1
|
Lu H, Ai J, Zheng Y, Zhou W, Zhang L, Zhu J, Zhang H, Wang S. IGFBP2/ITGA5 promotes gefitinib resistance via activating STAT3/CXCL1 axis in non-small cell lung cancer. Cell Death Dis 2024; 15:447. [PMID: 38918360 PMCID: PMC11199710 DOI: 10.1038/s41419-024-06843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
There is a paucity of comprehensive knowledge pertaining to the underlying mechanisms leading to gefitinib resistance in individuals diagnosed NSCLC harboring EGFR-sensitive mutations who inevitably develop resistance to gefitinib treatment within six months to one year. In our preceding investigations, we have noted a marked upregulation of IGFBP2 in the neoplastic tissues of NSCLC, predominantly in the periphery of the tissue, implying its plausible significance in NSCLC. Consequently, in the current research, we delved into the matter and ascertained the molecular mechanisms that underlie the participation of IGFBP2 in the emergence of gefitinib resistance in NSCLC cells. Firstly, the expression of IGFBP2 in the bronchoalveolar lavage fluid and lung cancer tissues of 20 NSCLC patients with gefitinib tolerance was found to be significantly higher than that of non-tolerant patients. Furthermore, in vitro and in vivo experiments demonstrated that IGFBP2 plays a significant role in the acquisition of gefitinib resistance. Mechanistically, IGFBP2 can activate STAT3 to enhance the transcriptional activity of CXCL1, thereby increasing the intracellular expression level of CXCL1, which contributes to the survival of lung cancer cells in the gefitinib environment. Additionally, we identified ITGA5 as a key player in IGFBP2-mediated gefitinib resistance, but it does not function as a membrane receptor in the process of linking IGFBP2 to intracellular signaling transduction. In conclusion, this study demonstrates the promoting role and mechanism of IGFBP2 in acquired gefitinib resistance caused by non-EGFR secondary mutations, suggesting the potential of IGFBP2 as a biomarker for gefitinib resistance and a potential intervention target.
Collapse
Affiliation(s)
- Hengxiao Lu
- Department of Thoracic Surgery, Weifang People's Hospital, Shandong Second Medical University, Weifang, 261041, Shandong Province, China
| | - Jiangshan Ai
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong Province, China
| | - Yingying Zheng
- Health Management Center, Weifang People's Hospital, Shandong Second Medical University, Weifang, 261041, Shandong Province, China
| | - Wolong Zhou
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Liming Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong Province, China
| | - Jiebo Zhu
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Heng Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan Province, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan Province, China.
| | - Shaoqiang Wang
- Department of Thoracic Surgery, Weifang People's Hospital, Shandong Second Medical University, Weifang, 261041, Shandong Province, China.
- Department of Scientific Research Management, Weifang People's Hospital, Shandong Second Medical University, Weifang, 261041, Shandong Province, China.
| |
Collapse
|
2
|
Nolin SJ, Taylor RL, Edens FW, Siegel PB, Ashwell CM. Combining supervised machine learning with statistics reveals differential gene expression patterns related to energy metabolism in the jejuna of chickens divergently selected for antibody response to sheep red blood cells. Poult Sci 2023; 102:102751. [PMID: 37244088 DOI: 10.1016/j.psj.2023.102751] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/29/2023] Open
Abstract
Since the 1970s, 2 lines of White Leghorn chickens, HAS and LAS, have been continuously divergently selected for 5-day postinjection antibody titer to injection with sheep red blood cells (SRBC). Antibody response is a complex genetic trait and characterizing differences in gene expression could facilitate better understanding of physiological changes due to selection and antigen exposure. At 41 d of age, randomly selected HAS and LAS chickens, which had been coraised from hatch, were either injected with SRBC (HASI and LASI) or kept as the noninjected cohort (HASN and LASN). Five days later, all were euthanized, and samples collected from the jejunum for RNA isolation and sequencing. Resulting gene expression data were analyzed combining traditional statistics with machine learning to obtain signature gene lists for functional analysis. Differences in ATP production and cellular processes were observed in the jejunum between lines and following SRBC injection. HASN vs. LASN exhibited upregulation of ATP production, immune cell motility, and inflammation. LASI exhibits upregulation of ATP production and protein synthesis vs. LASN, reflective of what was observed in HASN vs. LASN. In contrast, no corresponding upregulation of ATP production was observed in HASI vs. HASN, and most other cellular processes appear inhibited. Without exposure to SRBC, gene expression in the jejunum indicates HAS generates more ATP than LAS, suggesting HAS maintains a "primed" system; and gene expression of HASI vs. HASN further suggests this basal ATP production is sufficient for robust antibody responses. Conversely, LASI vs. LASN jejunal gene expression implies a physiological need for increased ATP production with only minimal correlating antibody production. The results of this experiment provide insight into energetic resource needs and allocations in the jejunum in response to genetic selection and antigen exposure in HAS and LAS which may help explain phenotypic differences observed in antibody response.
Collapse
Affiliation(s)
- Shelly J Nolin
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA.
| | - Robert L Taylor
- Davis College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown West, VA 26506-6108, USA
| | - Frank W Edens
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Paul B Siegel
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Christopher M Ashwell
- Davis College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown West, VA 26506-6108, USA
| |
Collapse
|
3
|
Catulin reporter marks a heterogeneous population of invasive breast cancer cells with some demonstrating plasticity and participating in vascular mimicry. Sci Rep 2022; 12:12673. [PMID: 35879327 PMCID: PMC9314412 DOI: 10.1038/s41598-022-16802-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women worldwide. The activation of partial or more complete epithelial–mesenchymal transition in cancer cells enhances acquisition of invasive behaviors and expands their generation of cancer stem cells. Increased by EMT plasticity of tumor cells could promote vascular mimicry, a newly defined pattern of tumor microvascularization by which aggressive tumor cells can form vessel-like structures themselves. VM is strongly associated with a poor prognosis, but biological features of tumor cells that form VM remains unknown. Here we show that catulin is expressed in human BC samples and its expression correlates with the tumor progression. Ablation of catulin in hBC cell lines decreases their invasive potential in the 3D assays. Using a novel catulin promoter based reporter we tracked and characterized the small population of invasive BC cells in xenograft model. RNAseq analysis revealed enrichment in genes important for cellular movement, invasion and interestingly for tumor-vasculature interactions. Analysis of tumors unveiled that catulin reporter marks not only invasive cancer cells but also rare population of plastic, MCAM positive cancer cells that participate in vascular mimicry. Ablation of catulin in the xenograft model revealed deregulation of genes involved in cellular movement, and adhesive properties with striking decrease in CD44 which may impact stemness potential, and plasticity of breast cancer cells. These findings show directly that some plastic tumor cells can change the fate into endothelial-like, expressing MCAM and emphasize the importance of catulin in this process and breast cancer progression.
Collapse
|
4
|
Xu T, Ma XL, Wei Y, Cao LY, Gao Y, Liu J, Zhang L. Integrin-linked kinase affects the sensitivity of esophageal squamous cell carcinoma cells to chemotherapy with cisplatin via the Wnt/beta-catenin signaling pathway. Bioengineered 2022; 13:12532-12547. [PMID: 35587162 PMCID: PMC9275978 DOI: 10.1080/21655979.2022.2076497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Recent studies have shown that the expression of integrin-linked kinase (ILK) was related to the occurrence, development, and malignant progression of esophageal squamous cell carcinoma (ESCC). However, research on the relationship between ILK and the chemosensitivity of ESCC has to date not been reported. The present study found that ILK was highly expressed in ESCC cell lines, and the overexpression of ILK in ESCC cells reduced the incidence of cell apoptosis and alleviated the cytotoxicity on cells induced by cisplatin (CDDP). Inversely, ILK knockdown increased CDDP-induced apoptosis and had an inhibitive effect on the malignant phenotype of ESCC, including cell proliferation, invasion, and migration. In addition, ILK knockdown in ESCC cells inhibited the expression of beta (β)-catenin and activated the wingless/integrated (Wnt) signaling pathway. Furthermore, cellular MYC (c-MYC) and Cylin D1 were the target genes of the Wnt signaling pathway. Rescue experiments showed that the overexpression of β-catenin reversed a tumor’s inhibition and apoptosis abilities induced by ILK knockdown. In conclusion, ILK potentially reduced the CDDP sensitivity of ESCC cells by influencing the activity of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ting Xu
- Department of Internal Medicine 1, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xiao-Li Ma
- Department of Internal Medicine 4, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yu Wei
- Department of Internal Medicine 4, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Lei-Yu Cao
- Department of Internal Medicine 1, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yan Gao
- Department of Internal Medicine 4, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Juan Liu
- Department of Internal Medicine 1, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Li Zhang
- Department of Internal Medicine 1, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
5
|
Karpińska K, Gielata M, Gwiazdowska A, Boryń Ł, Kobielak A. Catulin Based Reporter System to Track and Characterize the Population of Invasive Cancer Cells in the Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2021; 23:ijms23010140. [PMID: 35008571 PMCID: PMC8745103 DOI: 10.3390/ijms23010140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an aggressive tumor with a poor prognosis due to late diagnosis and loco-regional metastasis. Partial or more complete epithelial-mesenchymal transition (EMT) plays a role in tumor progression; however, it remains a challenge to observe the EMT in vivo, due to its transient nature. Here, we developed a novel catulin promoter-based reporter system that allows us to isolate and characterize in vivo a small fraction of invasive cancer cells. The analyses of tumors revealed that Catulin-green fluorescent protein (GFP)-positive cells were enriched in clusters of cells at the tumor invasion front. A functional genomic study unveiled genes involved in cellular movement and invasion providing a molecular profile of HNSCC invasive cells. This profile overlapped partially with the expression of signature genes related to the partial EMT available from the single cell analysis of human HNSCC specimens, highlighting the relevance of our data to the clinical disease progression state. Interestingly, we also observed upregulations of genes involved in axonal guidance-L1 cell adhesion molecule (L1CAM), neuropilin-1, semaphorins, and ephrins, indicating potential interactions of cancer cells and neuronal components of the stroma. Taken together, our data indicated that the catulin reporter system marked a population of invasive HNSCC cells with a molecular profile associated with cancer invasion.
Collapse
Affiliation(s)
- Kamila Karpińska
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland; (K.K.); (M.G.); (A.G.)
| | - Mateusz Gielata
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland; (K.K.); (M.G.); (A.G.)
| | - Aleksandra Gwiazdowska
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland; (K.K.); (M.G.); (A.G.)
| | - Łukasz Boryń
- Laboratory of Stem Cells, Tissue Development and Regeneration, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland;
| | - Agnieszka Kobielak
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland; (K.K.); (M.G.); (A.G.)
- Correspondence: ; Tel.: +48-22-55-43-735
| |
Collapse
|
6
|
Integrin-Linked Kinase (ILK) Regulates Urinary Stem Cells Differentiation into Smooth Muscle via NF- κB Signal Pathway. Stem Cells Int 2021; 2021:6633111. [PMID: 33854551 PMCID: PMC8019365 DOI: 10.1155/2021/6633111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/28/2021] [Accepted: 03/09/2021] [Indexed: 11/17/2022] Open
Abstract
Objectives Urinary stem cells (USCs) have the capacity for unlimited growth and are promising tools for the investigations of cell differentiation and urinary regeneration. However, the limited life span significantly restricts their usefulness. This study is aimed at exploring the effect of integrin-linked kinase (ILK) on the smooth muscle cells (SMCs) differentiation of the dog USCs and investigating its molecular mechanism. Methods An immortalized USCs cell line with the molecular markers and biological functions was prepared. After successfully inducing the differentiation of USCs into SMCs, the expression level of the unique key factor and its mechanisms in this process was determined through real-time polymerase chain reaction, Western blot, or Immunofluorescence staining. Results We found that high cell density promoted USCs differentiation SMCs, and ILK was necessary for USCs differentiation into SMCs. Knocking down ILK decreased the expression of SMCs specific-marker, while using a selective ILK agonist increased the expression of SMCs specific-marker. Furthermore, ILK regulated SMCs differentiation in part through the activation of NF-κB pathway in USCs. A NF-κB activity assay showed overexpression of ILK could significantly upregulate NF-κB p50 expression, and NF-κB p50 acts as downstream signal molecular of ILK. Conclusion High cell density induces the differentiation of USCs into SMCs, and ILK is a key regulator of myogenesis. Furthermore, NF-κB signaling pathway might play a crucial role in this process.
Collapse
|
7
|
Nikou S, Arbi M, Dimitrakopoulos FID, Sirinian C, Chadla P, Pappa I, Ntaliarda G, Stathopoulos GT, Papadaki H, Zolota V, Lygerou Z, Kalofonos HP, Bravou V. Integrin-linked kinase (ILK) regulates KRAS, IPP complex and Ras suppressor-1 (RSU1) promoting lung adenocarcinoma progression and poor survival. J Mol Histol 2020; 51:385-400. [PMID: 32592097 DOI: 10.1007/s10735-020-09888-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022]
Abstract
Integrin-linked kinase (ILK) forms a heterotrimeric protein complex with PINCH and PARVIN (IPP) in Focal Adhesions (FAs) that acts as a signaling platform between the cell and its microenvironment regulating important cancer-related functions. We aimed to elucidate the role of ILK in lung adenocarcinoma (LUADC) focusing on a possible link with KRAS oncogene. We used immunohistochemistry on human tissue samples and KRAS-driven LUADC in mice, analysis of large scale publicly available RNA sequencing data, ILK overexpression and pharmacological inhibition as well as knockdown of KRAS in lung cancer cells. ILK, PINCH1 and PARVB (IPP) proteins are overexpressed in human LUADC and KRAS-driven LUADC in mice representing poor prognostic indicators. Genes implicated in ILK signaling are significantly enriched in KRAS-driven LUADC. Silencing of KRAS, as well as, overexpression and pharmacological inhibition of ILK in lung cancer cells provide evidence of a two-way association between ILK and KRAS. Upregulation of PINCH, PARVB and Ras suppressor-1 (RSU1) expression was demonstrated in ILK overexpressing lung cancer cells in addition to a significant positive correlation between these factors in tissue samples, while KRAS silencing downregulates IPP and RSU1. Pharmacological inhibition of ILK in KRAS mutant lung cancer cells suppresses cell growth, migration, EMT and increases sensitivity to platinum-based chemotherapy. ILK promotes an aggressive lung cancer phenotype with prognostic and therapeutic value through functions that involve KRAS, IPP complex and RSU1, rendering ILK a promising biomarker and therapeutic target in lung adenocarcinoma.
Collapse
Affiliation(s)
- Sofia Nikou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26500, Patras, Greece
| | - Marina Arbi
- Department of General Biology, Medical School, University of Patras, 26504, Patras, Greece
| | | | - Chaido Sirinian
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, 26504, Rio, Greece
| | - Panagiota Chadla
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26500, Patras, Greece
| | - Ioanna Pappa
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26500, Patras, Greece
| | - Giannoula Ntaliarda
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, 2504, Rio, Achaia, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, 2504, Rio, Achaia, Greece.,Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Bavaria, Germany
| | - Helen Papadaki
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26500, Patras, Greece
| | - Vasiliki Zolota
- Department of Pathology, University Hospital of Patras, 26504, Patras, Greece
| | - Zoi Lygerou
- Department of General Biology, Medical School, University of Patras, 26504, Patras, Greece
| | - Haralabos P Kalofonos
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, 26504, Rio, Greece.,Division of Oncology, Department of Internal Medicine, University Hospital of Patras, 26504, Rio, Greece
| | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26500, Patras, Greece.
| |
Collapse
|
8
|
Wang Y, Jiang Q, Cai H, Xu Z, Wu W, Gu B, Li L, Cai W. Genetic variants in RET, ARHGEF3 and CTNNAL1, and relevant interaction networks, contribute to the risk of Hirschsprung disease. Aging (Albany NY) 2020; 12:4379-4393. [PMID: 32139661 PMCID: PMC7093166 DOI: 10.18632/aging.102891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/25/2020] [Indexed: 12/18/2022]
Abstract
Hirschsprung disease (HSCR), the most common enteric neuropathy, stands as a model for complex genetic disorders. It has recently been demonstrated that both ARHGEF3 and CTNNAL1 map to the RET-dependent HSCR susceptibility loci. We therefore sought to explore whether genetic variants within RET, ARHGEF3 and CTNNAL1, and their genetic interaction networks are associated with HSCR. Taking advantage of a strategy that combined the MassArray system and gene-gene interaction analysis with case-control study, we interrogated 38 polymorphisms within RET, ARHGEF3 and CTNNAL1 in 1015 subjects (502 HSCR cases and 513 controls) of Han Chinese origin. There were statistically significant associations between 20 genetic variants in these three genes and HSCR. Haplotype analysis also revealed some significant global P values, i.e. RET_ rs2435357-rs752978-rs74400468-rs2435353-rs2075913-rs17028-rs2435355 (P = 3.79×10-58). Using the MDR and GeneMANIA platforms, we found strong genetic interactions among RET, ARHGEF3, and CTNNAL1 and our previously studied GAL, GAP43, NRSN1, PTCH1, GABRG2 and RELN genes. These results offer the first indication that genetic markers of RET, ARHGEF3 and CTNNAL1 and relevant genetic interaction networks confer the altered risk to HSCR in the Han Chinese population.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Qian Jiang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Hao Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Ze Xu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Wenjie Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Beilin Gu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Long Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
9
|
Ning Z, Zhu X, Jiang Y, Gao A, Zou S, Gu C, He C, Chen Y, Ding WQ, Zhou J. Integrin-Linked Kinase Is Involved In the Proliferation and Invasion of Esophageal Squamous Cell Carcinoma. J Cancer 2020; 11:324-333. [PMID: 31897228 PMCID: PMC6930430 DOI: 10.7150/jca.33737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/18/2019] [Indexed: 11/09/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is an aggressive type of cancer with high mortality rate in China, largely due to its high invasive and metastatic potential. The purposes of this study are to investigate the potential molecular mechanisms behind the aggressive nature of ESCC and search for new prognostic biomarkers. By employing the quantitative proteomic based strategy, we compared the proteomic profile between three ESCC samples and paired adjacent tissues. After bioinformatics analysis, four candidate proteins were validated in thirteen paired patient samples. Further validation of the key candidate, integrin-linked kinase (ILK), was carried out in one hundred patient samples. The specific inhibitor compound 22 (cpd22) was used to assess the influence of ILK to ESCC cell motility and invasiveness by applying wound-healing and transwell assay. Western blot analysis was performed to elucidate the signaling pathways involved in ILK-mediated ESCC invasion. Total 236 proteins were identified by proteomic analysis. Bioinformatics analysis suggested a key role of the collagen/integrin/ILK signaling pathway during ESCC progression. Further validation indicated that ILK is overexpressed in ESCC tissues and is correlated with poor patient prognosis. Inhibition of ILK kinase activity suppresses proliferation and blocks invasion and migration of ESCC cells. Signaling pathway analysis revealed that ILK regulates AKT phosphorylation on Ser473 but not GSK-3β on Ser9 to promote proliferation and motility of ESCC cells. In conclusion, our results indicated that ILK may play a crucial role in ESCC invasion and metastasis and may serve as a prognostic biomarker and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Zhonghua Ning
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, P.R. China
| | - Xiaozhong Zhu
- Department of Thoracic Surgery, the Affiliated Hospital of the Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Youqin Jiang
- Department of Radiation Oncology, The Third People's Hospital of Yancheng, Yancheng, Jiangsu, P.R. China
| | - Aidi Gao
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, P.R. China
| | - Shitao Zou
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, P.R. China
| | - Chao Gu
- Department of Gastrointestinal surgery, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, P.R. China
| | - Chao He
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, P.R. China
| | - Yihong Chen
- Department of Radio-Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Jundong Zhou
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
10
|
Lian X, Xiang D, Peng C, Chen J, Liao M, Sun G, Zhang Z. DDX49 is a novel biomarker and therapeutic target for lung cancer metastases. J Cell Mol Med 2019; 24:1141-1145. [PMID: 31749282 PMCID: PMC6933356 DOI: 10.1111/jcmm.14734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/05/2019] [Accepted: 09/20/2019] [Indexed: 11/28/2022] Open
Abstract
The identification of lymph node metastases is important for the diagnosis, treatment and prognosis of patients with lung cancer. We found DDX49 was associated with the lymph node metastases in lung cancer by the Akt/β-catenin pathway. Transcriptome sequencing, bioinformatics analysis, quantitative RT-PCR, cell transfection and the Cancer Genome Atlas (TCGA) data set were used to identify DDX49 responsible for lymph node metastases. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was used to explore the possible molecular mechanism in experimental cell. The DDX49 gene was correlated significantly with lymph node metastases of lung cancer. The knockdown of DDX49 inhibited the cell proliferation and migration in PC-9 and H460 cells. The mechanism research found downexpression of DDX49 decreased the Akt/β-catenin pathway in lung cancer cell. In vivo experiments showed that DDX49 promoted the proliferation and metastases of lung cancer cells by increasing the Akt/β-catenin pathway. These findings suggested that DDX49 may be useful as a novel biomarker of lymph node metastases and therapeutic target for lung cancer metastasis.
Collapse
Affiliation(s)
- Xiaojuan Lian
- Oncology, Jiangjin District Central Hospital, Chongqing, China
| | - Debing Xiang
- Oncology, Jiangjin District Central Hospital, Chongqing, China
| | - Chunfang Peng
- Oncology, Jiangjin District Central Hospital, Chongqing, China
| | - Jiangyan Chen
- Oncology, Jiangjin District Central Hospital, Chongqing, China
| | - Maojun Liao
- Cancer Center, Daping Hospital, Amry Medical University, Chongqing, China
| | - Guiyin Sun
- Oncology, Jiangjin District Central Hospital, Chongqing, China
| | - Zhimin Zhang
- Cancer Center, Daping Hospital, Amry Medical University, Chongqing, China
| |
Collapse
|
11
|
Shi K, Wang SL, Shen B, Yu FQ, Weng DF, Lin JH. Clinicopathological and prognostic values of fibronectin and integrin αvβ3 expression in primary osteosarcoma. World J Surg Oncol 2019; 17:23. [PMID: 30691475 PMCID: PMC6350278 DOI: 10.1186/s12957-019-1566-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/15/2019] [Indexed: 02/08/2023] Open
Abstract
Background Osteosarcoma is a malignant bone tumor with a high potential for lung metastasis, and the prognosis for patients with metastatic disease is very poor. The interaction between fibronectin (FN) and integrin αvβ3 in soft-tissue sarcoma promotes cell migration, invasion, and lung metastasis. This study aimed to investigate the prognostic significance of FN and αvβ3 in osteosarcoma. Methods Immunohistochemistry and western blotting were used to detect the expression of FN and αvβ3 in 60 osteosarcoma specimens and in 30 osteochondroma specimens. Furthermore, correlations of FN and αvβ3 with the clinicopathological features of osteosarcoma patients were analyzed using the χ2 test and Fisher’s exact test. Disease-free survival and overall survival of osteosarcoma patients were assessed using the Kaplan-Meier method and Cox proportional hazards model. The predictive accuracy of the model was determined by the Harrell concordance index. Results FN (P < 0.05) and αvβ3 (P < 0.05) were overexpressed in osteosarcoma specimens compared with osteochondroma specimens. High FN expression was associated with a poor response to chemotherapy (P = 0.001) and poor disease-free (P < 0.001) and overall (P < 0.001) survival. High expression of αvβ3 was linked to an advanced surgical stage (P = 0.028), a poor response to chemotherapy (P = 0.002), and both poor disease-free survival (P < 0.001) and overall survival (P < 0.001). FN and αvβ3 co-expression were associated with sex (P = 0.011), an advanced surgical stage (P = 0.013), and a poor response to chemotherapy (P = 0.002). Moreover, high expression of both proteins can serve as an independent prognostic value for reduced survival time in osteosarcoma patients. Conclusions The results of this study suggest that FN and αvβ3 expression is associated with an unfavorable clinical outcome of osteosarcoma, and these molecules may constitute attractive therapeutic targets for osteosarcoma treatment. To improve the survival of osteosarcoma patients, further investigations are required to clarify their prognostic values in a larger population. Electronic supplementary material The online version of this article (10.1186/s12957-019-1566-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kai Shi
- Department of Orthopaedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, People's Republic of China
| | - Sheng-Lin Wang
- Department of Orthopaedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, People's Republic of China
| | - Bin Shen
- Faculty of Education, the Chinese University of Hong Kong, Shatin, N.T., 999077, Hong Kong, People's Republic of China
| | - Feng-Qiang Yu
- Department of Orthopaedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, People's Republic of China
| | - Dan-Feng Weng
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, People's Republic of China
| | - Jian-Hua Lin
- Department of Orthopaedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, People's Republic of China. .,Department of Central Laboratory, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, People's Republic of China.
| |
Collapse
|
12
|
Chen X, Wen Q, Stucky A, Zeng Y, Gao S, Loudon WG, Ho HW, Kabeer MH, Li SC, Zhang X, Zhong JF. Relapse pathway of glioblastoma revealed by single-cell molecular analysis. Carcinogenesis 2018; 39:931-936. [PMID: 29718126 PMCID: PMC6248540 DOI: 10.1093/carcin/bgy052] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/22/2018] [Accepted: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) remains an incurable brain tumor. The highly malignant behavior of GBM may, in part, be attributed to its intraclonal genetic and phenotypic diversity (subclonal evolution). Identifying the molecular pathways driving GBM relapse may provide novel, actionable targets for personalized diagnosis, characterization of prognosis and improvement of precision therapy. We screened single-cell transcriptomes, namely RNA-seq data of primary and relapsed GBM tumors from a patient, to define the molecular profile of relapse. Characterization of hundreds of individual tumor cells identified three mutated genes within single cells, involved in the RAS/GEF GTP-dependent signaling pathway. The identified molecular pathway was further verified by meta-analysis of RNA-seq data from more than 3000 patients. This study showed that single-cell molecular analysis overcomes the inherent heterogeneity of bulk tumors with respect to defining tumor subclonal evolution relevant to GBM relapse.
Collapse
Affiliation(s)
- Xuelian Chen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and
Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern
California, Los Angeles, CA, USA
| | - Qin Wen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and
Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern
California, Los Angeles, CA, USA
- Department of Hematology, Xinqiao Hospital, Army Medical University,
Chongqing, P.R. China
| | - Andres Stucky
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and
Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern
California, Los Angeles, CA, USA
| | - Yunjing Zeng
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and
Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern
California, Los Angeles, CA, USA
- Department of Hematology, Xinqiao Hospital, Army Medical University,
Chongqing, P.R. China
| | - Shengjia Gao
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and
Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern
California, Los Angeles, CA, USA
| | - William G Loudon
- Department of Neurosurgery, CHOC Children’s Hospital, Neuroscience Institute,
Gamma Knife Center of Southern California, University of California – Irvine School of
Medicine, Orange, CA, USA
| | - Hector W Ho
- Division of Neurological Surgery, Saint Jude Heritage Medical Group, Saint
Joseph Hospital, Orange, CA, USA
| | - Mustafa H Kabeer
- Department of Surgery, CHOC Children’s Hospital, University of California –
Irvine School of Medicine, Orange, CA, USA
| | - Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory, CHOC Children’s Research
Institute, Children’s Hospital of Orange County, Department of Neurology, University of
California – Irvine School of Medicine, Orange, CA, USA
| | - Xi Zhang
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and
Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern
California, Los Angeles, CA, USA
- Department of Hematology, Xinqiao Hospital, Army Medical University,
Chongqing, P.R. China
| | - Jiang F Zhong
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and
Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern
California, Los Angeles, CA, USA
| |
Collapse
|
13
|
Integrin-linked kinase: A new actor in the ageing process? Exp Gerontol 2017; 100:87-90. [PMID: 29101014 DOI: 10.1016/j.exger.2017.10.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 02/05/2023]
Abstract
Integrin-linked kinase (ILK) is a protein located in focal adhesion complexes that is linked to the cytoplasmic domain of integrin receptors. Together with PINCH and parvin, ILK forms the IPP complex, which is associated with conserved intracellular signalling pathways and integrin regulation of the actin cytoskeleton. ILK plays an essential role in a wide variety of cellular functions, including cell migration, differentiation, survival, and division. The present review summarizes recent evidence, suggesting a new role for ILK in organismal ageing and cellular senescence, indicating that ILK is a key regulator of longevity and premature cellular senescence induced by extracellular stressors.
Collapse
|
14
|
Huang JY, Yu PH, Li YC, Kuo PL. NLRP7 contributes to in vitro decidualization of endometrial stromal cells. Reprod Biol Endocrinol 2017; 15:66. [PMID: 28810880 PMCID: PMC5558772 DOI: 10.1186/s12958-017-0286-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/09/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Nucleotide-binding oligomerization domain (NACHT), leucine rich repeat (LRR) and pyrin domain (PYD) 7 containing protein, NLRP7, is a member of the NLR family which serves as innate immune sensors. Mutations and genetic variants of NLRP7 have been found in women with infertility associated conditions, such as recurrent hydatidiform mole, recurrent miscarriage, and preeclampsia. Decidualization of endometrial stromal cells is a hallmark of tissue remodeling to support embryo implantation and proper placental development. Given defective decidualization has been implicated in miscarriage as well as preeclampsia, we aimed to explore the link between the NLRP7 gene and decidualization. METHODS Endometrial samples obtained from pregnant women in the first trimester and non-pregnant women were used to study NLRP7 expression pattern. The human telomerase reverse transcriptase (hTERT)-immortalized human endometrial stromal cells (T-HESCs) were used to study the effect of NLRP7 on decidualization. Decidualization of T-HESCs was induced with 1 μM medroxyprogesterone acetate (MPA) and 0.5 mM 8-bromoadenosine 3':5'-cyclic monophosphate (8-Br-cAMP). siRNA was used to knock down NLRP7 while lentiviral vectors were used to overexpress NLRP7 in cells. NLRP7 expression was detected by immunofluorescence, qRT-PCR, and Western blotting. Decidualization markers, Insulin-like growth factor-binding protein 1 (IGFBP-1) and prolactin (PRL), were detected by qRT-PCR and ELISA. Nuclear translocation of NLRP7 was detected by the subcellular fractionation and confocal microscopy. The effect of NLRP7 on progesterone receptor (PR) activity was evaluated by a reporter system. RESULTS NLRP7 was up-regulated in the decidual stromal cells of human first-trimester endometrium. After in vitro decidualization, T-HESCs presented with the swollen phenotype and increased expressions of IGFBP-1 and PRL. Knockdown or over-expression of NLRP7 reduced or enhanced the decidualization, respectively, according to the expression level of IGFBP-1. NLRP7 was found to translocate in the nucleus of decidualized T-HESCs and able to promote PR activity. CONCLUSIONS NLRP7 was upregulated and translocated to the nucleus of the endometrial stromal cells in an in vitro decidualization model. Overexpressed NLRP7 promoted the IGFBP-1 expression and PR reporter activation. IGFBP-1 expression decreased with the knockdown of NLRP7. Therefore, we suggest that NLRP7 contributes to in vitro decidualization of endometrial stromal cells.
Collapse
Affiliation(s)
- Jyun-Yuan Huang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, 138 Sheng-Li Road, Tainan, 704, Taiwan
| | - Pei-Hsiu Yu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, 138 Sheng-Li Road, Tainan, 704, Taiwan
| | - Yueh-Chun Li
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Jianguo N. Rd., South Dist, Taichung City, 402, Taiwan.
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, 138 Sheng-Li Road, Tainan, 704, Taiwan.
| |
Collapse
|
15
|
EphA3 targeting reduces in vitro adhesion and invasion and in vivo growth and angiogenesis of multiple myeloma cells. Cell Oncol (Dordr) 2017; 40:483-496. [PMID: 28721629 DOI: 10.1007/s13402-017-0338-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2017] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Multiple myeloma (MM) is a hematologic malignancy characterized by a clonal expansion of plasma cells (PCs) in the bone marrow (BM). Since MM has so far remained incurable, further insights into its pathogenesis and the concomitant identification of new therapeutic targets are urgently needed. The tyrosine kinase receptor EphA3 is known to be involved in various cellular processes including cell viability, cell movement and cell-cell interactions. Recently, EphA3 has emerged as a potential therapeutic target in several hematologic and solid tumors. Here, we aimed to uncover the role of EphA3 in MM. METHODS EphA3 mRNA and protein expression in primary MM bone marrow plasma cells (BMPCs), in MM-derived cell lines and in healthy controls (HCs) was assessed using qRT-PCR, Western blotting and flow cytometry. The effects of siRNA-mediated EphA3 silencing and anti EphA3 antibody (EphA3mAb) treatment on MM PC trafficking and viability were evaluated using in vitro assays. The effects of EphA3mAb treatment were also assessed in two MM-derived mouse xenograft models. RESULTS We found that EphA3 was overexpressed in primary MM BMPCs and MM-derived cell lines compared to HCs. We also found that siRNA-mediated EphA3 silencing and EphA3mAb treatment significantly inhibited the ability of MM PCs to adhere to fibronectin and stromal cells and to invade in vitro, without affecting cell proliferation and viability. Gene expression profiling showed that EphA3 silencing resulted in expression modulation of several molecules that regulate adhesion, migration and invasion processes. Importantly, we found that EphA3mAb treatment significantly inhibited in vivo tumor growth and angiogenesis in two MM-derived mouse xenograft models. CONCLUSIONS Our findings suggest that EphA3 plays an important role in the pathogenesis of MM and provide support for the notion that its targeting may represent a novel therapeutic opportunity for MM.
Collapse
|
16
|
Bokhari AA, Syed V. Inhibition of Transforming Growth Factor-β (TGF-β) Signaling by Scutellaria baicalensis and Fritillaria cirrhosa Extracts in Endometrial Cancer. J Cell Biochem 2016; 116:1797-805. [PMID: 25683036 DOI: 10.1002/jcb.25138] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/10/2015] [Indexed: 12/21/2022]
Abstract
Transforming growth factor-β (TGF-β), regulates cell proliferation, angiogenesis, metastasis, and is an inducer of epithelial-mesenchymal transition (EMT). Cancer cells exhibit activated TGF-β/SMAD signaling pathway and its inhibition is an attractive strategy for cancer treatment. The Chinese Herbs Scutellaria baicalensis (SB) and Fritillaria cirrhosa (FC) have been shown to be beneficial to cancer patients, but the mechanisms by which the extracts of two herbs elicit the beneficial effects are unclear. In this study, we have used human endometrial cancer cells to assess the anticancer efficacy of SB and FC on TGF-β signaling pathway components. SB and FC treatment of cancer cells resulted in a significant decrease in expression of TGF-β isoforms, TGF-β receptors, and SMADs. Both herbs effectively inhibited basal and TGF-β1-induced cancer cell proliferation and invasion, which was accompanied with abrogation of Snail, Slug, matrix metalloproteinases (MMPs), αvβ3 integrin, focal adhesion kinase (FAK), and p-FAK expression. An inhibitor of TGF-βRI blocked TGF-β1-induced cell invasion and significantly diminished antitumor effects of SB and FC. These results suggest that SB and FC block endometrial cancer growth by downregulating TGF-β/SMAD signaling pathway.
Collapse
Affiliation(s)
- Amber A Bokhari
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Viqar Syed
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Cell and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
17
|
Huang KY, Kao SH, Wang WL, Chen CY, Hsiao TH, Salunke SB, Chen JJW, Su KY, Yang SC, Hong TM, Chen CS, Yang PC. Small Molecule T315 Promotes Casitas B-Lineage Lymphoma–Dependent Degradation of Epidermal Growth Factor Receptor via Y1045 Autophosphorylation. Am J Respir Crit Care Med 2016; 193:753-66. [DOI: 10.1164/rccm.201502-0250oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
18
|
Bear MD, Liu T, Abualkhair S, Ghamloush MA, Hill NS, Preston I, Fanburg BL, Kayyali US, Toksoz D. Alpha-Catulin Co-Localizes With Vimentin Intermediate Filaments and Functions in Pulmonary Vascular Endothelial Cell Migration via ROCK. J Cell Physiol 2015; 231:934-43. [PMID: 26377600 DOI: 10.1002/jcp.25185] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 09/03/2015] [Indexed: 01/01/2023]
Abstract
The ubiquitous α-catulin acts as a scaffold for distinct signalosomes including RhoA/ROCK; however, its function is not well understood. While α-catulin has homology to the cytoskeletal linkers α-catenin and vinculin, it appears to be functionally divergent. Here we further investigated α-catulin function in pulmonary vascular endothelial cells (VEC) on the premise that α-catulin has a unique cytoskeletal role. Examination of endogenous α-catulin intracellular localization by immunofluorescence revealed a highly organized cytosolic filamentous network suggestive of a cytoskeletal system in a variety of cultured VEC. Double-immunofluorescence analyses of VEC showed endogenous α-catulin co-localization with vimentin intermediate filaments. Similar to vimentin, α-catulin was found to distribute into detergent-soluble and -insoluble fractions. Treatment of VEC with withaferinA, an agent that targets vimentin filaments, disrupted the α-catulin network distribution and altered α-catulin solubility. Vimentin participates in cell migration, and withaferinA was found to inhibit VEC migration in vitro; similarly, α-catulin knock-down reduced VEC migration. Based on previous reports showing that ROCK modulates vimentin, we found that ROCK depletion attenuated VEC migration; furthermore, α-catulin depletion was shown to reduce ROCK-induced signaling. These findings indicate that α-catulin has a unique function in co-localization with vimentin filaments that contributes to VEC migration via a pathway that may involve ROCK signaling. J. Cell. Physiol. 231: 934-943, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael D Bear
- Division of Pulmonary, Critical Care and Sleep, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Tiegang Liu
- Division of Pulmonary, Critical Care and Sleep, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Shereen Abualkhair
- Division of Pulmonary, Critical Care and Sleep, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | | | - Nicholas S Hill
- Division of Pulmonary, Critical Care and Sleep, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Ioana Preston
- Division of Pulmonary, Critical Care and Sleep, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Barry L Fanburg
- Division of Pulmonary, Critical Care and Sleep, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Usamah S Kayyali
- Division of Pulmonary, Critical Care and Sleep, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Deniz Toksoz
- Division of Pulmonary, Critical Care and Sleep, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
19
|
The upregulated α-catulin expression was involved in head-neck squamous cell carcinogenesis by promoting proliferation, migration, invasion, and epithelial to mesenchymal transition. Tumour Biol 2015; 37:1671-81. [DOI: 10.1007/s13277-015-3901-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022] Open
|
20
|
Kreiseder B, Holper-Schichl YM, Muellauer B, Jacobi N, Pretsch A, Schmid JA, de Martin R, Hundsberger H, Eger A, Wiesner C. Alpha-catulin contributes to drug-resistance of melanoma by activating NF-κB and AP-1. PLoS One 2015; 10:e0119402. [PMID: 25793618 PMCID: PMC4368766 DOI: 10.1371/journal.pone.0119402] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/12/2015] [Indexed: 11/19/2022] Open
Abstract
Melanoma is the most dangerous type of skin cancer accounting for 48,000 deaths worldwide each year and an average survival rate of about 6-10 months with conventional treatment. Tumor metastasis and chemoresistance of melanoma cells are reported as the main reasons for the insufficiency of currently available treatments for late stage melanoma. The cytoskeletal linker protein α-catulin (CTNNAL1) has been shown to be important in inflammation, apoptosis and cytoskeletal reorganization. Recently, we found an elevated expression of α-catulin in melanoma cells. Ectopic expression of α-catulin promoted melanoma progression and occurred concomitantly with the downregulation of E-cadherin and the upregulation of mesenchymal genes such as N-cadherin, Snail/Slug and the matrix metalloproteinases 2 and 9. In the current study we showed that α-catulin knockdown reduced NF-κB and AP-1 activity in malignant melanoma cells. Further, downregulation of α-catulin diminished ERK phosphorylation in malignant melanoma cells and sensitized them to treatment with chemotherapeutic drugs. In particular, cisplatin treatment led to decreased ERK-, JNK- and c-Jun phosphorylation in α-catulin knockdown melanoma cells, which was accompanied by enhanced apoptosis compared to control cells. Altogether, these results suggest that targeted inhibition of α-catulin may be used as a viable therapeutic strategy to chemosensitize melanoma cells to cisplatin by down-regulation of NF-κB and MAPK pathways.
Collapse
Affiliation(s)
| | - Yvonne M Holper-Schichl
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Nico Jacobi
- Medical and Pharmaceutical Biotechnology, University of Applied Sciences, Krems, Austria
| | | | - Johannes A. Schmid
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Rainer de Martin
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Harald Hundsberger
- Medical and Pharmaceutical Biotechnology, University of Applied Sciences, Krems, Austria
| | - Andreas Eger
- Medical and Pharmaceutical Biotechnology, University of Applied Sciences, Krems, Austria
| | - Christoph Wiesner
- SeaLife Pharma GmbH, Tulln, Austria
- Medical and Pharmaceutical Biotechnology, University of Applied Sciences, Krems, Austria
- * E-mail:
| |
Collapse
|
21
|
PARVA promotes metastasis by modulating ILK signalling pathway in lung adenocarcinoma. PLoS One 2015; 10:e0118530. [PMID: 25738875 PMCID: PMC4349696 DOI: 10.1371/journal.pone.0118530] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 01/20/2015] [Indexed: 12/21/2022] Open
Abstract
α-parvin (PARVA) is known to be involved in the linkage of integrins, regulation of actin cytoskeleton dynamics and cell survival. However, the role that PARVA plays in cancer progression remains unclear. Here, using a lung cancer invasion cell line model and expression microarrays, we identify PARVA as a potential oncogene. The overexpression of PARVA increased cell invasion, colony-forming ability and endothelial cell tube formation. By contrast, knockdown of PARVA inhibited invasion and tube formation in vitro. Overexpression of PARVA also promoted tumorigenicity, angiogenesis and metastasis in in vivo mouse models. To explore the underlying mechanism, we compared the expression microarray profiles of PARVA-overexpressing cells with those of control cells to identify the PARVA-regulated signalling pathways. Pathway analysis showed that eight of the top 10 pathways are involved in invasion, angiogenesis and cell death. Next, to identify the direct downstream signalling pathway of PARVA, 371 significantly PARVA-altered genes were analysed further using a transcription factor target model. Seven of the top 10 PARVA-altered transcription factors shared a common upstream mediator, ILK. Lastly, we found that PARVA forms a complex with SGK1 and ILK to enhance the phosphorylation of ILK, which led to the phosphorylation of Akt and GSK3β. Notably, the inactivation of ILK reversed PARVA-induced invasion. Taken together, our findings imply that PARVA acts as an oncogene by activating ILK, and that this activation is followed by the activation of Akt and inhibition of GSK3β. To our knowledge, this is the first study to characterize the role of PARVA in lung cancer progression.
Collapse
|
22
|
Tseng PC, Chen CL, Shan YS, Chang WT, Liu HS, Hong TM, Hsieh CY, Lin SH, Lin CF. An increase in integrin-linked kinase non-canonically confers NF-κB-mediated growth advantages to gastric cancer cells by activating ERK1/2. Cell Commun Signal 2014; 12:69. [PMID: 25398317 PMCID: PMC4255431 DOI: 10.1186/s12964-014-0069-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/19/2014] [Indexed: 12/31/2022] Open
Abstract
Background Increased activity or expression of integrin-linked kinase (ILK), which regulates cell adhesion, migration, and proliferation, leads to oncogenesis. We identified the molecular basis for the regulation of ILK and its alternative role in conferring ERK1/2/NF-κB-mediated growth advantages to gastric cancer cells. Results Inhibiting ILK with short hairpin RNA or T315, a putative ILK inhibitor, abolished NF-κB-mediated the growth in the human gastric cancer cells AGS, SNU-1, MKN45, and GES-1. ILK stimulated Ras activity to activate the c-Raf/MEK1/2/ERK1/2/ribosomal S6 kinase/inhibitor of κBα/NF-κB signaling by facilitating the formation of the IQ motif-containing GTPase-activating protein 1 (IQGAP1)–Ras complex. Forced enzymatic ILK expression promoted cell growth by facilitating ERK1/2/NF-κB signaling. PI3K activation or decreased PTEN expression prolonged ERK1/2 activation by protecting ILK from proteasome-mediated degradation. C-terminus of heat shock cognate 70 interacting protein, an HSP90-associated E3 ubiquitin ligase, mediated ILK ubiquitination to control PI3K- and HSP90-regulated ILK stabilization and signaling. In addition to cell growth, the identified pathway promoted cell migration and reduced the sensitivity of gastric cancer cells to the anticancer agents 5-fluorouracil and cisplatin. Additionally, exogenous administration of EGF as well as overexpression of EGFR triggered ILK- and IQGAP1-regulated ERK1/2/NF-κB activation, cell growth, and migration. Conclusion An increase in ILK non-canonically promotes ERK1/2/NF-κB activation and leads to the growth of gastric cancer cells. Electronic supplementary material The online version of this article (doi:10.1186/s12964-014-0069-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Po-Chun Tseng
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Chia-Ling Chen
- Center for Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan. .,Department of Surgery, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Wen-Teng Chang
- Department of Biological Science and Technology, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan.
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Tse-Ming Hong
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Chia-Yuan Hsieh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Sheng-Hsiang Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Chiou-Feng Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan. .,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan. .,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan. .,Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
23
|
Lu J, Tang Y, Farshidpour M, Cheng Y, Zhang G, Jafarnejad SM, Yip A, Martinka M, Dong Z, Zhou J, Xu J, Li G. JWA inhibits melanoma angiogenesis by suppressing ILK signaling and is an independent prognostic biomarker for melanoma. Carcinogenesis 2013; 34:2778-88. [PMID: 24064223 DOI: 10.1093/carcin/bgt318] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Melanoma is the deadliest cutaneous malignancy because of its high incidence of metastasis. Melanoma growth and metastasis relies on sustained angiogenesis; therefore, inhibiting angiogenesis is a promising approach to treat metastatic melanoma. JWA is a novel microtubule-associated protein and our previous work revealed that JWA inhibited melanoma cell invasion and metastasis. However, the role of JWA in melanoma angiogenesis and the prognostic value are still unknown. Here, we report that JWA in melanoma cells significantly inhibited the tube formation of endothelial cells. In addition, JWA regulated integrin-linked kinase (ILK) through integrin αVβ3 and such regulation was achieved through the transcription factor Sp1. Notably, both in vitro and in vivo angiogenesis assays revealed that JWA dramatically suppressed melanoma angiogenesis by inhibiting ILK signaling. Furthermore, we examined the expression of JWA protein in a large set of melanocytic lesions (n = 505) at different stages by tissue microarray and found an inverse correlation between JWA expression and melanoma progression (P = 5 × 10(-6)). Importantly, reduced JWA expression was correlated with a poorer overall, and disease-specific 5 year survival of patients (P = 0.001 and 0.007, respectively). Multivariate Cox regression analyses indicated that JWA was an independent prognostic marker for melanoma patients. Moreover, we found a significant negative correlation between JWA and ILK in melanoma biopsies, and their concomitant expression was closely correlated with melanoma patient survival (P = 0.004), further indicating the regulation of ILK expression by JWA is critical in melanoma. Taken together, our data highlight the function of JWA in melanoma angiogenesis and reveal the clinical prognostic value of JWA.
Collapse
Affiliation(s)
- Jing Lu
- Department of Dermatology and Skin Science, Research Pavilion, Vancouver Coastal Health Research Institute, University of British Columbia, 828 West 10th Avenue, Vancouver, British Columbia, V5Z 1L8, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sundaramoorthy S, Ryu MS, Lim IK. B-cell translocation gene 2 mediates crosstalk between PI3K/Akt1 and NFκB pathways which enhances transcription of MnSOD by accelerating IκBα degradation in normal and cancer cells. Cell Commun Signal 2013; 11:69. [PMID: 24047462 PMCID: PMC3851984 DOI: 10.1186/1478-811x-11-69] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/09/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND B-cell translocation gene 2 (BTG2) belongs to antiproliferative (ARPO) gene family and the expression of BTG2, human ortholog of rat PC3 and mouse TIS21 gene, has been shown to render cancer cells more sensitive to doxorubicin treatment by upregulating MnSOD expression without regulating any other reactive oxygen species (ROS) scavenging enzymes. RESULTS In the present study, by employing exogenous and endogenous BTG2/TIS21/Pc3 expression by transfection and transduction analyses, and by knockdown of gene expression using RNA interference or using gene knockout cells, we observed that BTG2 increased the binding of activated NF-κB (p65/RelA) to the enhancer element of MnSOD gene in the 2nd intron, which was regulated by p-Akt1, and the induction of MnSOD by BTG2 was accompanied with subsequent downregulation of ROS level and cyclin B1 biosynthesis along with the increase of p21WAF1, resulting in the G2/M arrest independent of p53. CONCLUSIONS These results show for the first time that BTG2 mediates crosstalk between PI3K-Akt1 and NF-κB pathways, which regulates p53-independent induction of G2/M phase arrest both in normal and cancer cells.
Collapse
Affiliation(s)
- Santhoshkumar Sundaramoorthy
- Department of Biochemistry and Molecular Biology, BK21 Cell Transformation and Restoration, Ajou University School of Medicine, Suwon 443-721, Republic of Korea.
| | | | | |
Collapse
|
25
|
Berberine Reduces the Metastasis of Chondrosarcoma by Modulating the α v β 3 Integrin and the PKC δ , c-Src, and AP-1 Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:423164. [PMID: 24027594 PMCID: PMC3763569 DOI: 10.1155/2013/423164] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/16/2013] [Indexed: 02/06/2023]
Abstract
Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis, especially to the lungs. Patients diagnosed with chondrosarcoma have poor prognosis. Berberine, an active component of the Ranunculaceae and Papaveraceae families of plant, has been proven to induce tumor apoptosis and to prevent the metastasis of cancer cells. However, the effects of berberine in human chondrosarcoma are largely unknown. In this study, we found that berberine did not induce cell apoptosis in human primary chondrocytes and chondrosarcoma cells. However, at noncytotoxic concentrations, berberine reduced the migration and invasion of chondrosarcoma cancer cells. Integrins are the major adhesive molecules in mammalian cells and have been associated with the metastasis of cancer cells. We also found that incubation of chondrosarcoma cells with berberine reduced mRNA transcription for, and cell surface expression of, the αvβ3 integrin, with additional inhibitory effects on PKCδ, c-Src, and NF-κB activation. Thus, berberine may be a novel antimetastasis agent for the treatment of metastatic chondrosarcoma.
Collapse
|
26
|
Ahn J, Truesdell P, Meens J, Kadish C, Yang X, Boag AH, Craig AWB. Fer protein-tyrosine kinase promotes lung adenocarcinoma cell invasion and tumor metastasis. Mol Cancer Res 2013; 11:952-63. [PMID: 23699534 DOI: 10.1158/1541-7786.mcr-13-0003-t] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Epidermal growth factor receptor (EGFR) is frequently amplified or mutated in non-small cell lung cancer (NSCLC). Although Fer protein-tyrosine kinase signals downstream of EGFR, its role in NSCLC tumor progression has not been reported. Here, Fer kinase was elevated in NSCLC tumors compared to normal lung epithelium. EGFR signaling in NSCLC cells fosters rapid Fer activation and increased localization to lamellipodia. Stable silencing of Fer in H1299 lung adenocarcinoma cells (Fer KD) caused impaired EGFR-induced lamellipodia formation compared to control cells. Fer KD NSCLC cells showed reduced Vav2 tyrosine phosphorylation that was correlated with direct Fer-mediated phosphorylation of Vav2 on tyrosine-172, which was previously reported to increase the guanine nucleotide exchange factor activity of Vav2. Indeed, Fer KD cells displayed defects in Rac-GTP localization to lamellipodia, cell migration, and cell invasion in vitro. To test the role of Fer in NSCLC progression and metastasis, control and Fer KD cells were grown as subcutaneous tumors in mice. Although Fer was not required for tumor growth, Fer KD tumor-bearing mice had significantly fewer numbers of spontaneous metastases. Combined, these data demonstrate that Fer kinase is elevated in NSCLC tumors and is important for cellular invasion and metastasis. IMPLICATIONS Fer protein-tyrosine kinase is a potential therapeutic target in metastatic lung cancer. Mol Cancer Res; 11(8); 952-63. ©2013 AACR.
Collapse
Affiliation(s)
- Joseph Ahn
- Division of Cancer Biology & Genetics, Queen's University, Botterell Hall, 3rd Fl, CRI315, 18 Stuart St., Kingston, ON K7L 3N6, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
D-pinitol inhibits prostate cancer metastasis through inhibition of αVβ3 integrin by modulating FAK, c-Src and NF-κB pathways. Int J Mol Sci 2013; 14:9790-802. [PMID: 23698767 PMCID: PMC3676813 DOI: 10.3390/ijms14059790] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed malignancy in men and shows a predilection for metastasis to the bone. D-pinitol, a 3-methoxy analogue of d-chiro-inositol, was identified as an active principle in soy foods and legumes, and it has been proven to induce tumor apoptosis and metastasis of cancer cells. In this study, we investigated the anti-metastasis effects of D-pinitol in human prostate cancer cells. We found that D-pinitol reduced the migration and the invasion of prostate cancer cells (PC3 and DU145) at noncytotoxic concentrations. Integrins are the major adhesive molecules in mammalian cells and have been associated with the metastasis of cancer cells. Treatment of prostate cancer cells with D-pinitol reduced mRNA and cell surface expression of αvβ3 integrin. In addition, D-pinitol exerted its inhibitory effects by reducing focal adhesion kinase (FAK) phosphorylation, c-Src kinase activity and NF-κB activation. Thus, D-pinitol may be a novel anti-metastasis agent for the treatment of prostate cancer metastasis.
Collapse
|