1
|
Booth KTA, Schulte RR, Smith L, Gao H, Stohler RA, Liu Y, Reshmi SC, Vance GH. ZMIZ1::ABL1 Fusion: An Uncommon Molecular Event With Clinical Implications in Pediatric Cancer. Arch Pathol Lab Med 2025; 149:159-164. [PMID: 38749501 DOI: 10.5858/arpa.2024-0082-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 01/29/2025]
Abstract
CONTEXT.— Pediatric B-cell acute lymphoblastic leukemia is genetically and phenotypically heterogeneous, with a genetic landscape including chromosomal translocations that disrupt ABL proto-oncogene 1, non-receptor tyrosine kinase (ABL1). OBJECTIVE.— To characterize an uncommon chromosomal translocation in acute leukemia. DESIGN.— Genetic testing, including karyotype and fluorescence in situ hybridization (FISH) analysis, was used to determine the underlying genetic aberration driving the disorder and to guide disease classification and risk stratification. More-detailed testing using RNA sequencing was performed based on the results from these assays. Three-dimensional molecular modeling was used to visualize the impact of aberrant fused transcripts identified by transcriptome profiling. RESULTS.— Karyotype analysis of the bone marrow demonstrated a complex karyotype with, most notably, a t(9;10)(q34.1;q22) translocation. ABL1 break-apart probe FISH findings supported ABL1 disruption. Bone marrow transcriptome analysis revealed mutant ZMIZ1::ABL1 (ZMIZ1, zinc finger MIZ-type containing 1) fusion transcripts as a consequence of t(9;10)(q34.1;q22). Three-dimensional modeling of the mutant ZMIZ1::ABL1 fusion protein confirmed an altered ABL1 protein structure compared to that of the wild type, suggesting a constitutively active conformation. CONCLUSIONS.— The t(9;10) translocation resulting in ZMIZ1::ABL1 fusion transcripts is an uncommon form of BCR::ABL1-like (BCR, BCR activator of RhoGEF and GTPase) acute lymphoblastic leukemia. Although the karyotype was complex, identifying the t(9;10)(q34.1;q22) translocation, ABL1 disruption, and ZMIZ1::ABL1 transcript enabled effective ABL1-targeted treatment. Our data support the use of tyrosine kinase inhibitors to treat ZMIZ1::ABL1-derived B-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Kevin T A Booth
- From the Department of Medical and Molecular Genetics (Booth, Smith, Stohler, Vance), Center for Computational Biology and Bioinformatics, Department of Medical and Molecular Genetics (Gao, Liu), and the Department of Pathology and Laboratory Medicine (Vance), Indiana University School of Medicine, Indianapolis
| | - Rachael R Schulte
- the Department of Pediatrics, Division of Pediatric Hematology/Oncology/Stem Cell Transplant (Schulte), and Riley Children' Health, Indianapolis, Indiana (Schulte)
| | - Laurin Smith
- From the Department of Medical and Molecular Genetics (Booth, Smith, Stohler, Vance), Center for Computational Biology and Bioinformatics, Department of Medical and Molecular Genetics (Gao, Liu), and the Department of Pathology and Laboratory Medicine (Vance), Indiana University School of Medicine, Indianapolis
| | - Hongyu Gao
- From the Department of Medical and Molecular Genetics (Booth, Smith, Stohler, Vance), Center for Computational Biology and Bioinformatics, Department of Medical and Molecular Genetics (Gao, Liu), and the Department of Pathology and Laboratory Medicine (Vance), Indiana University School of Medicine, Indianapolis
| | - Ryan A Stohler
- From the Department of Medical and Molecular Genetics (Booth, Smith, Stohler, Vance), Center for Computational Biology and Bioinformatics, Department of Medical and Molecular Genetics (Gao, Liu), and the Department of Pathology and Laboratory Medicine (Vance), Indiana University School of Medicine, Indianapolis
| | - Yunlong Liu
- From the Department of Medical and Molecular Genetics (Booth, Smith, Stohler, Vance), Center for Computational Biology and Bioinformatics, Department of Medical and Molecular Genetics (Gao, Liu), and the Department of Pathology and Laboratory Medicine (Vance), Indiana University School of Medicine, Indianapolis
| | - Shalini C Reshmi
- Institute for Genomic Medicine, Nationwide Children' Hospital, Columbus, Ohio (Reshmi)
- the Departments of Pathology and Pediatrics, Ohio State University, Columbus (Reshmi)
| | - Gail H Vance
- From the Department of Medical and Molecular Genetics (Booth, Smith, Stohler, Vance), Center for Computational Biology and Bioinformatics, Department of Medical and Molecular Genetics (Gao, Liu), and the Department of Pathology and Laboratory Medicine (Vance), Indiana University School of Medicine, Indianapolis
| |
Collapse
|
2
|
Martins DM, Fernandes PO, Vieira LA, Maltarollo VG, Moraes AH. Structure-Guided Drug Design Targeting Abl Kinase: How Structure and Regulation Can Assist in Designing New Drugs. Chembiochem 2024; 25:e202400296. [PMID: 39008807 DOI: 10.1002/cbic.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The human protein Abelson kinase (Abl), a tyrosine kinase, plays a pivotal role in developing chronic myeloid leukemia (CML). Abl's involvement in various signaling pathways underscores its significance in regulating fundamental biological processes, including DNA damage responses, actin polymerization, and chromatin structural changes. The discovery of the Bcr-Abl oncoprotein, resulting from a chromosomal translocation in CML patients, revolutionized the understanding and treatment of the disease. The introduction of targeted therapies, starting with interferon-alpha and culminating in the development of tyrosine kinase inhibitors (TKIs) like imatinib, significantly improved patient outcomes. However, challenges such as drug resistance and side effects persist, indicating the necessity of research into novel therapeutic strategies. This review describes advancements in Abl kinase inhibitor development, emphasizing rational compound design from structural and regulatory information. Strategies, including bivalent inhibitors, PROTACs, and compounds targeting regulatory domains, promise to overcome resistance and minimize side effects. Additionally, leveraging the intricate structure and interactions of Bcr-Abl may provide insights into developing inhibitors for other kinases. Overall, this review highlights the importance of continued research into Abl kinase inhibition and its broader implications for therapeutic interventions targeting kinase-driven diseases. It provides valuable insights and strategies that may guide the development of next-generation therapies.
Collapse
MESH Headings
- Humans
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Drug Design
- Proto-Oncogene Proteins c-abl/metabolism
- Proto-Oncogene Proteins c-abl/antagonists & inhibitors
- Proto-Oncogene Proteins c-abl/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Molecular Structure
Collapse
Affiliation(s)
- Diego M Martins
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Philipe O Fernandes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Lucas A Vieira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Vinícius G Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Adolfo H Moraes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| |
Collapse
|
3
|
Paladini J, Maier A, Habazettl JM, Hertel I, Sonti R, Grzesiek S. The molecular basis of Abelson kinase regulation by its αI-helix. eLife 2024; 12:RP92324. [PMID: 38588001 PMCID: PMC11001296 DOI: 10.7554/elife.92324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Abelson tyrosine kinase (Abl) is regulated by the arrangement of its regulatory core, consisting sequentially of the SH3, SH2, and kinase (KD) domains, where an assembled or disassembled core corresponds to low or high kinase activity, respectively. It was recently established that binding of type II ATP site inhibitors, such as imatinib, generates a force from the KD N-lobe onto the SH3 domain and in consequence disassembles the core. Here, we demonstrate that the C-terminal αI-helix exerts an additional force toward the SH2 domain, which correlates both with kinase activity and type II inhibitor-induced disassembly. The αI-helix mutation E528K, which is responsible for the ABL1 malformation syndrome, strongly activates Abl by breaking a salt bridge with the KD C-lobe and thereby increasing the force onto the SH2 domain. In contrast, the allosteric inhibitor asciminib strongly reduces Abl's activity by fixating the αI-helix and reducing the force onto the SH2 domain. These observations are explained by a simple mechanical model of Abl activation involving forces from the KD N-lobe and the αI-helix onto the KD/SH2SH3 interface.
Collapse
Affiliation(s)
- Johannes Paladini
- Structural Biology and Biophysics, Biozentrum, University of BaselBaselSwitzerland
| | - Annalena Maier
- Structural Biology and Biophysics, Biozentrum, University of BaselBaselSwitzerland
| | | | - Ines Hertel
- Structural Biology and Biophysics, Biozentrum, University of BaselBaselSwitzerland
| | - Rajesh Sonti
- Structural Biology and Biophysics, Biozentrum, University of BaselBaselSwitzerland
| | - Stephan Grzesiek
- Structural Biology and Biophysics, Biozentrum, University of BaselBaselSwitzerland
| |
Collapse
|
4
|
Prakash TC, Enkemann S. Current Progress on the Influence Human Genetics Has on the Efficacy of Tyrosine Kinase Inhibitors Used to Treat Chronic Myeloid Leukemia. Cureus 2024; 16:e56545. [PMID: 38646295 PMCID: PMC11027790 DOI: 10.7759/cureus.56545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
The use of tyrosine kinase inhibitors (TKIs) has become the mainstay of treatment in patients suffering from chronic myeloid leukemia (CML), an adult leukemia caused by a reciprocal translocation between chromosomes 9 and 22, which creates an oncogene resulting in a myeloproliferative neoplasm. These drugs function by inhibiting the ATP-binding site on the fusion oncoprotein and subsequently halting proliferative activity. The goal of this work is to investigate the current state of research into genetic factors that influence the efficacy of four FDA-approved TKIs used to treat CML. This overview attempts to identify genetic criteria that could be considered when choosing one drug over the others and to identify where more research is needed. Our results suggest that the usual liver enzymes impacting patient response may not be a major factor affecting the efficacy of imatinib, nilotinib, and bosutinib, and yet, that is where most of the past research has focused. More research is warranted on the impact that human polymorphisms of the CYP enzymes have on dasatinib. The impact of polymorphisms in UGT1A1 should be investigated thoroughly in other TKIs, not only nilotinib. The role of influx and efflux transporters has been inconsistent thus far, possibly due to failures to account for the multiple proteins that can transport TKIs and the impact that tumors have on transporter expression. Because physicians cannot currently use a patient's genetic profile to better target their treatment with TKIs, it is critical that more research be conducted on auxiliary pathways or off-target binding effects to generate new leads for further study. Hopefully, new avenues of research will help explain treatment failures and improve patient outcomes.
Collapse
Affiliation(s)
- Tara C Prakash
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Spartanburg, USA
| | - Steven Enkemann
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Spartanburg, USA
| |
Collapse
|
5
|
Adegbite BO, Abramson MH, Gutgarts V, Musteata FM, Chauhan K, Muwonge AN, Meliambro KA, Salvatore SP, El Ghaity-Beckley S, Kremyanskaya M, Marcellino B, Mascarenhas JO, Campbell KN, Chan L, Coca SG, Berman EM, Jaimes EA, Azeloglu EU. Patient-Specific Pharmacokinetics and Dasatinib Nephrotoxicity. Clin J Am Soc Nephrol 2023; 18:1175-1185. [PMID: 37382967 PMCID: PMC10564352 DOI: 10.2215/cjn.0000000000000219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Dasatinib has been associated with nephrotoxicity. We sought to examine the incidence of proteinuria on dasatinib and determine potential risk factors that may increase dasatinib-associated glomerular injury. METHODS We examined glomerular injury through urine albumin-creatinine ratio (UACR) in 82 patients with chronic myelogenous leukemia who were on tyrosine-kinase inhibitor therapy for at least 90 days. t tests were used to compare mean differences in UACR, while regression analysis was used to assess the effects of drug parameters on proteinuria development while on dasatinib. We assayed plasma dasatinib pharmacokinetics using tandem mass spectroscopy and further described a case study of a patient who experienced nephrotic-range proteinuria while on dasatinib. RESULTS Participants treated with dasatinib ( n =32) had significantly higher UACR levels (median 28.0 mg/g; interquartile range, 11.5-119.5) than participants treated with other tyrosine-kinase inhibitors ( n =50; median 15.0 mg/g; interquartile range, 8.0-35.0; P < 0.001). In total, 10% of dasatinib users exhibited severely increased albuminuria (UACR >300 mg/g) versus zero in other tyrosine-kinase inhibitors. Average steady-state concentrations of dasatinib were positively correlated with UACR ( ρ =0.54, P = 0.03) and duration of treatment ( P = 0.003). There were no associations with elevated BP or other confounding factors. In the case study, kidney biopsy revealed global glomerular damage with diffuse foot process effacement that recovered on termination of dasatinib treatment. CONCLUSIONS Exposure to dasatinib was associated with a significant chance of developing proteinuria compared with other similar tyrosine-kinase inhibitors. Dasatinib plasma concentration significantly correlated with higher risk of developing proteinuria while receiving dasatinib. PODCAST This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/CJASN/2023_09_08_CJN0000000000000219.mp3.
Collapse
Affiliation(s)
- Benjamin O. Adegbite
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Internal Medicine, Mount Sinai Morningside/West, New York, New York
| | - Matthew H. Abramson
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Victoria Gutgarts
- Renal Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Florin M. Musteata
- Department of Pharmaceutical Sciences, Albany College of Pharmacy & Health Sciences, Albany, New York
| | - Kinsuk Chauhan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alecia N. Muwonge
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kristin A. Meliambro
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Steven P. Salvatore
- Clinical Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Sebastian El Ghaity-Beckley
- Division of Hematology/Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marina Kremyanskaya
- Division of Hematology/Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bridget Marcellino
- Division of Hematology/Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John O. Mascarenhas
- Division of Hematology/Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kirk N. Campbell
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lili Chan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Steven G. Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ellin M. Berman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Edgar A. Jaimes
- Renal Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Evren U. Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
6
|
GÖKER BAGCA B, GÖDE S, TURHAL G, ÖZATEŞ NP, VERAL A, GÜNDÜZ C, AVCI ÇB. Nadir paranazal sinüs kanserlerinde yeni tanımlanan reseptör tirozin kinaz mutasyonları ve potansiyel fonksiyonel etkileri. EGE TIP DERGISI 2023. [DOI: 10.19161/etd.1262612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Amaç: Paranazal sinüs kanserleri oldukça nadir görülen heterojen bir hastalık grubudur. Maksiler sinüs skuamoz hücreli karsinomu, paranazal sinüs kanserlerinin anatomik ve histolojik olarak en
yaygın alt tipidir. Bu kanserin genetik profiline dair bilginin sınırlı olması, hastaların hedefli tedavi seçeneklerinden yararlanamamasına neden olmaktadır. Çalışmamızda bu nadir kanserdeki reseptör tirozin kinaz mutasyonlarının tanımlanması ve mutasyonların olası fonksiyonel etkilerinin tahmin edilmesi amaçlanmıştır.
Gereç ve Yöntem: Bu amaçla 30 olgunun tümörüne ait FFPE dokulardan DNA izolasyonu gerçekleştirildi, olguların mutasyon profili yeni nesil sekanslama yöntemi ve biyoinformatik
değerlendirme ile belirlendi. Belirlenen patojenik/ olası patojenik varyantların fonksiyonel etkileri farklı in silico araçlar yardımıyla tahminlendi.
Bulgular: Olgularının tamamında en az bir adet patojenik/olası patojenik KIT, PDFGRA ve RETmutasyonu belirlendi. KIT geninin katalitik bölgesindeki mutasyonların kinaz aktivitesini arttıracağı
tahmin edildi. PDFGRA genindeki p.P567P ve p.D1074D mutasyonları, 30 olgunun tamamında ve SRA veritabanından elde edilen normal dokulara ait okumaların tümünde belirlendi.
Sonuç: Reseptör tirozin kinaz mutasyonlarının paranazal sinüs kanserlerinde de önemli rol oynayabileceğinin belirlenmiş olması özellikle artmış kinaz aktivitesini hedefleyen tedavi yaklaşımlarını
bu olguların erişimine sunma potansiyeli taşıması bakımından oldukça önemlidir.
Collapse
Affiliation(s)
- Bakiye GÖKER BAGCA
- Aydın Adnan Menderes Üniversitesi, Tıp Fakültesi, Tıbbi Biyoloji Anabilim Dalı, Aydın, Türkiye
| | - Sercan GÖDE
- Ege Üniversitesi, Tıp Fakültesi, Kulak Burun Boğaz Anabilim Dalı, İzmir, Türkiye
| | - Göksel TURHAL
- Ege Üniversitesi, Tıp Fakültesi, Kulak Burun Boğaz Anabilim Dalı, İzmir, Türkiye
| | - Neslihan Pınar ÖZATEŞ
- Harran Üniversitesi, Tıp Fakültesi, Tıbbi Biyoloji Anabilim Dalı, Şanlıurfa, Türkiye
| | - Ali VERAL
- Ege Üniversitesi, Tıp Fakültesi, Patoloji Anabilim Dalı, İzmir, Türkiye
| | - Cumhur GÜNDÜZ
- Ege Üniversitesi, Tıp Fakültesi, Tıbbi Biyoloji Anabilim Dalı, İzmir, Türkiye
| | - Çığır Biray AVCI
- Ege Üniversitesi, Tıp Fakültesi, Tıbbi Biyoloji Anabilim Dalı, İzmir, Türkiye
| |
Collapse
|
7
|
Elgehama A, Wang Y, Yu Y, Zhou L, Chen Z, Wang L, Sun L, Gao J, Yu B, Shen Y, Xu Q. Targeting the PTP1B-Bcr-Abl1 interaction for the degradation of T315I mutant Bcr-Abl1 in chronic myeloid leukemia. Cancer Sci 2022; 114:247-258. [PMID: 36086954 PMCID: PMC9807508 DOI: 10.1111/cas.15580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 01/07/2023] Open
Abstract
Small-molecule-induced degradation of mutant Bcr-Abl1 provides a potential approach to overcome Bcr-Abl1 tyrosine kinase inhibitor (TKI)-resistant chronic myeloid leukemia (CML). Our previous study reported that a synthetic steroidal glycoside SBF-1 showed remarkable anti-CML activity by inducing the degradation of native Bcr-Abl1 protein. Here, we observed the comparable growth inhibition for SBF-1 in CML cells harboring T315I mutant Bcr-Abl1 in vitro and in vivo. SBF-1 triggered its degradation through disrupting the interaction between protein-tyrosine phosphatase 1B (PTP1B) and Bcr-Abl1. Using SBF-1 as a tool, we found that Tyr46 in the PTP1B catalytic domain and Tyr852 in the Bcr-Abl1 pleckstrin-homology (PH) domain are critical for their interaction. Moreover, the phosphorylation of Tyr1086 within the Bcr-Abl1 SH2 domain recruited the E3 ubiquitin ligase c-Cbl to catalyze K27-linked ubiquitin chains, which serve as a recognition signal for p62-dependent autophagic degradation. PTP1B dephosphorylated Bcr-Abl1 at Tyr1086 and prevented the recruitment of c-Cbl, leading to the stability of Bcr-Abl1. This study unravels the action mechanism of PTP1B in stabilizing Bcr-Abl1 protein and indicates that the PTP1B-Bcr-Abl1 interaction might be one of druggable targets for TKI-resistant CML with point mutations.
Collapse
Affiliation(s)
- Ahmed Elgehama
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Yixuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Ying Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Lin Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Zhixiu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Liwei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Lijun Sun
- Department of ChemistryUniversity of Science and Technology of ChinaHefeiChina
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Biao Yu
- State Key Laborary of Bio‐organic and Natural Products ChemistryShanghai Institute of Organic AcademyShanghaiChina
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| |
Collapse
|
8
|
Liu Y, Zhang M, Tsai CJ, Jang H, Nussinov R. Allosteric regulation of autoinhibition and activation of c-Abl. Comput Struct Biotechnol J 2022; 20:4257-4270. [PMID: 36051879 PMCID: PMC9399898 DOI: 10.1016/j.csbj.2022.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/07/2022] [Accepted: 08/07/2022] [Indexed: 11/23/2022] Open
Abstract
c-Abl, a non-receptor tyrosine kinase, regulates cell growth and survival in healthy cells and causes chronic myeloid leukemia (CML) when fused by Bcr. Its activity is blocked in the assembled inactive state, where the SH3 and SH2 domains dock into the kinase domain, reducing its conformational flexibility, resulting in the autoinhibited state. It is active in an extended 'open' conformation. Allostery governs the transitions between the autoinhibited and active states. Even though experiments revealed the structural hallmarks of the two states, a detailed grasp of the determinants of c-Abl autoinhibition and activation at the atomic level, which may help innovative drug discovery, is still lacking. Here, using extensive molecular dynamics simulations, we decipher exactly how these determinants regulate it. Our simulations confirm and extend experimental data that the myristoyl group serves as the switch for c-Abl inhibition/activation. Its dissociation from the kinase domain promotes the SH2-SH3 release, initiating c-Abl activation. We show that the precise SH2/N-lobe interaction is required for full activation of c-Abl. It stabilizes a catalysis-favored conformation, priming it for catalytic action. Bcr-Abl allosteric drugs elegantly mimic the endogenous myristoyl-mediated autoinhibition state of c-Abl 1b. Allosteric activating mutations shift the ensemble to the active state, blocking ATP-competitive drugs. Allosteric drugs alter the active-site conformation, shifting the ensemble to re-favor ATP-competitive drugs. Our work provides a complete mechanism of c-Abl activation and insights into critical parameters controlling at the atomic level c-Abl inactivation, leading us to propose possible strategies to counter reemergence of drug resistance.
Collapse
Affiliation(s)
- Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
9
|
Oncogenic Signalling of PEAK2 Pseudokinase in Colon Cancer. Cancers (Basel) 2022; 14:cancers14122981. [PMID: 35740644 PMCID: PMC9221080 DOI: 10.3390/cancers14122981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Catalytically inactive kinases, also named pseudokinases, play important roles in the regulation of cell growth and adhesion. While frequently deregulated in human cancer, their role in tumour development is partially elucidated. Here, we report an important tumour function for the pseudokinase PEAK2 in colorectal cancer (CRC) and propose that PEAK2 upregulation can affect cancer cell adhesive properties through an ABL-dependent mechanism to enable cancer progression. Therefore, targeting PEAK2 oncogenic activity with small tyrosine kinases (TK) inhibitors may be of therapeutic interest in colorectal cancer (CRC). Abstract The PEAK family pseudokinases are essential components of tyrosine kinase (TK) pathways that regulate cell growth and adhesion; however, their role in human cancer remains unclear. Here, we report an oncogenic activity of the pseudokinase PEAK2 in colorectal cancer (CRC). Notably, high PRAG1 expression, which encodes PEAK2, was associated with a bad prognosis in CRC patients. Functionally, PEAK2 depletion reduced CRC cell growth and invasion in vitro, while its overexpression increased these transforming effects. PEAK2 depletion also reduced CRC development in nude mice. Mechanistically, PEAK2 expression induced cellular protein tyrosine phosphorylation, despite its catalytic inactivity. Phosphoproteomic analysis identified regulators of cell adhesion and F-actin dynamics as PEAK2 targets. Additionally, PEAK2 was identified as a novel ABL TK activator. In line with this, PEAK2 expression localized at focal adhesions of CRC cells and induced ABL-dependent formation of actin-rich plasma membrane protrusions filopodia that function to drive cell invasion. Interestingly, all these PEAK2 transforming activities were regulated by its main phosphorylation site, Tyr413, which implicates the SRC oncogene. Thus, our results uncover a protumoural function of PEAK2 in CRC and suggest that its deregulation affects adhesive properties of CRC cells to enable cancer progression.
Collapse
|
10
|
Teng M, Luskin MR, Cowan-Jacob SW, Ding Q, Fabbro D, Gray NS. The Dawn of Allosteric BCR-ABL1 Drugs: From a Phenotypic Screening Hit to an Approved Drug. J Med Chem 2022; 65:7581-7594. [PMID: 35609336 DOI: 10.1021/acs.jmedchem.2c00373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic myeloid leukemia (CML) is driven by the constitutive activity of the BCR-ABL1 fusion oncoprotein. Despite the great success of drugs that target the BCR-ABL1 ATP-binding site in transforming CML into a manageable disease, emerging resistance point mutations impair inhibitor binding, thereby limiting the effectiveness of these drugs. Recently, allosteric inhibitors that interact with the ABL1 myristate-binding site have been shown to awaken an endogenous regulatory mechanism and reset full-length BCR-ABL1 into an inactive assembled state. The discovery and development of these allosteric inhibitors demonstrates an in-depth understanding of the fundamental regulatory mechanisms of kinases. In this review, we illustrate the structural basis of c-ABL1's dynamic regulation of autoinhibition and activation, discuss the discovery of allosteric inhibitors and the characterization of their mechanism of action, present the therapeutic potential of dual binding to delay the development of mutation-driven acquired resistance, and suggest key lessons learned from this program.
Collapse
Affiliation(s)
- Mingxing Teng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Marlise R Luskin
- Division of Hematologic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Sandra W Cowan-Jacob
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel CH-4056, Switzerland
| | - Qiang Ding
- Allorion Therapeutics, Guangzhou, Guangdong 511300, China
| | | | - Nathanael S Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
11
|
Grzesiek S, Paladini J, Habazettl J, Sonti R. Imatinib disassembles the regulatory core of Abelson kinase by binding to its ATP site and not by binding to its myristoyl pocket. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2022; 3:91-99. [PMID: 37905178 PMCID: PMC10539847 DOI: 10.5194/mr-3-91-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/10/2022] [Indexed: 11/02/2023]
Abstract
It was recently reported (Xie et al., 2022) that the Abelson tyrosine kinase (Abl) ATP-site inhibitor imatinib also binds to Abl's myristoyl binding pocket, which is the target of allosteric Abl inhibitors. This was based on a crystal structure of a truncated Abl kinase domain construct in complex with imatinib bound to the allosteric site as well as further isothermal titration calorimetry (ITC), NMR, and kinase activity data. Although imatinib's affinity for the allosteric site is significantly weaker (10 µ M) than for the ATP site (10 nM), imatinib binding to the allosteric site may disassemble the regulatory core of Abl, thereby stimulating kinase activity, in particular for Abl mutants with reduced imatinib ATP-site affinity. It was argued that the previously observed imatinib-induced opening of the Abl regulatory core (Skora et al., 2013; Sonti et al., 2018) may be caused by the binding of imatinib to the allosteric site and not to the ATP site. We show here that this is not the case but that indeed imatinib binding to the ATP site induces the opening of the regulatory core at nanomolar concentrations. This agrees with findings that other type-II ATP-site inhibitors (nilotinib, ponatinib) disassemble the regulatory core despite demonstrated negligible binding to the allosteric site.
Collapse
Affiliation(s)
| | | | | | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of
Pharmaceutical Education and Research, Hyderabad, Telangana, 500037, India
| |
Collapse
|
12
|
Réa D, Hughes TP. Development of Asciminib, a Novel Allosteric Inhibitor of BCR-ABL1. Crit Rev Oncol Hematol 2022; 171:103580. [PMID: 35021069 DOI: 10.1016/j.critrevonc.2022.103580] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 01/07/2023] Open
Abstract
Chronic myeloid leukemia (CML) is driven by a translocation event between chromosomes 9 and 22, leading to the formation of a constitutively active BCR-ABL1 oncoprotein. Approved tyrosine kinase inhibitors (TKIs) for CML inhibit BCR-ABL1 by competitively targeting its adenosine triphosphate (ATP)-binding site, which significantly improves patient outcomes. However, resistance to and intolerance of TKIs remains a clinical challenge. Asciminib is a promising investigational agent in development that allosterically targets BCR-ABL1 in a non-ATP-competitive manner. It binds to the ABL1 myristoyl-binding pocket and is effective against most ABL1 kinase domain mutations that confer resistance to ATP-competitive TKIs, including the T315I mutation. This review discusses unmet needs in the current CML treatment landscape, reports clinical data from asciminib trials that support the use of single-agent asciminib as third-line therapy and beyond, and explores the potential benefit of asciminib in combination with approved TKIs in earlier lines.
Collapse
Affiliation(s)
- Delphine Réa
- Department of Hématologie, Hôpital Saint-Louis, Paris, France.
| | - Timothy P Hughes
- South Australian Health and Medical Research Institute and University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
13
|
A phase 3, open-label, randomized study of asciminib, a STAMP inhibitor, vs bosutinib in CML after 2 or more prior TKIs. Blood 2021; 138:2031-2041. [PMID: 34407542 PMCID: PMC9728405 DOI: 10.1182/blood.2020009984] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/05/2021] [Indexed: 01/16/2023] Open
Abstract
Patients with chronic myeloid leukemia in chronic phase (CML-CP) resistant/intolerant to ≥2 tyrosine kinase inhibitors (TKIs) are at high risk of experiencing poor outcomes because of disease biology and inadequate efficacy and/or safety of current therapies. Asciminib, a first-in-class BCR-ABL1 inhibitor Specifically Targeting the ABL Myristoyl Pocket (STAMP), has the potential to overcome resistance/intolerance to approved TKIs. In this phase 3, open-label study, patients with CML-CP previously treated with ≥2 TKIs were randomized (2:1) to receive asciminib 40 mg twice daily vs bosutinib 500 mg once daily. Randomization was stratified by major cytogenetic response (MCyR) status at baseline. The primary objective was to compare the major molecular response (MMR) rate at week 24 for asciminib vs bosutinib. A total of 233 patients were randomized to asciminib (n = 157) or bosutinib (n = 76). Median follow-up was 14.9 months. The MMR rate at week 24 was 25.5% with asciminib and 13.2% with bosutinib. The difference in MMR rate between treatment arms, after adjusting for MCyR at baseline, was 12.2% (95% confidence interval, 2.19-22.30; 2-sided P = .029). Fewer grade ≥3 adverse events (50.6% vs 60.5%) and adverse events leading to treatment discontinuation (5.8% vs 21.1%) occurred with asciminib than with bosutinib. The study showed a superior efficacy of asciminib compared with that of bosutinib, together with a favorable safety profile. These results support the use of asciminib as a new therapy in patients with CML-CP who are resistant/intolerant to ≥2 prior TKIs. This trial was registered at www.clinicaltrials.gov as #NCT03106779.
Collapse
|
14
|
Abstract
Metabolite profiling is an indispensable part of drug discovery and development, enabling a comprehensive understanding of the drug's metabolic behavior. Liquid chromatography-mass spectrometry facilitates metabolite profiling by reducing sample complexity and providing high sensitivity. This review discusses the in vivo metabolite profiling involving LC-MS/MS and the utilization of QTOF, QQQ mass analyzers with a particular emphasis on a mass filter. Further, a summary of sample extraction procedures in biological matrices such as plasma, urine, feces, serum and hair as in vivo samples are outlined. toward the end, we present 15 case studies in biological matrices and their LC-MS/MS conditions to understand the metabolic disposition.
Collapse
|
15
|
Gleixner KV, Filik Y, Berger D, Schewzik C, Stefanzl G, Sadovnik I, Degenfeld-Schonburg L, Eisenwort G, Schneeweiss-Gleixner M, Byrgazov K, Sperr WR, Mayer J, Lion T, Valent P. Asciminib and ponatinib exert synergistic anti-neoplastic effects on CML cells expressing BCR-ABL1 T315I-compound mutations. Am J Cancer Res 2021; 11:4470-4484. [PMID: 34659899 PMCID: PMC8493398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023] Open
Abstract
Ponatinib is a tyrosine kinase inhibitor (TKI) directed against BCR-ABL1 which is successfully used in patients with BCR-ABL1 T315I+ chronic myeloid leukemia (CML). However, BCR-ABL1 compound mutations may develop during therapy in these patients and may lead to drug resistance. Asciminib is a novel drug capable of targeting most BCR-ABL1 mutant-forms, including BCR-ABL1T315I, but remains ineffective against most BCR-ABL1T315I+ compound mutation-bearing sub-clones. We demonstrate that asciminib synergizes with ponatinib in inducing growth-arrest and apoptosis in patient-derived CML cell lines and murine Ba/F3 cells harboring BCR-ABL1 T315I or T315I-including compound mutations. Asciminib and ponatinib also produced cooperative effects on CRKL phosphorylation in BCR-ABL1-transformed cells. The growth-inhibitory effects of the drug combination 'asciminib+ponatinib' was further enhanced by hydroxyurea (HU), a drug which has lately been described to suppresses the proliferation of BCR-ABL1 T315I+ CML cells. Cooperative drug effects were also observed in patient-derived CML cells. Most importantly, we were able to show that the combinations 'asciminib+ponatinib' and 'asciminib+ponatinib+HU' produce synergistic apoptosis-inducing effects in CD34+/CD38- CML stem cells obtained from patients with chronic phase CML or BCR-ABL1 T315I+ CML blast phase. Together, asciminib, ponatinib and HU synergize in producing anti-leukemic effects in multi-resistant CML cells, including cells harboring T315I+ BCR-ABL1 compound mutations and CML stem cells. The clinical efficacy of this TKI combination needs to be evaluated within the frame of upcoming clinical trials.
Collapse
Affiliation(s)
- Karoline V Gleixner
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of ViennaAustria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaAustria
| | - Yüksel Filik
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of ViennaAustria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaAustria
| | - Daniela Berger
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of ViennaAustria
| | - Christina Schewzik
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of ViennaAustria
| | - Gabriele Stefanzl
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of ViennaAustria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaAustria
| | - Irina Sadovnik
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of ViennaAustria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaAustria
| | - Lina Degenfeld-Schonburg
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of ViennaAustria
| | - Gregor Eisenwort
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of ViennaAustria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaAustria
| | - Mathias Schneeweiss-Gleixner
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaAustria
- Department of Internal Medicine III, Division of Gastroenterology & Hepatology, Medical University of ViennaAustria
| | | | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of ViennaAustria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaAustria
| | - Jiří Mayer
- Department of Internal Medicine, Hematology and Oncology, Faculty of Medicine, Masaryk UniversityBrno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital BrnoCzech Republic
| | - Thomas Lion
- Children’s Cancer Research Institute (CCRI)Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of ViennaAustria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaAustria
| |
Collapse
|
16
|
Mian AA, Zafar U, Ahmed SMA, Ottmann OG, Lalani ENMA. Oncogene-independent resistance in Philadelphia chromosome - positive (Ph +) acute lymphoblastic leukemia (ALL) is mediated by activation of AKT/mTOR pathway. Neoplasia 2021; 23:1016-1027. [PMID: 34403880 PMCID: PMC8368770 DOI: 10.1016/j.neo.2021.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) such as imatinib, nilotinib, dasatinib, and ponatinib have significantly improved the life expectancy of Philadelphia chromosome-positive (Ph+) acute lymphocytic leukemia (ALL) patients; however, resistance to TKIs remains a major clinical challenge. Point mutations in the tyrosine kinase domain (TKD) of BCR-ABL1 have emerged as the predominant cause of acquired resistance. In approximately 30% of patients, the mechanism of resistance to TKIs remains elusive. This study aimed to investigate mechanisms of nonmutational resistance in Ph+ ALL. Here we report the development of a nonmutational resistance cell line SupB15-RT; conferring resistance to approved ABL kinase inhibitors (AKIs) and allosteric inhibitors GNF-2, ABL001, and crizotinib, except for dasatinib (IC90 50nM), a multitarget kinase inhibitor. We found that the AKT/mTOR pathway is activated in these cells and their proliferation inhibited by Torin-1 with an IC50 of 24.7 nM. These observations were confirmed using 3 different ALL patient-derived long term cultures (PDLTCs): (1) HP (BCR-ABL1 negative), (2) PH (BCR-ABL1 positive and responsive to TKIs) and (3) BV (BCR-ABL1 positive and nonmutational resistant to TKIs). Furthermore, Torin-1 and NVP-BEZ235 induced apoptosis in PH and BV cells but not in HP cells. Our experiments provide evidence of the involvement of AKT/mTOR pathway in the evolution of nonmutational resistance in Ph+ ALL which will assist in developing novel targeted therapy for Ph+ ALL patients with BCR-ABL1 independent nonmutational resistance.
Collapse
Affiliation(s)
- Afsar Ali Mian
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi, Pakistan.
| | - Usva Zafar
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi, Pakistan
| | | | | | - El-Nasir M A Lalani
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
17
|
Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T, Yang S. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther 2021; 6:201. [PMID: 34054126 PMCID: PMC8165101 DOI: 10.1038/s41392-021-00572-w] [Citation(s) in RCA: 793] [Impact Index Per Article: 198.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Due to the advantages in efficacy and safety compared with traditional chemotherapy drugs, targeted therapeutic drugs have become mainstream cancer treatments. Since the first tyrosine kinase inhibitor imatinib was approved to enter the market by the US Food and Drug Administration (FDA) in 2001, an increasing number of small-molecule targeted drugs have been developed for the treatment of malignancies. By December 2020, 89 small-molecule targeted antitumor drugs have been approved by the US FDA and the National Medical Products Administration (NMPA) of China. Despite great progress, small-molecule targeted anti-cancer drugs still face many challenges, such as a low response rate and drug resistance. To better promote the development of targeted anti-cancer drugs, we conducted a comprehensive review of small-molecule targeted anti-cancer drugs according to the target classification. We present all the approved drugs as well as important drug candidates in clinical trials for each target, discuss the current challenges, and provide insights and perspectives for the research and development of anti-cancer drugs.
Collapse
Affiliation(s)
- Lei Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Yueshan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Liang Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wenjing Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ming Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ting Yuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Wei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chenyu Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zhuang Miao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tianqi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
18
|
Yang YW, Marrufo A, Chase J, Woodard GA, Jablons DM, Lemjabbar-Alaoui H. Ponatinib is a potential therapeutic approach for malignant pleural mesothelioma. Exp Lung Res 2020; 47:9-25. [PMID: 33107354 DOI: 10.1080/01902148.2020.1836691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Malignant pleural mesothelioma (MPM) is a rare and deadly malignancy. Current MPM therapies remain inadequate, and outcomes are often disappointing. New meaningful therapeutic approaches are urgently needed. Accumulating evidence indicates that the cAbl pathway promotes various tumor-stimulating processes in MPM. In this study, we sought to determine ponatinib's potential utility, a clinically approved and potent cAbl inhibitor, in MPM treatment. MATERIAL AND METHODS Four MPM lines (MSTO211H, H28, H2452, H2052) were treated with ponatinib in vitro, and their growth was assessed. Scratch wound assay was used to investigate the ponatinib effect on cell migration. The expression levels of pAbl and its downstream effectors pCrkL, pAKT, and pSTAT5 were characterized. The in vivo ponatinib effect was evaluated in human MPM cells derived tumor model. RESULTS In all four MPM lines, significant expression levels of phosphorylated cAbl/Arg and pCrkl were observed. Differentially but strongly, ponatinib inhibited the in vitro cell growth and migration of all four MPM line. Western blot analysis showed that the activation of Abl signaling was blocked in the ponatinib-treated MMP lines. In keeping, the cellular levels of pAbl and its downstream effector pCrkL, pAKT, and pSTAT5 were markedly decrease following ponatinib treatment. Moreover, ponatinib treatment amplified the levels of γH2AX in cells denoting increased double-strand DNA breaks levels. Notably, ponatinib treatment reduced in vivo tumor growth and reduced pCrkl and pSTAT5 levels in tumor samples. CONCLUSION Ponatinib may offer a new therapeutic strategy for MPM patients based on cAbl signaling pathway inhibition.
Collapse
Affiliation(s)
- Yi-Wei Yang
- Department of Surgery, Thoracic Oncology Program, University of California, San Francisco, San Francisco, California, USA
| | - Angelica Marrufo
- Department of Surgery, Thoracic Oncology Program, University of California, San Francisco, San Francisco, California, USA
| | - Jillian Chase
- Department of Surgery, Thoracic Oncology Program, University of California, San Francisco, San Francisco, California, USA
| | - Gavitt A Woodard
- Department of Surgery, Thoracic Oncology Program, University of California, San Francisco, San Francisco, California, USA
| | - David M Jablons
- Department of Surgery, Thoracic Oncology Program, University of California, San Francisco, San Francisco, California, USA
| | - Hassan Lemjabbar-Alaoui
- Department of Surgery, Thoracic Oncology Program, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
19
|
Carofiglio F, Trisciuzzi D, Gambacorta N, Leonetti F, Stefanachi A, Nicolotti O. Bcr-Abl Allosteric Inhibitors: Where We Are and Where We Are Going to. Molecules 2020; 25:E4210. [PMID: 32937901 PMCID: PMC7570842 DOI: 10.3390/molecules25184210] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
The fusion oncoprotein Bcr-Abl is an aberrant tyrosine kinase responsible for chronic myeloid leukemia and acute lymphoblastic leukemia. The auto-inhibition regulatory module observed in the progenitor kinase c-Abl is lost in the aberrant Bcr-Abl, because of the lack of the N-myristoylated cap able to bind the myristoyl binding pocket also conserved in the Bcr-Abl kinase domain. A way to overcome the occurrence of resistance phenomena frequently observed for Bcr-Abl orthosteric drugs is the rational design of allosteric ligands approaching the so-called myristoyl binding pocket. The discovery of these allosteric inhibitors although very difficult and extremely challenging, represents a valuable option to minimize drug resistance, mostly due to the occurrence of mutations more frequently affecting orthosteric pockets, and to enhance target selectivity with lower off-target effects. In this perspective, we will elucidate at a molecular level the structural bases behind the Bcr-Abl allosteric control and will show how artificial intelligence can be effective to drive the automated de novo design towards off-patent regions of the chemical space.
Collapse
Affiliation(s)
- Francesca Carofiglio
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
- Molecular Horizon srl, Via Montelino 32, 06084 Bettona, Italy
| | - Nicola Gambacorta
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Francesco Leonetti
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Angela Stefanachi
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Orazio Nicolotti
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| |
Collapse
|
20
|
Singh AP, Umbarkar P, Tousif S, Lal H. Cardiotoxicity of the BCR-ABL1 tyrosine kinase inhibitors: Emphasis on ponatinib. Int J Cardiol 2020; 316:214-221. [PMID: 32470534 DOI: 10.1016/j.ijcard.2020.05.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/26/2022]
Abstract
The advent of tyrosine kinase inhibitors (TKIs) targeted therapy revolutionized the treatment of chronic myeloid leukemia (CML) patients. However, cardiotoxicity associated with these targeted therapies puts the cancer survivors at higher risk. Ponatinib is a third-generation TKI for the treatment of CML patients having gatekeeper mutation T315I, which is resistant to the first and second generation of TKIs, namely, imatinib, nilotinib, dasatinib, and bosutinib. Multiple unbiased screening from our lab and others have identified ponatinib as most cardiotoxic FDA approved TKI among the entire FDA approved TKI family (total 50+). Indeed, ponatinib is the only treatment option for CML patients with T315I mutation. This review focusses on the cardiovascular risks and mechanism/s associated with CML TKIs with a particular focus on ponatinib cardiotoxicity. We have summarized our recent findings with transgenic zebrafish line harboring BNP luciferase activity to demonstrate the cardiotoxic potential of ponatinib. Additionally, we will review the recent discoveries reported by our and other laboratories that ponatinib primarily exerts its cardiotoxicity via an off-target effect on cardiomyocyte prosurvival signaling pathways, AKT and ERK. Finally, we will shed light on future directions for minimizing the adverse sequelae associated with CML-TKIs.
Collapse
Affiliation(s)
- Anand Prakash Singh
- Division of Cardiovascular Disease, UAB
- The University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA.
| | - Prachi Umbarkar
- Division of Cardiovascular Disease, UAB
- The University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA
| | - Sultan Tousif
- Division of Cardiovascular Disease, UAB
- The University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA
| | - Hind Lal
- Division of Cardiovascular Disease, UAB
- The University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA.
| |
Collapse
|
21
|
Singh AP, Glennon MS, Umbarkar P, Gupte M, Galindo CL, Zhang Q, Force T, Becker JR, Lal H. Ponatinib-induced cardiotoxicity: delineating the signalling mechanisms and potential rescue strategies. Cardiovasc Res 2020; 115:966-977. [PMID: 30629146 DOI: 10.1093/cvr/cvz006] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/06/2018] [Accepted: 01/04/2019] [Indexed: 11/13/2022] Open
Abstract
AIMS Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of chronic myelogenous leukaemia (CML). However, cardiotoxicity of these agents remains a serious concern. The underlying mechanism of these adverse cardiac effects is largely unknown. Delineation of the underlying mechanisms of TKIs associated cardiac dysfunction could guide potential prevention strategies, rescue approaches, and future drug design. This study aimed to determine the cardiotoxic potential of approved CML TKIs, define the associated signalling mechanism and identify potential alternatives. METHODS AND RESULTS In this study, we employed a zebrafish transgenic BNP reporter line that expresses luciferase under control of the nppb promoter (nppb:F-Luciferase) to assess the cardiotoxicity of all approved CML TKIs. Our in vivo screen identified ponatinib as the most cardiotoxic agent among the approved CML TKIs. Then using a combination of zebrafish and isolated neonatal rat cardiomyocytes, we delineated the signalling mechanism of ponatinib-induced cardiotoxicity by demonstrating that ponatinib inhibits cardiac prosurvival signalling pathways AKT and extra-cellular-signal-regulated kinase (ERK), and induces cardiomyocyte apoptosis. As a proof of concept, we augmented AKT and ERK signalling by administration of Neuregulin-1β (NRG-1β), and this prevented ponatinib-induced cardiomyocyte apoptosis. We also demonstrate that ponatinib-induced cardiotoxicity is not mediated by inhibition of fibroblast growth factor signalling, a well-known target of ponatinib. Finally, our comparative profiling for the cardiotoxic potential of CML approved TKIs, identified asciminib (ABL001) as a potentially much less cardiotoxic treatment option for CML patients with the T315I mutation. CONCLUSION Herein, we used a combination of in vivo and in vitro methods to systematically screen CML TKIs for cardiotoxicity, identify novel molecular mechanisms for TKI cardiotoxicity, and identify less cardiotoxic alternatives.
Collapse
Affiliation(s)
- Anand P Singh
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA
| | - Michael S Glennon
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA.,Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, School of Medicine, University of Pittsburgh Medical Center, 200 Lothrop, BST E1258, Pittsburgh, PA, USA
| | - Prachi Umbarkar
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA
| | - Manisha Gupte
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA
| | - Cristi L Galindo
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA
| | - Qinkun Zhang
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA
| | - Thomas Force
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA
| | - Jason R Becker
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA.,Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, School of Medicine, University of Pittsburgh Medical Center, 200 Lothrop, BST E1258, Pittsburgh, PA, USA
| | - Hind Lal
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA
| |
Collapse
|
22
|
An electronic point of view on the inhibition of ALK-5 by bioactive candidates related to cancer. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02602-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Ding S, Li S, Zhang S, Li Y. Genetic Alterations and Checkpoint Expression: Mechanisms and Models for Drug Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:227-250. [PMID: 32185713 DOI: 10.1007/978-981-15-3266-5_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this chapter, we will sketch a story that begins with the breakdown of chromosome homeostasis and genomic stability. Genomic alterations may render tumor cells eternal life at the expense of immunogenicity. Although antitumor immunity can be primed through neoantigens or inflammatory signals, tumor cells have evolved countermeasures to evade immune surveillance and strike back by modulating immune checkpoint related pathways. At present, monoclonal antibody drugs targeting checkpoints like PD-1 and CTLA-4 have significantly prolonged the survival of a variety of cancer patients, and thus have marked a great achievement in the history of antitumor therapy. Nevertheless, this is not the end of the story. As the relationship between genomic alteration and checkpoint expression is being delineated though the advances of preclinical animal models and emerging technologies, novel checkpoint targets are on the way to be discovered.
Collapse
Affiliation(s)
- Shuai Ding
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Rheumatology and Immunology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu, 210061, China
| | - Siqi Li
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Rheumatology and Immunology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu, 210061, China
| | - Shujie Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Rheumatology and Immunology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu, 210061, China
| | - Yan Li
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Rheumatology and Immunology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu, 210061, China.
| |
Collapse
|
24
|
Eide CA, Zabriskie MS, Savage Stevens SL, Antelope O, Vellore NA, Than H, Schultz AR, Clair P, Bowler AD, Pomicter AD, Yan D, Senina AV, Qiang W, Kelley TW, Szankasi P, Heinrich MC, Tyner JW, Rea D, Cayuela JM, Kim DW, Tognon CE, O'Hare T, Druker BJ, Deininger MW. Combining the Allosteric Inhibitor Asciminib with Ponatinib Suppresses Emergence of and Restores Efficacy against Highly Resistant BCR-ABL1 Mutants. Cancer Cell 2019; 36:431-443.e5. [PMID: 31543464 PMCID: PMC6893878 DOI: 10.1016/j.ccell.2019.08.004] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/03/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022]
Abstract
BCR-ABL1 point mutation-mediated resistance to tyrosine kinase inhibitor (TKI) therapy in Philadelphia chromosome-positive (Ph+) leukemia is effectively managed with several approved drugs, including ponatinib for BCR-ABL1T315I-mutant disease. However, therapy options are limited for patients with leukemic clones bearing multiple BCR-ABL1 mutations. Asciminib, an allosteric inhibitor targeting the myristoyl-binding pocket of BCR-ABL1, is active against most single mutants but ineffective against all tested compound mutants. We demonstrate that combining asciminib with ATP site TKIs enhances target inhibition and suppression of resistant outgrowth in Ph+ clinical isolates and cell lines. Inclusion of asciminib restores ponatinib's effectiveness against currently untreatable compound mutants at clinically achievable concentrations. Our findings support combining asciminib with ponatinib as a treatment strategy for this molecularly defined group of patients.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Binding Sites/drug effects
- Binding Sites/genetics
- Cell Line, Tumor/transplantation
- Disease Models, Animal
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Female
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Imidazoles/pharmacology
- Imidazoles/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Molecular Targeted Therapy/methods
- Mutation
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Niacinamide/therapeutic use
- Primary Cell Culture
- Pyrazoles/pharmacology
- Pyrazoles/therapeutic use
- Pyridazines/pharmacology
- Pyridazines/therapeutic use
Collapse
Affiliation(s)
- Christopher A Eide
- OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, LBRB 513, Portland, OR 97239, USA; Howard Hughes Medical Institute, Portland, OR 97239, USA; Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Matthew S Zabriskie
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 4280, Salt Lake City, UT 84112, USA
| | - Samantha L Savage Stevens
- OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, LBRB 513, Portland, OR 97239, USA; Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Orlando Antelope
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 4280, Salt Lake City, UT 84112, USA
| | - Nadeem A Vellore
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 4280, Salt Lake City, UT 84112, USA
| | - Hein Than
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 4280, Salt Lake City, UT 84112, USA
| | - Anna Reister Schultz
- OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, LBRB 513, Portland, OR 97239, USA; Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Phillip Clair
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 4280, Salt Lake City, UT 84112, USA
| | - Amber D Bowler
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 4280, Salt Lake City, UT 84112, USA
| | - Anthony D Pomicter
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 4280, Salt Lake City, UT 84112, USA
| | - Dongqing Yan
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 4280, Salt Lake City, UT 84112, USA
| | - Anna V Senina
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 4280, Salt Lake City, UT 84112, USA
| | - Wang Qiang
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 4280, Salt Lake City, UT 84112, USA; Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Todd W Kelley
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Michael C Heinrich
- OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, LBRB 513, Portland, OR 97239, USA; Portland VA Health Care System, Portland, OR, USA; Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jeffrey W Tyner
- OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, LBRB 513, Portland, OR 97239, USA; Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Delphine Rea
- Service d'Hematologie Adulte, INSERM UMR 1160, Hospital Saint-Louis, 75010 Paris, France
| | - Jean-Michel Cayuela
- Laboratory of Hematology, University Hospital Saint-Louis, AP-HP and EA3518, University Paris Diderot, Paris, France
| | - Dong-Wook Kim
- Leukemia Research Institute, The Catholic University of Korea, Seoul, Republic of Korea; Department of Hematology, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Cristina E Tognon
- OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, LBRB 513, Portland, OR 97239, USA; Howard Hughes Medical Institute, Portland, OR 97239, USA; Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Thomas O'Hare
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 4280, Salt Lake City, UT 84112, USA; Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT 84112, USA
| | - Brian J Druker
- OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, LBRB 513, Portland, OR 97239, USA; Howard Hughes Medical Institute, Portland, OR 97239, USA; Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Michael W Deininger
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 4280, Salt Lake City, UT 84112, USA; Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
25
|
Derakhshani M, Abbaszadeh H, Movassaghpour AA, Mehdizadeh A, Ebrahimi-Warkiani M, Yousefi M. Strategies for elevating hematopoietic stem cells expansion and engraftment capacity. Life Sci 2019; 232:116598. [PMID: 31247209 DOI: 10.1016/j.lfs.2019.116598] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/22/2019] [Accepted: 06/23/2019] [Indexed: 02/07/2023]
Abstract
Hematopoietic stem cells (HSCs) are a rare cell population in adult bone marrow, mobilized peripheral blood, and umbilical cord blood possessing self-renewal and differentiation capability into a full spectrum of blood cells. Bone marrow HSC transplantation has been considered as an ideal option for certain disorders treatment including hematologic diseases, leukemia, immunodeficiency, bone marrow failure syndrome, genetic defects such as thalassemia, sickle cell anemia, autoimmune disease, and certain solid cancers. Ex vivo proliferation of these cells prior to transplantation has been proposed as a potential solution against limited number of stem cells. In such culture process, MSCs have also been shown to exhibit high capacity for secretion of soluble mediators contributing to the principle biological and therapeutic activities of HSCs. In addition, endothelial cells have been introduced to bridge the blood and sub tissues in the bone marrow, as well as, HSCs regeneration induction and survival. Cell culture in the laboratory environment requires cell growth strict control to protect against contamination, symmetrical cell division and optimal conditions for maximum yield. In this regard, microfluidic systems provide culture and analysis capabilities in micro volume scales. Moreover, two-dimensional cultures cannot fully demonstrate extracellular matrix found in different tissues and organs as an abstract representation of three dimensional cell structure. Microfluidic systems can also strongly describe the effects of physical factors such as temperature and pressure on cell behavior.
Collapse
Affiliation(s)
- Mehdi Derakhshani
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Abbaszadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ebrahimi-Warkiani
- School of Biomedical Engineering, University Technology of Sydney, Sydney, New South Wales, 2007, Australia
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
26
|
The phosphatase UBASH3B/Sts-1 is a negative regulator of Bcr-Abl kinase activity and leukemogenesis. Leukemia 2019; 33:2319-2323. [PMID: 30962580 PMCID: PMC6756289 DOI: 10.1038/s41375-019-0468-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 01/15/2023]
|
27
|
Molecular dynamics investigation on the Asciminib resistance mechanism of I502L and V468F mutations in BCR-ABL. J Mol Graph Model 2019; 89:242-249. [PMID: 30927708 DOI: 10.1016/j.jmgm.2019.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/23/2019] [Accepted: 03/18/2019] [Indexed: 01/29/2023]
Abstract
Asciminib, a highly selective non-ATP competitive inhibitor of BCR-ABL, has demonstrated to be a promising drug for patients with chronic myeloid leukemia. It is a pity that two resistant mutations (I502L and V468F) have been found during the clinical trial, which is a challenge for the curative effect of Asciminib. In this study, molecular dynamics simulations and molecular mechanics generalized Born surface area (MM-GB/SA) calculations were performed to investigate the molecular mechanism of Asciminib resistance induced by the two mutants. The obtained results indicate that the mutations have adversely influence on the binding of Asciminib to BCR-ABL, as the nonpolar contributions decline in the two mutants. In addition, I502L mutation causes α-helix I' (αI') to shift away from the helical bundle composed of αE, αF, and αH, making the distance between αI' and Asciminib increased. For V468F mutant, the side chain of Phe468 occupies the bottom of the myristoyl pocket (MP), which drives Asciminib to shift toward the outside of MP. Our results provide the molecular insights of Asciminib resistance mechanism in BCR-ABL mutants, which may help the design of novel inhibitors.
Collapse
|
28
|
Molecular biology as a tool for the treatment of cancer. Clin Exp Med 2018; 18:457-464. [PMID: 30006681 DOI: 10.1007/s10238-018-0518-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/08/2018] [Indexed: 12/30/2022]
Abstract
Cancer is a genetic disease characterized by uncontrolled cell growth and metastasis. Cancer can have a number of causes, such the activation of oncogenes, the inactivation of tumor-suppressing genes, mutagenesis provoked by external factors, and epigenetic modifications. The development of diagnostic tools and treatments using a molecular biological approach permits the use of sensitive, low-cost, noninvasive tests for cancer patients. Biomarkers can be used to provide rapid, personalized oncology, in particular the molecular diagnosis of chronic myeloid leukemia, and gastric, colon, and breast cancers. Molecular tests based on DNA methylation can also be used to direct treatments or evaluate the toxic effects of chemotherapy. The adequate diagnosis, prognosis, and prediction of the response of cancer patients to treatment are essential to ensure the most effective therapy, reduce the damaging effects of treatment, and direct the therapy to specific targets, and in this context, molecular biology has become increasingly important in oncology. In this brief review, we will demonstrate the fundamental importance of molecular biology for the treatment of three types of cancer-chronic myeloid leukemia, hereditary diffuse gastric cancer, and astrocytomas (sporadic tumors of the central nervous system). In each of these three models, distinct biological mechanisms are involved in the transformation of the cells, but in all cases, molecular biology is fundamental to the development of personalized analyses for each patient and each type of neoplasia, and to guarantee the success of the treatment.
Collapse
|
29
|
Ōmura S, Asami Y, Crump A. Staurosporine: new lease of life for parent compound of today's novel and highly successful anti-cancer drugs. J Antibiot (Tokyo) 2018; 71:688-701. [PMID: 29934602 DOI: 10.1038/s41429-018-0029-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022]
Abstract
Staurosporine, together with such examples as penicillin, aspirin, ivermectin and sildenafil, exemplifies the role that serendipity has in drug discovery and why 'finding things without actually searching for them' retains a prominent role in drug discovery. Hitherto not clinically useful, due to its potency and promiscuity, new delivery technology is opening up new horizons for what was previously just the parent compound of innovative, highly-successful anti-cancer agents.
Collapse
Affiliation(s)
- Satoshi Ōmura
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan.
| | - Yukihiro Asami
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Andy Crump
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| |
Collapse
|
30
|
Daraiseh SI, Kassardjian A, Alexander KE, Rizkallah R, Hurt MM. c-Abl phosphorylation of Yin Yang 1's conserved tyrosine 254 in the spacer region modulates its transcriptional activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1173-1186. [PMID: 29807053 DOI: 10.1016/j.bbamcr.2018.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/02/2018] [Accepted: 05/24/2018] [Indexed: 12/31/2022]
Abstract
Yin Yang 1 (YY1) is a multifunctional transcription factor that can activate or repress transcription depending on the promotor and/or the co-factors recruited. YY1 is phosphorylated in various signaling pathways and is critical for different biological functions including embryogenesis, apoptosis, proliferation, cell-cycle regulation and tumorigenesis. Here we report that YY1 is a substrate for c-Abl kinase phosphorylation at conserved residue Y254 in the spacer region. Pharmacological inhibition of c-Abl kinase by imatinib, nilotinib and GZD824, knock-down of c-Abl using siRNA, and the use of c-Abl kinase-dead drastically reduces tyrosine phosphorylation of YY1. Both radioactive and non-radioactive in vitro kinase assays, as well as co-immunoprecipitation in different cell lines, show that the target of c-Abl phosphorylation is tyrosine residue 254. c-Abl phosphorylation has little effect on YY1 DNA binding ability or cellular localization in asynchronous cells. However, functional studies reveal that c-Abl mediated phosphorylation of YY1 regulates YY1's transcriptional ability in vivo. In conclusion, we demonstrate the novel role of c-Abl kinase in regulation of YY1's transcriptional activity, linking YY1 regulation with c-Abl tyrosine kinase signaling pathways.
Collapse
Affiliation(s)
- Susan I Daraiseh
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Ari Kassardjian
- David Geffen School of Medicine, Department of Pathology and Laboratory Medicine at UCLA, Los Angeles, CA, USA
| | - Karen E Alexander
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Raed Rizkallah
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Myra M Hurt
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
31
|
Bieerkehazhi S, Chen Z, Zhao Y, Yu Y, Zhang H, Vasudevan SA, Woodfield SE, Tao L, Yi JS, Muscal JA, Pang JC, Guan S, Zhang H, Nuchtern JG, Li H, Li H, Yang J. Novel Src/Abl tyrosine kinase inhibitor bosutinib suppresses neuroblastoma growth via inhibiting Src/Abl signaling. Oncotarget 2018; 8:1469-1480. [PMID: 27903968 PMCID: PMC5352070 DOI: 10.18632/oncotarget.13643] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 11/12/2016] [Indexed: 12/23/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in children. Aberrant activation of the non-receptor tyrosine kinases Src and c-Abl contributes to the progression of NB. Thus, targeting these kinases could be a promising strategy for NB therapy. In this paper, we report that the potent dual Src/Abl inhibitor bosutinib exerts anti-tumor effects on NB. Bosutinib inhibited NB cell proliferation in a dose-dependent manner and suppressed colony formation ability of NB cells. Mechanistically, bosutinib effectively decreased the activity of Src/Abl and PI3K/AKT/mTOR, MAPK/ERK, and JAK/STAT3 signaling pathways. In addition, bosutinib enhanced doxorubicin (Dox)- and etoposide (VP-16)-induced cytotoxicity in NB cells. Furthermore, bosutinib demonstrated anti-tumor efficacy in an orthotopic xenograft NB mouse model in a similar mechanism as of that in vitro. In summary, our results reveal that Src and c-Abl are potential therapeutic targets in NB and that the novel Src/Abl inhibitor bosutinib alone or in combination with other chemotherapeutic agents may be a valuable therapeutic option for NB patients.
Collapse
Affiliation(s)
- Shayahati Bieerkehazhi
- Department of Labour Hygiene and Sanitary Science, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China.,Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zhenghu Chen
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yanling Zhao
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yang Yu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Huiyuan Zhang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sanjeev A Vasudevan
- Division of Pediatric Surgery, Texas Children's Hospital Department of Surgery, Michael E. DeBakey Department of Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sarah E Woodfield
- Division of Pediatric Surgery, Texas Children's Hospital Department of Surgery, Michael E. DeBakey Department of Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ling Tao
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Joanna S Yi
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jodi A Muscal
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jonathan C Pang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Biosciences, Weiss School of Natural Sciences, Rice University, Houston, Texas 77005, USA
| | - Shan Guan
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hong Zhang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jed G Nuchtern
- Division of Pediatric Surgery, Texas Children's Hospital Department of Surgery, Michael E. DeBakey Department of Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hui Li
- Central Laboratory of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Huiwu Li
- Cancer Prevention and Research Institute, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Jianhua Yang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
32
|
Sonti R, Hertel-Hering I, Lamontanara AJ, Hantschel O, Grzesiek S. ATP Site Ligands Determine the Assembly State of the Abelson Kinase Regulatory Core via the Activation Loop Conformation. J Am Chem Soc 2018; 140:1863-1869. [PMID: 29319304 DOI: 10.1021/jacs.7b12430] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The constituent SH3, SH2, and kinase domains of the Abl kinase regulatory core can adopt an assembled (inactive) or a disassembled (active) conformation. We show that this assembly state strictly correlates with the conformation of the kinase activation loop induced by a total of 14 ATP site ligands, comprising all FDA-approved Bcr-Abl inhibiting drugs. The disassembly of the core by certain (type II) ligands can be explained by an induced push on the kinase N-lobe via A- and P-loop toward the SH3 domain. A similar sized P-loop motion is expected during nucleotide binding and release, which would be impeded in the assembled state, in agreement with its strongly reduced kinase activity.
Collapse
Affiliation(s)
- Rajesh Sonti
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel , CH-4056 Basel, Switzerland
| | - Ines Hertel-Hering
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel , CH-4056 Basel, Switzerland
| | - Allan Joaquim Lamontanara
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne, Switzerland
| | - Oliver Hantschel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne, Switzerland
| | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel , CH-4056 Basel, Switzerland
| |
Collapse
|
33
|
Lou J, Huang J, Wang Z, Wen B, Tu C, Huang W, Zhai Z, Du X. Chronic myeloid leukemia patients and treatment-free remission attitudes: a multicenter survey. Patient Prefer Adherence 2018; 12:1025-1032. [PMID: 29942119 PMCID: PMC6007199 DOI: 10.2147/ppa.s163393] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Treatment-free remission (TFR) is becoming an essential goal for chronic myeloid leukemia (CML) patients in clinical practice. Few studies have emphasized patient attitudes or preferences about discontinuing tyrosine kinase inhibitors treatment. This study aimed to evaluate the characteristics of Chinese CML patients and their views and perspectives on TFR. METHODS A total of 329 CML patients participated in this multicenter, questionnaire-based, standardized, semi-structured, interview-guided, open-ended, cross-sectional study. Information about demographics, diagnosis information, treatment history, quality of life (QoL), and TFR preference was collected. RESULTS The adherence rate was 50% (N=163) and sex dependent (males, OR=2.24, 95% CI=1.40-3.58). Physical activity, symptom burden, mood impact, and daily impact were found to be better among adherent patients. Thirty-four percent of the patients were willing to attempt TFR positively. The reasons for preferring TFR were due to side effects (56%) followed by high cost (52%), inconvenience (42%), and pregnancy need (41%). Multivariate analysis indicated that patients who were younger (OR=0.96, 95% CI=0.94-0.99) with shorter disease duration (OR=0.90, 95% CI=0.82-0.98) and higher disease symptom burden (OR=1.08, 95% CI=0.98-1.21) were more likely positive about TFR. CONCLUSION Patients who were younger with shorter disease duration and higher disease symptom burden were more likely to try TFR. They expressed several perceived noncost factors of TFR. Our data may help promote the management of CML and designing of clinical trials for TFR in some developed regions of China.
Collapse
Affiliation(s)
- Jin Lou
- Department of Hematology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Junjie Huang
- Department of Hematology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| | - Zitong Wang
- School of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Bingbing Wen
- Department of Hematology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| | - Chuanqing Tu
- Department of Hematology, People’s Hospital of Baoan District, Shenzhen 518101, China
| | - Wangxiang Huang
- Department of Hematology, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Zhimin Zhai
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Zhimin Zhai, Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, China, Email
| | - Xin Du
- Department of Hematology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
- Correspondence: Xin Du, Department of Hematology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, 3002 Sungang West Road, Futian District, Shenzhen 518000, China, Email
| |
Collapse
|
34
|
Reckel S, Gehin C, Tardivon D, Georgeon S, Kükenshöner T, Löhr F, Koide A, Buchner L, Panjkovich A, Reynaud A, Pinho S, Gerig B, Svergun D, Pojer F, Güntert P, Dötsch V, Koide S, Gavin AC, Hantschel O. Structural and functional dissection of the DH and PH domains of oncogenic Bcr-Abl tyrosine kinase. Nat Commun 2017; 8:2101. [PMID: 29235475 PMCID: PMC5727386 DOI: 10.1038/s41467-017-02313-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/20/2017] [Indexed: 12/16/2022] Open
Abstract
The two isoforms of the Bcr-Abl tyrosine kinase, p210 and p190, are associated with different leukemias and have a dramatically different signaling network, despite similar kinase activity. To provide a molecular rationale for these observations, we study the Dbl-homology (DH) and Pleckstrin-homology (PH) domains of Bcr-Abl p210, which constitute the only structural differences to p190. Here we report high-resolution structures of the DH and PH domains and characterize conformations of the DH-PH unit in solution. Our structural and functional analyses show no evidence that the DH domain acts as a guanine nucleotide exchange factor, whereas the PH domain binds to various phosphatidylinositol-phosphates. PH-domain mutants alter subcellular localization and result in decreased interactions with p210-selective interaction partners. Hence, the PH domain, but not the DH domain, plays an important role in the formation of the differential p210 and p190 Bcr-Abl signaling networks.
Collapse
Affiliation(s)
- Sina Reckel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Charlotte Gehin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Delphine Tardivon
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sandrine Georgeon
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Tim Kükenshöner
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Frank Löhr
- Institute of Biophysical Chemistry, Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Akiko Koide
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, 10016, USA
- Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Lena Buchner
- Institute of Biophysical Chemistry, Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Alejandro Panjkovich
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, 22607, Hamburg, Germany
| | - Aline Reynaud
- Protein Crystallography Core Facility, School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sara Pinho
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Barbara Gerig
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, 22607, Hamburg, Germany
| | - Florence Pojer
- Protein Crystallography Core Facility, School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Peter Güntert
- Institute of Biophysical Chemistry, Goethe University Frankfurt, 60438, Frankfurt, Germany
- Laboratory of Physical Chemistry, ETH Zürich, 8093, Zürich, Switzerland
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Shohei Koide
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, 10016, USA
- Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Anne-Claude Gavin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Oliver Hantschel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
35
|
Almeida MO, Costa CHS, Gomes GC, Lameira J, Alves CN, Honorio KM. Computational analyses of interactions between ALK-5 and bioactive ligands: insights for the design of potential anticancer agents. J Biomol Struct Dyn 2017; 36:4010-4022. [PMID: 29132261 DOI: 10.1080/07391102.2017.1404938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Activin Receptor-Like Kinase 5 (ALK-5) is related to some types of cancer, such as breast, lung, and pancreas. In this study, we have used molecular docking, molecular dynamics simulations, and free energy calculations in order to explore key interactions between ALK-5 and six bioactive ligands with different ranges of biological activity. The motivation of this work is the lack of crystal structure for inhibitor-protein complexes for this set of ligands. The understanding of the molecular structure and the protein-ligand interaction could give support for the development of new drugs against cancer. The results show that the calculated binding free energy using MM-GBSA, MM-PBSA, and SIE is correlated with experimental data with r2 = 0.88, 0.80, and 0.94, respectively, which indicates that the calculated binding free energy is in excellent agreement with experimental data. In addition, the results demonstrate that H bonds with Lys232, Glu245, Tyr249, His283, Asp351, and one structural water molecule play an important role for the inhibition of ALK-5. Overall, we discussed the main interactions between ALK-5 and six inhibitors that may be used as starting points for designing new molecules to the treatment of cancer.
Collapse
Affiliation(s)
- Michell O Almeida
- a Center of Natural Sciences and Humanities , Federal University of ABC , Santo Andre , SP , Brazil
| | - Clauber H S Costa
- b Laboratório de Planejamento e Desenvolvimento de Fármacos , Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará , CP 11101, 66075-110 , Belém , PA , Brazil
| | - Guelber C Gomes
- b Laboratório de Planejamento e Desenvolvimento de Fármacos , Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará , CP 11101, 66075-110 , Belém , PA , Brazil
| | - Jerônimo Lameira
- b Laboratório de Planejamento e Desenvolvimento de Fármacos , Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará , CP 11101, 66075-110 , Belém , PA , Brazil
| | - Claudio N Alves
- b Laboratório de Planejamento e Desenvolvimento de Fármacos , Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará , CP 11101, 66075-110 , Belém , PA , Brazil
| | - Kathia M Honorio
- a Center of Natural Sciences and Humanities , Federal University of ABC , Santo Andre , SP , Brazil.,c School of Arts, Sciences and Humanities , University of São Paulo , Sao Paulo , Brazil
| |
Collapse
|
36
|
La Sala G, Decherchi S, De Vivo M, Rocchia W. Allosteric Communication Networks in Proteins Revealed through Pocket Crosstalk Analysis. ACS CENTRAL SCIENCE 2017; 3:949-960. [PMID: 28979936 PMCID: PMC5620967 DOI: 10.1021/acscentsci.7b00211] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Indexed: 05/17/2023]
Abstract
The detection and characterization of binding pockets and allosteric communication in proteins is crucial for studying biological regulation and performing drug design. Nowadays, ever-longer molecular dynamics (MD) simulations are routinely used to investigate the spatiotemporal evolution of proteins. Yet, there is no computational tool that can automatically detect all the pockets and potential allosteric communication networks along these extended MD simulations. Here, we use a novel and fully automated algorithm that examines pocket formation, dynamics, and allosteric communication embedded in microsecond-long MD simulations of three pharmaceutically relevant proteins, namely, PNP, A2A, and Abl kinase. This dynamic analysis uses pocket crosstalk, defined as the temporal exchange of atoms between adjacent pockets, along the MD trajectories as a fingerprint of hidden allosteric communication networks. Importantly, this study indicates that dynamic pocket crosstalk analysis provides new mechanistic understandings on allosteric communication networks, enriching the available experimental data. Thus, our results suggest the prospective use of this unprecedented dynamic analysis to characterize transient binding pockets for structure-based drug design.
Collapse
Affiliation(s)
- Giuseppina La Sala
- Laboratory
of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Sergio Decherchi
- CONCEPT
Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- BiKi
Technologies s.r.l., via XX Settembre 33, 16121 Genova, Italy
| | - Marco De Vivo
- Laboratory
of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- IAS-S/INM-9
Computational Biomedicine Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Phone: +39 01071781577. E-mail:
| | - Walter Rocchia
- CONCEPT
Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Phone: +39 01071781552. E-mail:
| |
Collapse
|
37
|
Abstract
The hematopoietic stem cell (HSC) is a multipotent stem cell that resides in the bone marrow and has the ability to form all of the cells of the blood and immune system. Since its first purification in 1988, additional studies have refined the phenotype and functionality of HSCs and characterized all of their downstream progeny. The hematopoietic lineage is divided into two main branches: the myeloid and lymphoid arms. The myeloid arm is characterized by the common myeloid progenitor and all of its resulting cell types. The stages of hematopoiesis have been defined in both mice and humans. During embryological development, the earliest hematopoiesis takes place in yolk sac blood islands and then migrates to the fetal liver and hematopoietic organs. Some adult myeloid populations develop directly from yolk sac progenitors without apparent bone marrow intermediates, such as tissue-resident macrophages. Hematopoiesis also changes over time, with a bias of the dominating HSCs toward myeloid development as animals age. Defects in myelopoiesis contribute to many hematologic disorders, and some of these can be overcome with therapies that target the aberrant stage of development. Furthermore, insights into myeloid development have informed us of mechanisms of programmed cell removal. The CD47/SIRPα axis, a myeloid-specific immune checkpoint, limits macrophage removal of HSCs but can be exploited by hematologic and solid malignancies. Therapeutics targeting CD47 represent a new strategy for treating cancer. Overall, an understanding of hematopoiesis and myeloid cell development has implications for regenerative medicine, hematopoietic cell transplantation, malignancy, and many other diseases.
Collapse
|
38
|
Treatment-free remission in patients with chronic myeloid leukemia. Int J Hematol 2017; 108:355-364. [PMID: 28689264 DOI: 10.1007/s12185-017-2295-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 01/09/2023]
Abstract
Clinical trials have formally demonstrated that in chronic myeloid leukemia (CML), patients treated with tyrosine kinase inhibitors (TKI) who achieved and maintained deep molecular responses could discontinue their treatment after several years without facing overt signs of disease relapse in approximately 50% of the cases. In patients with a molecular relapse, prompt re-introduction of TKI therapy was able to rapidly restore deep molecular responses. The concept of a lifelong therapy with TKI has thus been challenged and treatment-free remission (TFR) strategies will soon integrate clinical practice, providing that safe recommendations will be established. In this article, we give an update on TKI discontinuation studies in CML and we also provide an overview of upcoming TFR clinical and biological challenges.
Collapse
|
39
|
Abstract
Imatinib mesylate was the first tyrosine kinase inhibitor (TKI) approved for the management of chronic myeloid leukemia. Imatinib produces acceptable responses in approximately 60% of patients, with approximately 20% discontinuing therapy because of intolerance and approximately 20% developing drug resistance. The advent of newer TKIs, such as nilotinib, dasatinib, bosutinib, and ponatinib, has provided multiple options for patients. These agents are more potent, have unique adverse effect profiles, and are more likely to achieve relevant milestones, such as early molecular responses (3-6 months) and optimal molecular responses (12 months). The acquisition of BCR-ABL kinase domain mutations is also reportedly lower with these drugs. Thus far, none of the randomized phase III clinical trials have shown a clinically significant survival difference between frontline imatinib versus newer TKIs. Cost and safety issues with the newer TKIs, such as vascular disease with nilotinib and ponatinib and pulmonary hypertension with dasatinib, have dampened the enthusiasm of using these drugs as frontline options. While the utility of new TKIs in the setting of imatinib failure or intolerance is clear, their use as frontline agents should factor in the age of the patient, additional comorbidities, risk stratification (Sokal score), and cost. Combination therapies and newer agents with potential to eradicate quiescent chronic myeloid leukemia stem cells offers future hope.
Collapse
|
40
|
Opening the door to the development of novel Abl kinase inhibitors. Future Med Chem 2016; 8:2143-2165. [PMID: 27774798 DOI: 10.4155/fmc-2016-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The discovery of the importance of kinase activity and its relationship to the emergence and proliferation of cancer cells, due to changes in normal physiology, opened a remarkable pathway for the treatment of chronic myelogenous leukemia through intense search of drug candidates. Six Abl kinase inhibitors have received the US FDA approval as chronic myelogenous leukemia treatment, and continuous efforts in obtaining new, more effective and selective molecules are being carried out. Herein we discuss the mechanisms of Abl inhibition, structural features and ligand/protein interactions that are important for the design of new Abl kinase inhibitors. This review provides a broad overview of binding mode predictions, through molecular docking, which can be an approach to discover novel Abl kinase inhibitors.
Collapse
|
41
|
Kim Y, Liu M, Hilty C. Parallelized Ligand Screening Using Dissolution Dynamic Nuclear Polarization. Anal Chem 2016; 88:11178-11183. [PMID: 27723298 DOI: 10.1021/acs.analchem.6b03382] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein-ligand interactions are frequently screened using nuclear magnetic resonance (NMR) spectroscopy. The dissociation constant (KD) of a ligand of interest can be determined via a spin-spin relaxation measurement of a reporter ligand in a single scan when using hyperpolarization by means of dissolution dynamic nuclear polarization (D-DNP). Despite nearly instantaneous signal acquisition, a limitation of D-DNP for the screening of protein-ligand interactions is the required polarization time on the order of tens of minutes. Here, we introduce a multiplexed NMR experiment, where a single hyperpolarized ligand sample is rapidly mixed with protein injected into two flow cells. NMR detection is achieved simultaneously on both channels, resulting in a chemical shift resolved spin relaxation measurement. Spectral resolution allows the use of reference compounds for accurate quantification of concentrations. Simultaneous use of two concentration ratios between protein and ligand broadens the range of KD that is accurately measurable in a single experiment to at least an order of magnitude. In a comparison of inhibitors for the protein trypsin, the average KD values of benzamidine and benzylamine were found to be 12.6 ± 1.4 μM and 207 ± 22 μM from three measurements, based on KD = 142 μM assumed known for the reporter ligand 4-(trifluoromethyl)benzene-1-carboximidamide. Typical confidence ranges at 95% evaluated for single experiments were (8.3 μM, 20 μM) and (151 μM, 328 μM). The multiplexed detection of two or more hyperpolarized samples increases throughput of D-DNP by the same factor, improving the applicability to most multipoint measurements that would traditionally be achieved using titrations.
Collapse
Affiliation(s)
- Yaewon Kim
- Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States
| | - Mengxiao Liu
- Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States
| | - Christian Hilty
- Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States
| |
Collapse
|
42
|
La Sala G, Riccardi L, Gaspari R, Cavalli A, Hantschel O, De Vivo M. HRD Motif as the Central Hub of the Signaling Network for Activation Loop Autophosphorylation in Abl Kinase. J Chem Theory Comput 2016; 12:5563-5574. [DOI: 10.1021/acs.jctc.6b00600] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | - Andrea Cavalli
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Oliver Hantschel
- Swiss
Institute for Experimental Cancer Research (ISREC), School of Life
Sciences, École polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- ISREC Foundation Chair in Translational Oncology, 1015 Lausanne, Switzerland
| | - Marco De Vivo
- IAS-S/INM-9 Computational Biomedicine Forschungszentrum, Jülich Wilhelm-Johnen-Staße, 52428 Jülich, Germany
| |
Collapse
|
43
|
Singh VK, Chang HH, Kuo CC, Shiao HY, Hsieh HP, Coumar MS. Drug repurposing for chronic myeloid leukemia: in silico and in vitro investigation of DrugBank database for allosteric Bcr-Abl inhibitors. J Biomol Struct Dyn 2016; 35:1833-1848. [DOI: 10.1080/07391102.2016.1196462] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Vivek Kumar Singh
- School of Life Sciences, Centre for Bioinformatics, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Hsin-Huei Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan, ROC
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan, ROC
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan
- Graduate Program for Aging, China Medical University, Taichung, Taiwan, ROC
| | - Hui-Yi Shiao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan, ROC
| | - Hsing-Pang Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan, ROC
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Mohane Selvaraj Coumar
- School of Life Sciences, Centre for Bioinformatics, Pondicherry University, Kalapet, Puducherry 605014, India
| |
Collapse
|
44
|
Latysheva NS, Babu MM. Discovering and understanding oncogenic gene fusions through data intensive computational approaches. Nucleic Acids Res 2016; 44:4487-503. [PMID: 27105842 PMCID: PMC4889949 DOI: 10.1093/nar/gkw282] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/24/2016] [Indexed: 12/21/2022] Open
Abstract
Although gene fusions have been recognized as important drivers of cancer for decades, our understanding of the prevalence and function of gene fusions has been revolutionized by the rise of next-generation sequencing, advances in bioinformatics theory and an increasing capacity for large-scale computational biology. The computational work on gene fusions has been vastly diverse, and the present state of the literature is fragmented. It will be fruitful to merge three camps of gene fusion bioinformatics that appear to rarely cross over: (i) data-intensive computational work characterizing the molecular biology of gene fusions; (ii) development research on fusion detection tools, candidate fusion prioritization algorithms and dedicated fusion databases and (iii) clinical research that seeks to either therapeutically target fusion transcripts and proteins or leverages advances in detection tools to perform large-scale surveys of gene fusion landscapes in specific cancer types. In this review, we unify these different-yet highly complementary and symbiotic-approaches with the view that increased synergy will catalyze advancements in gene fusion identification, characterization and significance evaluation.
Collapse
Affiliation(s)
- Natasha S Latysheva
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge CB2 0QH, United Kingdom
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
45
|
Almeida MO, Trossini GHG, Maltarollo VG, Silva DDC, Honorio KM. In silico studies on the interaction between bioactive ligands and ALK5, a biological target related to the cancer treatment. J Biomol Struct Dyn 2016; 34:2045-53. [DOI: 10.1080/07391102.2015.1106340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Michell O. Almeida
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Gustavo H. G. Trossini
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Vinícius G. Maltarollo
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Danielle da C. Silva
- Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Kathia M. Honorio
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
46
|
Wojcik J, Lamontanara AJ, Grabe G, Koide A, Akin L, Gerig B, Hantschel O, Koide S. Allosteric Inhibition of Bcr-Abl Kinase by High Affinity Monobody Inhibitors Directed to the Src Homology 2 (SH2)-Kinase Interface. J Biol Chem 2016; 291:8836-47. [PMID: 26912659 DOI: 10.1074/jbc.m115.707901] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 12/22/2022] Open
Abstract
Bcr-Abl is a constitutively active kinase that causes chronic myelogenous leukemia. We have shown that a tandem fusion of two designed binding proteins, termed monobodies, directed to the interaction interface between the Src homology 2 (SH2) and kinase domains and to the phosphotyrosine-binding site of the SH2 domain, respectively, inhibits the Bcr-Abl kinase activity. Because the latter monobody inhibits processive phosphorylation by Bcr-Abl and the SH2-kinase interface is occluded in the active kinase, it remained undetermined whether targeting the SH2-kinase interface alone was sufficient for Bcr-Abl inhibition. To address this question, we generated new, higher affinity monobodies with single nanomolar KD values targeting the kinase-binding surface of SH2. Structural and mutagenesis studies revealed the molecular underpinnings of the monobody-SH2 interactions. Importantly, the new monobodies inhibited Bcr-Abl kinase activity in vitro and in cells, and they potently induced cell death in chronic myelogenous leukemia cell lines. This work provides strong evidence for the SH2-kinase interface as a pharmacologically tractable site for allosteric inhibition of Bcr-Abl.
Collapse
Affiliation(s)
- John Wojcik
- From the Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
| | - Allan Joaquim Lamontanara
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland, and
| | - Grzegorz Grabe
- From the Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Akiko Koide
- From the Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
| | - Louesa Akin
- From the Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
| | - Barbara Gerig
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland, and
| | - Oliver Hantschel
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland, and
| | - Shohei Koide
- From the Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637,
| |
Collapse
|
47
|
Abstract
The drug discovery landscape has been transformed over the past decade by the discovery of allosteric modulators of all major mammalian receptor superfamilies. Allosteric ligands are a rich potential source of drugs and drug targets with clear therapeutic advantages. G protein-coupled receptors, ligand-gated ion channels and intracellular nuclear hormone receptors have all been targeted by allosteric modulators. More recently, a receptor tyrosine kinase (RTK) has been targeted by an extracellular small-molecule allosteric modulator. Allosteric mechanisms of structurally distinct molecules that target the various receptor families are more alike than originally anticipated and include selectivity, orthosteric probe dependence and pathway-biased signaling.
Collapse
|
48
|
Tse A, Verkhivker GM. Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution. PLoS One 2015; 10:e0130203. [PMID: 26075886 PMCID: PMC4468085 DOI: 10.1371/journal.pone.0130203] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/17/2015] [Indexed: 12/20/2022] Open
Abstract
Quantifying binding specificity and drug resistance of protein kinase inhibitors is of fundamental importance and remains highly challenging due to complex interplay of structural and thermodynamic factors. In this work, molecular simulations and computational alanine scanning are combined with the network-based approaches to characterize molecular determinants underlying binding specificities of the ABL kinase inhibitors. The proposed theoretical framework unveiled a relationship between ligand binding and inhibitor-mediated changes in the residue interaction networks. By using topological parameters, we have described the organization of the residue interaction networks and networks of coevolving residues in the ABL kinase structures. This analysis has shown that functionally critical regulatory residues can simultaneously embody strong coevolutionary signal and high network centrality with a propensity to be energetic hot spots for drug binding. We have found that selective (Nilotinib) and promiscuous (Bosutinib, Dasatinib) kinase inhibitors can use their energetic hot spots to differentially modulate stability of the residue interaction networks, thus inhibiting or promoting conformational equilibrium between inactive and active states. According to our results, Nilotinib binding may induce a significant network-bridging effect and enhance centrality of the hot spot residues that stabilize structural environment favored by the specific kinase form. In contrast, Bosutinib and Dasatinib can incur modest changes in the residue interaction network in which ligand binding is primarily coupled only with the identity of the gate-keeper residue. These factors may promote structural adaptability of the active kinase states in binding with these promiscuous inhibitors. Our results have related ligand-induced changes in the residue interaction networks with drug resistance effects, showing that network robustness may be compromised by targeted mutations of key mediating residues. This study has outlined mechanisms by which inhibitor binding could modulate resilience and efficiency of allosteric interactions in the kinase structures, while preserving structural topology required for catalytic activity and regulation.
Collapse
Affiliation(s)
- Amanda Tse
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Chapman University School of Pharmacy, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Davare MA, Tognon CE. Detecting and targetting oncogenic fusion proteins in the genomic era. Biol Cell 2015; 107:111-29. [PMID: 25631473 DOI: 10.1111/boc.201400096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/23/2015] [Indexed: 12/15/2022]
Abstract
The advent of widespread cancer genome sequencing has accelerated our understanding of the molecular aberrations underlying malignant disease at an unprecedented rate. Coupling the large number of bioinformatic methods developed to locate genomic breakpoints with increased sequence read length and a deeper understanding of coding region function has enabled rapid identification of novel actionable oncogenic fusion genes. Using examples of kinase fusions found in liquid and solid tumours, this review highlights major concepts that have arisen in our understanding of cancer pathogenesis through the study of fusion proteins. We provide an overview of recently developed methods to identify potential fusion proteins from next-generation sequencing data, describe the validation of their oncogenic potential and discuss the role of targetted therapies in treating cancers driven by fusion oncoproteins.
Collapse
Affiliation(s)
- Monika A Davare
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, U.S.A; Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, U.S.A
| | | |
Collapse
|
50
|
Target-based molecular modeling strategies for schistosomiasis drug discovery. Future Med Chem 2015; 7:753-64. [DOI: 10.4155/fmc.15.21] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Schistosomiasis, a neglected tropical disease caused by worms from the class Trematoda (genus Schistosoma), is a serious chronic condition that has been reported in approximately 80 countries. Nearly 250 million people are affected worldwide, mostly in the sub-Saharan Africa. Praziquantel, the mainstay of treatment, has been used for 30 years, and cases of resistance have been reported. The purpose of this perspective is to discuss current target-based molecular modeling strategies in schistosomiasis drug discovery. Advances in the field and the role played by the integration between computational modeling and experimental validation are also discussed. Finally, recent cases of the contribution of modern approaches in computational medicinal chemistry to the field are explored.
Collapse
|