophil and dendritic cell, depending on the type of cancers. Additionally, DTYMK co-expressing genes participated in pyrimidine metabolism as well as in T helper cell differentiation in LIHC and LUAD. In vitro, knockdown of DTYMK suppressed cell migration of liver and lung cancer cells. Conclusion: DTYMK might be taken as an useful prognostic and immunological marker in cancers and further investigation is warrented.
Collapse
Affiliation(s)
- Tianfeng Lan
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yachao Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinxin Miao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Haoran Guo
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zheng Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianyao Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chunyang Zhang
- Department of Surgical Sciences, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Panpan Yang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhongxian Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa Chard Dunmall
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Yaohe Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
4
|
Zhou T, Qin R, Shi S, Zhang H, Niu C, Ju G, Miao S. DTYMK promote hepatocellular carcinoma proliferation by regulating cell cycle. Cell Cycle 2021; 20:1681-1691. [PMID: 34369850 DOI: 10.1080/15384101.2021.1958502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Overexpression of DTYMK is related with tumorigenesis and progression in several human tumors. However, the role of upregulated DTYMK in hepatocellular carcinoma (HCC) patients still remains unclear. In this study, the DTYMK expression in HCC tumors was evaluated in three GEO series (GSE14520, GSE54236, GSE63898), TCGA-LIHC, and ICGC-IRLR-JP cohorts. Survival analysis of DTYMK based on TCGA-LIHC and ICGC-LIRI-JP cohorts was conducted. We found that DTYMK was dramatically upregulated in tumor tissue compared with that in adjacent liver tissue. Kaplan-Meier analysis revealed that high expression of DTYMK in HCC patients' tumor tissue was significantly corresponded to worse overall survival (OS) (P < 0.05). Further analysis showed that overexpressing DTYMK led to poor relapse free survival (RFS) and disease-specific survival (DSS) (all P < 0.05). In conclusion, DTYMK is upregulated in tumors and correlated with poor prognosis in HCC patients. In our report, DTYMK is higher expression in HCC cancer tissue and cell line than tumor adjacent tissue and normal liver cell line. Knocking down DTYMK can inhabit tumor cell proliferation by interfering cell cycle, whereas overexpression of DTYMK can promote tumor cell proliferation. These findings indicate that upregulation of DTYMK enhances tumor growth and proliferation by promoting cell cycle.
Collapse
Affiliation(s)
- Tianhao Zhou
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China.,Department of Oncology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Qin
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Susu Shi
- Department of Oncology, Beijing Cancer Hospital, Peking University, Beijing, China
| | - Hua Zhang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Chuanling Niu
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Gaoda Ju
- Department of Oncology, Beijing Cancer Hospital, Peking University, Beijing, China
| | - Sen Miao
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
5
|
Davison C, Morelli R, Knowlson C, McKechnie M, Carson R, Stachtea X, McLaughlin KA, Prise VE, Savage K, Wilson RH, Mulligan KA, Wilson PM, Ladner RD, LaBonte MJ. Targeting nucleotide metabolism enhances the efficacy of anthracyclines and anti-metabolites in triple-negative breast cancer. NPJ Breast Cancer 2021; 7:38. [PMID: 33824328 PMCID: PMC8024381 DOI: 10.1038/s41523-021-00245-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) remains the most lethal breast cancer subtype with poor response rates to the current chemotherapies and a lack of additional effective treatment options. We have identified deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) as a critical gatekeeper that protects tumour DNA from the genotoxic misincorporation of uracil during treatment with standard chemotherapeutic agents commonly used in the FEC regimen. dUTPase catalyses the hydrolytic dephosphorylation of deoxyuridine triphosphate (dUTP) to deoxyuridine monophosphate (dUMP), providing dUMP for thymidylate synthase as part of the thymidylate biosynthesis pathway and maintaining low intracellular dUTP concentrations. This is crucial as DNA polymerase cannot distinguish between dUTP and deoxythymidylate triphosphate (dTTP), leading to dUTP misincorporation into DNA. Targeting dUTPase and inducing uracil misincorporation during the repair of DNA damage induced by fluoropyrimidines or anthracyclines represents an effective strategy to induce cell lethality. dUTPase inhibition significantly sensitised TNBC cell lines to fluoropyrimidines and anthracyclines through imbalanced nucleotide pools and increased DNA damage leading to decreased proliferation and increased cell death. These results suggest that repair of treatment-mediated DNA damage requires dUTPase to prevent uracil misincorporation and that inhibition of dUTPase is a promising strategy to enhance the efficacy of TNBC chemotherapy.
Collapse
Affiliation(s)
- Craig Davison
- Medicine, Dentistry and Biomedical Sciences: Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Roisin Morelli
- Medicine, Dentistry and Biomedical Sciences: Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Catherine Knowlson
- Medicine, Dentistry and Biomedical Sciences: Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Melanie McKechnie
- Medicine, Dentistry and Biomedical Sciences: Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Robbie Carson
- Medicine, Dentistry and Biomedical Sciences: Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Xanthi Stachtea
- Medicine, Dentistry and Biomedical Sciences: Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | | | | | - Kienan Savage
- Medicine, Dentistry and Biomedical Sciences: Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Richard H Wilson
- Translational Research Centre, University of Glasgow, Glasgow, UK
| | | | | | - Robert D Ladner
- Medicine, Dentistry and Biomedical Sciences: Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Melissa J LaBonte
- Medicine, Dentistry and Biomedical Sciences: Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
- Medicine, Dentistry and Biomedical Sciences: Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
6
|
Frisk JH, Eriksson S, Pejler G, Wang L. Identification of a novel thymidylate kinase activity. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:1359-1368. [PMID: 32345121 DOI: 10.1080/15257770.2020.1755043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Thymidylate kinase (TMPK, EC2.7.4.9) is the enzyme that converts deoxythymidine monophosphate (dTMP) to deoxythymidine diphosphate (dTDP) in the synthesis of dTTP, an essential building block of DNA. To date, there is only one gene (TYMK) known to encode TMPK in mammalian cells. In this study, we investigated the distribution of TMPK activity and protein in subcellular fractions by using activity measurements and by using a specific antibody against TYMK-encoded TMPK (canonical TMPK). TMPK activity was detected in all subcellular fractions, of which the mitochondrial outer membrane contained the highest activity. High levels of canonical TMPK protein were detected in the cytosolic fraction, whereas low levels were found in the nuclear and mitochondrial matrix fractions. Strikingly, despite the detection of high TMPK activity in the mitochondrial outer membrane, canonical TMPK protein was not detected in this fraction. These results suggest that the TMPK activity detected in the outer membrane fraction may originate from a novel dTMP kinase, distinct from the canonical TYMK.
Collapse
Affiliation(s)
- Junmei Hu Frisk
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Staffan Eriksson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Liya Wang
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
7
|
Santos SM, Hartman JL. A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin. Cancer Metab 2019; 7:9. [PMID: 31660150 PMCID: PMC6806529 DOI: 10.1186/s40170-019-0201-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/03/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The influence of the Warburg phenomenon on chemotherapy response is unknown. Saccharomyces cerevisiae mimics the Warburg effect, repressing respiration in the presence of adequate glucose. Yeast phenomic experiments were conducted to assess potential influences of Warburg metabolism on gene-drug interaction underlying the cellular response to doxorubicin. Homologous genes from yeast phenomic and cancer pharmacogenomics data were analyzed to infer evolutionary conservation of gene-drug interaction and predict therapeutic relevance. METHODS Cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library were measured by quantitative high-throughput cell array phenotyping (Q-HTCP), treating with escalating doxorubicin concentrations under conditions of respiratory or glycolytic metabolism. Doxorubicin-gene interaction was quantified by departure of CPPs observed for the doxorubicin-treated mutant strain from that expected based on an interaction model. Recursive expectation-maximization clustering (REMc) and Gene Ontology (GO)-based analyses of interactions identified functional biological modules that differentially buffer or promote doxorubicin cytotoxicity with respect to Warburg metabolism. Yeast phenomic and cancer pharmacogenomics data were integrated to predict differential gene expression causally influencing doxorubicin anti-tumor efficacy. RESULTS Yeast compromised for genes functioning in chromatin organization, and several other cellular processes are more resistant to doxorubicin under glycolytic conditions. Thus, the Warburg transition appears to alleviate requirements for cellular functions that buffer doxorubicin cytotoxicity in a respiratory context. We analyzed human homologs of yeast genes exhibiting gene-doxorubicin interaction in cancer pharmacogenomics data to predict causality for differential gene expression associated with doxorubicin cytotoxicity in cancer cells. This analysis suggested conserved cellular responses to doxorubicin due to influences of homologous recombination, sphingolipid homeostasis, telomere tethering at nuclear periphery, actin cortical patch localization, and other gene functions. CONCLUSIONS Warburg status alters the genetic network required for yeast to buffer doxorubicin toxicity. Integration of yeast phenomic and cancer pharmacogenomics data suggests evolutionary conservation of gene-drug interaction networks and provides a new experimental approach to model their influence on chemotherapy response. Thus, yeast phenomic models could aid the development of precision oncology algorithms to predict efficacious cytotoxic drugs for cancer, based on genetic and metabolic profiles of individual tumors.
Collapse
Affiliation(s)
- Sean M. Santos
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL USA
| | - John L. Hartman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
8
|
Sahoo S, Ravi Kumar RK, Nicolay B, Mohite O, Sivaraman K, Khetan V, Rishi P, Ganesan S, Subramanyan K, Raman K, Miles W, Elchuri SV. Metabolite systems profiling identifies exploitable weaknesses in retinoblastoma. FEBS Lett 2018; 593:23-41. [PMID: 30417337 DOI: 10.1002/1873-3468.13294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/25/2018] [Accepted: 11/06/2018] [Indexed: 11/06/2022]
Abstract
Retinoblastoma (RB) is a childhood eye cancer. Currently, chemotherapy, local therapy, and enucleation are the main ways in which these tumors are managed. The present work is the first study that uses constraint-based reconstruction and analysis approaches to identify and explain RB-specific survival strategies, which are RB tumor specific. Importantly, our model-specific secretion profile is also found in RB1-depleted human retinal cells in vitro and suggests that novel biomarkers involved in lipid metabolism may be important. Finally, RB-specific synthetic lethals have been predicted as lipid and nucleoside transport proteins that can aid in novel drug target development.
Collapse
Affiliation(s)
- Swagatika Sahoo
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India.,Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India
| | | | - Brandon Nicolay
- Department of Molecular Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA.,Agios Pharmaceutical, 88 Sidney Street, Cambridge, MA, USA
| | - Omkar Mohite
- Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Vikas Khetan
- Shri Bhagwan Mahavir Vitreoretinal Services and Ocular Oncology Services, Sankara Nethralaya, Chennai, India
| | - Pukhraj Rishi
- Shri Bhagwan Mahavir Vitreoretinal Services and Ocular Oncology Services, Sankara Nethralaya, Chennai, India
| | - Suganeswari Ganesan
- Department of Histopathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | | | - Karthik Raman
- Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.,Robert Bosch Centre for Data Science and Artificial Intelligence (RBC-DSAI), Indian Institute of Technology Madras, Chennai, India
| | - Wayne Miles
- Department of Molecular Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA.,Department of Molecular Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Sailaja V Elchuri
- Department of Nanotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| |
Collapse
|
9
|
Agarwal HK, Khalil A, Ishita K, Yang W, Nakkula RJ, Wu LC, Ali T, Tiwari R, Byun Y, Barth RF, Tjarks W. Synthesis and evaluation of thymidine kinase 1-targeting carboranyl pyrimidine nucleoside analogs for boron neutron capture therapy of cancer. Eur J Med Chem 2015; 100:197-209. [PMID: 26087030 DOI: 10.1016/j.ejmech.2015.05.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/24/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
Abstract
A library of sixteen 2nd generation amino- and amido-substituted carboranyl pyrimidine nucleoside analogs, designed as substrates and inhibitors of thymidine kinase 1 (TK1) for potential use in boron neutron capture therapy (BNCT) of cancer, was synthesized and evaluated in enzyme kinetic-, enzyme inhibition-, metabolomic-, and biodistribution studies. One of these 2nd generation carboranyl pyrimidine nucleoside analogs (YB18A [3]), having an amino group directly attached to a meta-carborane cage tethered via ethylene spacer to the 3-position of thymidine, was approximately 3-4 times superior as a substrate and inhibitor of hTK1 than N5-2OH (2), a 1st generation carboranyl pyrimidine nucleoside analog. Both 2 and 3 appeared to be 5'-monophosphorylated in TK1(+) RG2 cells, both in vitro and in vivo. Biodistribution studies in rats bearing intracerebral RG2 glioma resulted in selective tumor uptake of 3 with an intratumoral concentration that was approximately 4 times higher than that of 2. The obtained results significantly advance the understanding of the binding interactions between TK1 and carboranyl pyrimidine nucleoside analogs and will profoundly impact future design strategies for these agents.
Collapse
Affiliation(s)
- Hitesh K Agarwal
- Division of Medicinal Chemistry & Pharmacognosy, The Ohio State University, Columbus, OH, USA
| | - Ahmed Khalil
- Division of Medicinal Chemistry & Pharmacognosy, The Ohio State University, Columbus, OH, USA
| | - Keisuke Ishita
- Division of Medicinal Chemistry & Pharmacognosy, The Ohio State University, Columbus, OH, USA
| | - Weilian Yang
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Robin J Nakkula
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Lai-Chu Wu
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Tehane Ali
- Division of Medicinal Chemistry & Pharmacognosy, The Ohio State University, Columbus, OH, USA
| | - Rohit Tiwari
- Division of Medicinal Chemistry & Pharmacognosy, The Ohio State University, Columbus, OH, USA
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Rolf F Barth
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Werner Tjarks
- Division of Medicinal Chemistry & Pharmacognosy, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
10
|
McAllister KA, Yasseen AA, McKerr G, Downes CS, McKelvey-Martin VJ. FISH comets show that the salvage enzyme TK1 contributes to gene-specific DNA repair. Front Genet 2014; 5:233. [PMID: 25152750 PMCID: PMC4126492 DOI: 10.3389/fgene.2014.00233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/30/2014] [Indexed: 11/13/2022] Open
Abstract
Thymidine kinase 1 (TK1) is a salvage enzyme that phosphorylates thymidine, imported from surrounding fluids, to create dTMP, which is further phosphorylated to the DNA precursor dTTP. TK1 deficiency has for a long time been known to cause increased cellular sensitivity to DNA damage. We have examined preferential strand break repair of DNA domains in TK1(+) and TK1(-) clones of the Raji cell line, by the Comet-FISH technique, in bulk DNA and in the actively transcribed tumor suppressor (TP53) and human telomerase reverse transcriptase (hTERT) gene regions, over 1 h after 5Gy γ-irradiation. Results showed that repair of the TP53 and hTERT gene regions was more efficient in TK1(+) compared to TK1(-) cells, a trend also reflected to a lesser degree in genomic DNA repair between the cell-lines. The targeted gene-specific repair in TK(+) cells occurred rapidly, mainly over the first 15 min repair-period. Therefore, TK1 is needed for preferential repair of actively transcribed regions, through a previously unsuspected mechanism. In principle, TK1 could exert its protective effects through supply of a supplementary dTTP pool for accurate repair of damaged genes; but Raji TK1(+) cells in thymidine free media still show preferential repair of transcribed regions. TK1 therefore does not exert its protective effects through dTTP pools, but through another unidentified mechanism, which affects sensitivity to and mutagenicity by DNA damaging agents.
Collapse
Affiliation(s)
| | - Akeel A Yasseen
- Department of Pathology and Forensic Medicine, Faculty of Medicine, University of Kufa Kufa, Iraq
| | - George McKerr
- School of Biomedical Sciences, University of Ulster Coleraine, UK
| | - C S Downes
- School of Biomedical Sciences, University of Ulster Coleraine, UK
| | | |
Collapse
|
11
|
Lee SW, Chen TJ, Lin LC, Li CF, Chen LT, Hsing CH, Hsu HP, Tsai CJ, Huang HY, Shiue YL. Overexpression of thymidylate synthetase confers an independent prognostic indicator in nasopharyngeal carcinoma. Exp Mol Pathol 2013; 95:83-90. [PMID: 23726796 DOI: 10.1016/j.yexmp.2013.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/21/2013] [Accepted: 05/21/2013] [Indexed: 01/18/2023]
Abstract
Data mining on public domain identified that thymidylate synthetase (TYMS) and dihydrofolate reductase (DHFR) transcripts were significantly higher expressed in nasopharyngeal carcinoma (NPC). In the folate pathway, TYMS catalyzes the methylation of deoxyuridylate to deoxythymidylate using 5,10-methylenetetrahydrofolate [5,10-CH2=THF, derived from tetrahydrofolate (THF)], as a cofactor. This function maintains the thymidine-5-prime monophosphate pool critical for DNA replication and repair and, THF is generated from dihydrofolate (DHF) through the activity of DHFR. Immunoexpression of TYMS and DHFR were retrospectively assessed in biopsies of 124 consecutive NPC patients without initial distant metastasis and treated with consistent guidelines. The outcome was correlated with clinicopathological features and patient survivals. Results indicated that high TYMS (50%) expressions were correlated with primary tumor (p=0.008) and AJCC stage (p=0.006), and high DHFR (50%) expression were correlated with nodal status (p=0.039) and AJCC stage (p=0.029) (7th American Joint Committee on Cancer), respectively. In multivariate analyses, high TYMS expression emerged as an independent prognosticator for worse disease-specific survival (p<0.001), distal metastasis-free survival (p=0.002) and local recurrence-free survival (p<0.001), along with AJCC stage. Therefore, TYMS expression is common and associated with adverse prognosticators and might confer tumor aggressiveness through dysregulation of the nucleotide biosynthetic process.
Collapse
Affiliation(s)
- Sung-Wei Lee
- Department of Radiation Oncology, Chi-Mei Medical Center, Liouying, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Liu Y, Marks K, Cowley GS, Carretero J, Liu Q, Nieland TJF, Xu C, Cohoon TJ, Gao P, Zhang Y, Chen Z, Altabef AB, Tchaicha JH, Wang X, Choe S, Driggers EM, Zhang J, Bailey ST, Sharpless NE, Hayes DN, Patel NM, Janne PA, Bardeesy N, Engelman JA, Manning BD, Shaw RJ, Asara JM, Scully R, Kimmelman A, Byers LA, Gibbons DL, Wistuba II, Heymach JV, Kwiatkowski DJ, Kim WY, Kung AL, Gray NS, Root DE, Cantley LC, Wong KK. Metabolic and functional genomic studies identify deoxythymidylate kinase as a target in LKB1-mutant lung cancer. Cancer Discov 2013; 3:870-9. [PMID: 23715154 DOI: 10.1158/2159-8290.cd-13-0015] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The LKB1/STK11 tumor suppressor encodes a serine/threonine kinase, which coordinates cell growth, polarity, motility, and metabolism. In non-small cell lung carcinoma, LKB1 is somatically inactivated in 25% to 30% of cases, often concurrently with activating KRAS mutations. Here, we used an integrative approach to define novel therapeutic targets in KRAS-driven LKB1-mutant lung cancers. High-throughput RNA interference screens in lung cancer cell lines from genetically engineered mouse models driven by activated KRAS with or without coincident Lkb1 deletion led to the identification of Dtymk, encoding deoxythymidylate kinase (DTYMK), which catalyzes dTTP biosynthesis, as synthetically lethal with Lkb1 deficiency in mouse and human lung cancer lines. Global metabolite profiling showed that Lkb1-null cells had a striking decrease in multiple nucleotide metabolites as compared with the Lkb1-wild-type cells. Thus, LKB1-mutant lung cancers have deficits in nucleotide metabolism that confer hypersensitivity to DTYMK inhibition, suggesting that DTYMK is a potential therapeutic target in this aggressive subset of tumors.
Collapse
Affiliation(s)
- Yan Liu
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Emerging nanodelivery strategies of RNAi molecules for colon cancer therapy: preclinical developments. Ther Deliv 2012; 3:1117-30. [DOI: 10.4155/tde.12.89] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although local colonic delivery is achievable through several strategies, colon cancer is still considered one of the leading causes of death worldwide. Failure of chemotherapeutics to exhibit efficient anticancer activity might be attributed to the development of multidrug resistance (MDR) mechanisms including the overexpression of certain oncogenes such as MDR1/P-gp. One of the major reasons for the shortcoming of P-gp inhibitors in clinic is the nonspecific distribution of them to nontarget organs, which leads to reduced elimination and increased toxicity of its substrates including anticancer agents. Numerous studies have demonstrated the effectiveness of gene-silencing approaches in reversing the P-gp-mediated MDR. However, none have reached clinical trials yet. Several drug-delivery systems have been investigated primarily to address P-gp and the observed improved anticancer efficacy suggests that nanomedicine provides new opportunities to overcome MDR in cancer. In this review, novel therapeutic strategies for colon cancer therapy will be discussed in the context of P-gp inhibition by low-molecular-weight agents and RNAi molecules.
Collapse
|
14
|
Hu CM, Yeh MT, Tsao N, Chen CW, Gao QZ, Chang CY, Lee MH, Fang JM, Sheu SY, Lin CJ, Tseng MC, Chen YJ, Chang ZF. Tumor cells require thymidylate kinase to prevent dUTP incorporation during DNA repair. Cancer Cell 2012; 22:36-50. [PMID: 22789537 DOI: 10.1016/j.ccr.2012.04.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 01/03/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
Abstract
The synthesis of dTDP is unique because there is a requirement for thymidylate kinase (TMPK). All other dNDPs including dUDP are directly produced by ribonucleotide reductase (RNR). We report the binding of TMPK and RNR at sites of DNA damage. In tumor cells, when TMPK function is blocked, dUTP is incorporated during DNA double-strand break (DSB) repair. Disrupting RNR recruitment to damage sites or reducing the expression of the R2 subunit of RNR prevents the impairment of DNA repair by TMPK intervention, indicating that RNR contributes to dUTP incorporation during DSB repair. We identified a cell-permeable nontoxic inhibitor of TMPK that sensitizes tumor cells to doxorubicin in vitro and in vivo, suggesting its potential as a therapeutic option.
Collapse
Affiliation(s)
- Chun-Mei Hu
- Graduate Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 11221 Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
In this issue of Cancer Cell, Hu et al. report that TMPK and RNR, two key enzymes in deoxyribonucleotide biosynthesis, co-localize to damaged DNA and produce nucleotides necessary for DNA repair while suppressing uracil incorporation. TMPK inhibition disrupts this balance and selectively sensitizes cancer cells to low-dose chemotherapy.
Collapse
Affiliation(s)
- Patrick J Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
16
|
Merényi G, Kovári J, Tóth J, Takács E, Zagyva I, Erdei A, Vértessy BG. Cellular response to efficient dUTPase RNAi silencing in stable HeLa cell lines perturbs expression levels of genes involved in thymidylate metabolism. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2011; 30:369-90. [PMID: 21780905 DOI: 10.1080/15257770.2011.582849] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
dUTPase is involved in preserving DNA integrity in cells. We report an efficient dUTPase silencing by RNAi-based system in stable human cell line. Repression of dUTPase induced specific expression level increments for thymidylate kinase and thymidine kinase, and also an increased sensitization to 5-fluoro-2'-deoxyuridine and 5-fluoro-uracil. The catalytic mechanism of dUTPase was investigated for 5-fluoro-dUTP. The 5F-substitution on the uracil ring of the substrate did not change the kinetic mechanism of dUTP hydrolysis by dUTPase. Results indicate that RNAi silencing of dUTPase induces a complex cellular response wherein sensitivity towards fluoropyrimidines and gene expression levels of related enzymes are both modulated.
Collapse
Affiliation(s)
- Gábor Merényi
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
17
|
Chen YL, Eriksson S, Chang ZF. Regulation and functional contribution of thymidine kinase 1 in repair of DNA damage. J Biol Chem 2010; 285:27327-27335. [PMID: 20554529 DOI: 10.1074/jbc.m110.137042] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular supply of dNTPs is essential in the DNA replication and repair processes. Here we investigated the regulation of thymidine kinase 1 (TK1) in response to DNA damage and found that genotoxic insults in tumor cells cause up-regulation and nuclear localization of TK1. During recovery from DNA damage, TK1 accumulates in p53-null cells due to a lack of mitotic proteolysis as these cells are arrested in the G(2) phase by checkpoint activation. We show that in p53-proficient cells, p21 expression in response to DNA damage prohibits G(1)/S progression, resulting in a smaller G(2) fraction and less TK1 accumulation. Thus, the p53 status of tumor cells affects the level of TK1 after DNA damage through differential cell cycle control. Furthermore, it was shown that in HCT-116 p53(-/-) cells, TK1 is dispensable for cell proliferation but crucial for dTTP supply during recovery from DNA damage, leading to better survival. Depletion of TK1 decreases the efficiency of DNA repair during recovery from DNA damage and generates more cell death. Altogether, our data suggest that more dTTP synthesis via TK1 take place after genotoxic insults in tumor cells, improving DNA repair during G(2) arrest.
Collapse
Affiliation(s)
- Yen-Ling Chen
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Staffan Eriksson
- Department of Anatomy, Physiology and Biochemistry, The Swedish University of Agricultural Sciences, Biomedical Center, S-751 23 Uppsala, Sweden
| | - Zee-Fen Chang
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei 112, Taiwan.
| |
Collapse
|
18
|
Hu CM, Chang ZF. A bioluminescent method for measuring thymidylate kinase activity suitable for high-throughput screening of inhibitor. Anal Biochem 2009; 398:269-71. [PMID: 19995545 DOI: 10.1016/j.ab.2009.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/20/2009] [Accepted: 12/02/2009] [Indexed: 11/28/2022]
Abstract
Blocking human thymidylate kinase (TMPK) function has a chemosensitization effect in anticancer treatment. However, a rapid and sensitive TMPK activity assay method suitable for inhibitor screening has been lacking. We have designed a luciferase-coupled TMPK assay in which luminescence emission is proportional to the magnitude of TMPK inhibition. The advantages of using this new method over the conventional nicotinamide adenine dinucleotide (reduced form, NADH)-coupling method in screening inhibitor include low cost, low limit in detecting inhibitory signal, more accurate, and devoid of interference due to compound absorbance at 340 nm.
Collapse
Affiliation(s)
- Chun-Mei Hu
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|