1
|
Xu S, Chen X, Fang J, Chu H, Fang S, Zeng L, Ma H, Zhang T, Chen Y, Wang T, Zhang X, Shen T, Zheng Y, Xu D, Lu Z, Pan Y, Liu Y. Comprehensive analysis of 33 human cancers reveals clinical implications and immunotherapeutic value of the solute carrier family 35 member A2. Front Immunol 2023; 14:1155182. [PMID: 37275857 PMCID: PMC10232969 DOI: 10.3389/fimmu.2023.1155182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Background Solute carrier family 35 member A2 (SLC35A2), which belongs to the SLC35 solute carrier family of human nucleoside sugar transporters, has shown regulatory roles in various tumors and neoplasms. However, the function of SLC35A2 across human cancers remains to be systematically assessed. Insights into the prediction ability of SLC35A2 in clinical practice and immunotherapy response remains limited. Materials and methods We obtained the gene expression and protein levels of SLC35A2 in a variety of tumors from Molecular Taxonomy of Breast Cancer International Consortium, The Cancer Genome Atlas, Gene Expression Omnibus, Chinese Glioma Genome Atlas, and Human Protein Atlas databases. The SLC35A2 level was validated by immunohistochemistry. The predictive value for prognosis was evaluated by Kaplan-Meier survival and Cox regression analyses. Correlations between SLC35A2 expression and DNA methylation, genetic alterations, tumor mutation burden (TMB), microsatellite instability (MSI), and tumor microenvironment were performed using Spearman's correlation analysis. The possible downstream pathways of SLC35A2 in different human cancers were explored using gene set variation analysis. The potential role of SLC35A2 in the tumor immune microenvironment was evaluated via EPIC, CIBERSORT, MCP-counter, CIBERSORT-ABS, quanTIseq, TIMER, and xCell algorithms. The difference in the immunotherapeutic response of SLC35A2 under different expression conditions was evaluated by the tumor immune dysfunction and exclusion (TIDE) score as well as four independent immunotherapy cohorts, which includes patients with bladder urothelial carcinoma (BLCA, N = 299), non-small cell lung cancer (NSCLC, N = 72 and N = 36) and skin cutaneous melanoma (SKCM, N = 25). Potential drugs were identified using the CellMiner database and molecular docking. Results SLC35A2 exhibited abnormally high or low expression in 23 cancers and was significantly associated with the prognosis. In various cancers, SLC35A2 expression and mammalian target of rapamycin complex 1 signaling were positively correlated. Multiple algorithmic immune infiltration analyses suggested an inverse relation between SLC35A2 expression and infiltrating immune cells, which includes CD4+T cells, CD8+T cells, B cells, and natural killer cells (NK) in various tumors. Furthermore, SLC35A2 expression was significantly correlated with pan-cancer immune checkpoints, TMB, MSI, and TIDE genes. SLC35A2 showed significant predictive value for the immunotherapy response of patients with diverse cancers. Two drugs, vismodegib and abiraterone, were identified, and the free binding energy of cytochrome P17 with abiraterone was higher than that of SLC35A2 with abiraterone. Conclusion Our study revealed that SLC35A2 is upregulated in 20 types of cancer, including lung adenocarcinoma (LUAD), breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), and lung squamous cell carcinoma (LUSC). The upregulated SLC35A2 in five cancer types indicates a poor prognosis. Furthermore, there was a positive correlation between the overexpression of SLC35A2 and reduced lymphocyte infiltration in 13 cancer types, including BRCA and COAD. Based on data from several clinical trials, patients with LUAD, LUSC, SKCM, and BLCA who exhibited high SLC35A2 expression may experience improved immunotherapy response. Therefore, SLC35A2 could be considered a potential predictive biomarker for the prognosis and immunotherapy efficacy of various tumors. Our study provides a theoretical basis for further investigating its prognostic and therapeutic potentials.
Collapse
Affiliation(s)
- Shengshan Xu
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Xiguang Chen
- Department of Medical Oncology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jianxiong Fang
- Department of Urology, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Hongyu Chu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shuo Fang
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Leli Zeng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Hansu Ma
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Tianzhi Zhang
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yu Chen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Tao Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Tao Shen
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Youbin Zheng
- Department of Radiology, Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, Guangdong, China
| | - Dongming Xu
- Department of Neurosurgery, The County Hospital of Qianguo, Songyuan, Jilin, China
| | - Zhuming Lu
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yuchen Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Chen S, Ma S, Yan J, Wang H, Ding B, Guo Z, Ma Y, Chen X, Wang Y. Pan-Cancer Analyses Reveal Oncogenic Role and Prognostic Value of F-Box Only Protein 22. Front Oncol 2022; 11:790912. [PMID: 35141150 PMCID: PMC8818750 DOI: 10.3389/fonc.2021.790912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
The F-box protein 22 (FBXO22), an F-box E3 ligase, has been identified to be critically involved in carcinogenesis. However, a systematic assessment of the role of FBXO22 across human cancers is lacking. Here, we performed a pan-cancer analysis to explore the role of FBXO22 in 33 cancer types using multiomic data from The Cancer Genome Atlas (TCGA). First, we found that high FBXO22 expression in multiple cancers was closely associated with poor overall survival and relapse-free survival. Next, we identified ten proteins that interact with FBXO22 and 13 of its target substrates using the STRING database and a literature search to explore the regulatory role of FBXO22 in tumorigenesis. Genes encoding these proteins were found to be significantly enriched in cell cycle negative regulation and ubiquitination pathways. This was confirmed in nonsmall cell lung cancer A549 cells, where FBXO22 overexpression enhanced cyclin-dependent kinase 4 (CDK4) protein levels and promoted cell proliferation. Similarly, overexpression or interference of FBXO22 changed the protein level of one of its substrates, PTEN. Additionally, we found that FBXO22 mutations were accompanied by altered substrate expression, especially in uterine corpus endometrial carcinoma and lung adenocarcinoma; endometrial carcinoma patients with FBXO22 genetic alterations also had better overall and relapse-free survival. Notably, FBXO22 methylation levels were also decreased in most tumors, and hypomethylation of FBXO22 was associated with poor overall survival, relapse-free interval, and progression-free interval in pancreatic adenocarcinoma. Finally, we analyzed the correlation between the abundance of tumor infiltrating lymphocytes (TILs) and FBXO22 expression, copy number variation, and methylation. Multiple algorithms revealed that high FBXO22 expression was associated with lower TIL levels, especially in lung adenocarcinoma, lung squamous cell carcinoma, and sarcoma. Taken together, our findings demonstrate that FBXO22 degrades tumor suppressor genes by ubiquitination and inhibits the cell cycle to promote nonsmall cell lung cancer progression. Our study also provides a relatively comprehensive understanding of the oncogenic role of FBXO22 in different tumors.
Collapse
Affiliation(s)
- Sen Chen
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, China
| | - Shuangxin Ma
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, China
| | - Jiaoyan Yan
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Haiqing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| | - Bojiao Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| | - Zihu Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| | - Yaohua Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| | - Xuetong Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| | - Yonghua Wang
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
3
|
Invariant NKT cells facilitate cytotoxic T-cell activation via direct recognition of CD1d on T cells. Exp Mol Med 2019; 51:1-9. [PMID: 31653827 PMCID: PMC6814837 DOI: 10.1038/s12276-019-0329-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/02/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a major subset of NKT cells that recognize foreign and endogenous lipid antigens presented by CD1d. Although iNKT cells are characteristically autoreactive to self-antigens, the role of iNKT cells in the regulation of cytotoxic T lymphocytes (CTL) has been elucidated using α-galactosylceramide (α-GalCer), a strong synthetic glycolipid that is presented by professional antigen presenting cells (APCs), such as dendritic cells. Despite the well-known effects of α-GalCer and dendritic cells on lipid antigen presentation, the physiological role of endogenous antigens presented by CTLs during crosstalk with iNKT cells has not yet been addressed. In this study, we found that antigen-primed CTLs with transient CD1d upregulation could present lipid self-antigens to activate the iNKT cell production of IFN-γ. CTL-mediated iNKT cell activation in turn enhanced IFN-γ production and the proliferation and cytotoxicity of CTLs. We also found that the direct interaction of iNKT cells and CTLs enhanced the antitumor immune responses of CTLs. This partially explains the functional role of iNKT cells in CTL-mediated antitumor immunity. Our findings suggest that in the absence of exogenous iNKT cell ligands, iNKT cells enhanced the CTL production of IFN-γ and CTL proliferation and cytotoxicity via direct interaction with CD1d expressed on T cells without interacting with APCs. Cancer-killing T cells engage in a form of molecular crosstalk with other specialized immune cells to enhance anti-tumor immune responses in mice. Se-Ho Park and colleagues from Korea University in Seoul, South Korea, studied a specialized population of immune cells known as invariant natural killer T (iNKT) cells, which serve as important mediators of tumor surveillance. They showed that iNKT cells directly interact with cancer-killing cytotoxic T cells through surface molecules and not through other immune cells. The resulting activation of iNKT cells leads to the production of a pro-inflammatory signaling molecule, which in turn enhances the proliferation and killing potential of the cytotoxic T cells, ultimately producing more potent tumor control in a mouse model of lymphoma. The findings could aid in the development of iNKT-based cancer immunotherapies.
Collapse
|
5
|
Ando T, Ito H, Arioka Y, Ogiso H, Seishima M. Combination therapy with α-galactosylceramide and a Toll-like receptor agonist exerts an augmented suppressive effect on lung tumor metastasis in a mouse model. Oncol Rep 2014; 33:826-32. [PMID: 25434827 DOI: 10.3892/or.2014.3634] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/04/2014] [Indexed: 11/06/2022] Open
Abstract
α-galactosylceramide (GalCer), which is a natural killer T (NKT) cell ligand, has been reported to exert therapeutic effects against cancer in humans and mice. Toll-like receptor (TLR) agonists systemically or locally boost antitumor efficacy in mouse cancer models. In our previous study, the co-administration of GalCer and a TLR agonist synergistically enhanced interferon-γ (IFN-γ) production in mouse splenocytes in vitro and in vivo. The increased IFN-γ production promoted a tumor antigen-specific Th1 response. Therefore, co-treatment with GalCer and a TLR agonist is expected to exert an enhanced antitumor effect. In the present study, we examined the effect of GalCer and lipopolysaccharide (LPS) combination therapy in a mouse lung-metastasis model. GalCer and LPS combination therapy markedly decreased the number of lung metastatic tumor nodes. Co-treatment with GalCer and LPS enhanced the mRNA expression of CXCL9 and CXCL10 in mediastinal lymph nodes (MLNs) and increased the number of CD8+ cells in the MLNs. Furthermore, the depletion of CD8+ T cells canceled the antitumor effect of GalCer and LPS combination therapy. Thus, GalCer and LPS combination therapy significantly enhanced tumor antigen-specific immune responses and suppressed tumor growth in a mouse lung-metastasis model.
Collapse
Affiliation(s)
- Tatsuya Ando
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Hiroyasu Ito
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yuko Arioka
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Hideyuki Ogiso
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Mitsuru Seishima
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| |
Collapse
|
6
|
Amador-Molina A, Hernández-Valencia JF, Lamoyi E, Contreras-Paredes A, Lizano M. Role of innate immunity against human papillomavirus (HPV) infections and effect of adjuvants in promoting specific immune response. Viruses 2013; 5:2624-42. [PMID: 24169630 PMCID: PMC3856406 DOI: 10.3390/v5112624] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 09/30/2013] [Accepted: 10/15/2013] [Indexed: 02/06/2023] Open
Abstract
During the early stages of human papillomavirus (HPV) infections, the innate immune system creates a pro-inflammatory microenvironment by recruiting innate immune cells to eliminate the infected cells, initiating an effective acquired immune response. However, HPV exhibits a wide range of strategies for evading immune-surveillance, generating an anti-inflammatory microenvironment. The administration of new adjuvants, such as TLR (Toll-like receptors) agonists and alpha-galactosylceramide, has been demonstrated to reverse the anti-inflammatory microenvironment by down-regulating a number of adhesion molecules and chemo-attractants and activating keratinocytes, dendritic (DC), Langerhans (LC), natural killer (NK) or natural killer T (NKT) cells; thus, promoting a strong specific cytotoxic T cell response. Therefore, these adjuvants show promise for the treatment of HPV generated lesions and may be useful to elucidate the unknown roles of immune cells in the natural history of HPV infection. This review focuses on HPV immune evasion mechanisms and on the proposed response of the innate immune system, suggesting a role for the surrounding pro-inflammatory microenvironment and the NK and NKT cells in the clearance of HPV infections.
Collapse
Affiliation(s)
- Alfredo Amador-Molina
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080, México; E-Mails: (A.A.-M.); (J.F.H.-V.); (A.C.-P.)
| | - José Fernando Hernández-Valencia
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080, México; E-Mails: (A.A.-M.); (J.F.H.-V.); (A.C.-P.)
| | - Edmundo Lamoyi
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado postal 70228, Ciudad Universitaria, Distrito Federal CP 04510, México; E-Mail:
| | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080, México; E-Mails: (A.A.-M.); (J.F.H.-V.); (A.C.-P.)
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080, México; E-Mails: (A.A.-M.); (J.F.H.-V.); (A.C.-P.)
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado postal 70228, Ciudad Universitaria, Distrito Federal CP 04510, México; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.:+52-55-5573-4662
| |
Collapse
|