1
|
Zhong Y, He JW, Huang CX, Lai HZ, Li XK, Zheng C, Fu X, You FM, Ma Q. The NcRNA/Wnt axis in lung cancer: oncogenic mechanisms, remarkable indicators and therapeutic targets. J Transl Med 2025; 23:326. [PMID: 40087753 PMCID: PMC11907837 DOI: 10.1186/s12967-025-06326-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025] Open
Abstract
Early diagnosis of lung cancer (LC) is challenging, treatment options are limited, and treatment resistance leads to poor prognosis and management in most patients. The Wnt/β-catenin signaling pathway plays a vital role in the occurrence, progression, and therapeutic response of LC. Recent studies indicate that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) function as epigenetic regulators that can promote or inhibit Wnt/β-catenin signaling by interacting with Wnt proteins, receptors, signaling transducers, and transcriptional effectors, thereby affecting LC cell proliferation, metastasis, invasion, and treatment resistance. Deepening our understanding of the regulatory network between ncRNAs and the Wnt/β-catenin signaling pathway will help overcome the limitations of current LC diagnosis and treatment methods. This article comprehensively reviews the regulatory mechanisms related to the functions of ncRNAs and the Wnt/β-catenin pathway in LC, examining their potential as diagnostic and prognostic biomarkers and therapeutic targets, aiming to offer new promising perspectives for LC diagnosis and treatment.
Collapse
Affiliation(s)
- Yang Zhong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Jia-Wei He
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Chun-Xia Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Heng-Zhou Lai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Xue-Ke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| | - Xi Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| | - Feng-Ming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| | - Qiong Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| |
Collapse
|
2
|
Lv X, Yang L, Xie Y, Momeni MR. Non-coding RNAs and exosomal non-coding RNAs in lung cancer: insights into their functions. Front Cell Dev Biol 2024; 12:1397788. [PMID: 38859962 PMCID: PMC11163066 DOI: 10.3389/fcell.2024.1397788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
Lung cancer is the second most common form of cancer worldwide Research points to the pivotal role of non-coding RNAs (ncRNAs) in controlling and managing the pathology by controlling essential pathways. ncRNAs have all been identified as being either up- or downregulated among individuals suffering from lung cancer thus hinting that they may play a role in either promoting or suppressing the spread of the disease. Several ncRNAs could be effective non-invasive biomarkers to diagnose or even serve as effective treatment options for those with lung cancer, and several molecules have emerged as potential targets of interest. Given that ncRNAs are contained in exosomes and are implicated in the development and progression of the malady. Herein, we have summarized the role of ncRNAs in lung cancer. Moreover, we highlight the role of exosomal ncRNAs in lung cancer.
Collapse
Affiliation(s)
- Xiaolong Lv
- Department of Cardiothoracic Surgery, The People’s Hospital of Changshou, Chongqing, China
| | - Lei Yang
- Department of Cardiothoracic Surgery, The People’s Hospital of Tongliang District, Chongqing, China
| | - Yunbo Xie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
3
|
Sunaga N, Kaira K, Shimizu K, Tanaka I, Miura Y, Nakazawa S, Ohtaki Y, Kawabata‐Iwakawa R, Sato M, Girard L, Minna JD, Hisada T. The oncogenic role of LGR6 overexpression induced by aberrant Wnt/β-catenin signaling in lung cancer. Thorac Cancer 2024; 15:131-141. [PMID: 38014454 PMCID: PMC10788478 DOI: 10.1111/1759-7714.15169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Molecular abnormalities in the Wnt/β-catenin pathway confer malignant phenotypes in lung cancer. Previously, we identified the association of leucine-rich repeat-containing G protein-coupled receptor 6 (LGR6) with oncogenic Wnt signaling, and its downregulation upon β-catenin knockdown in non-small cell lung cancer (NSCLC) cells carrying CTNNB1 mutations. The aim of this study was to explore the mechanisms underlying this association and the accompanying phenotypes. METHODS LGR6 expression in lung cancer cell lines and surgical specimens was analyzed using quantitative RT-PCR and immunohistochemistry. Cell growth was assessed using colony formation assay. Additionally, mRNA sequencing was performed to compare the expression profiles of cells subjected to different treatments. RESULTS LGR6 was overexpressed in small cell lung cancer (SCLC) and NSCLC cell lines, including the CTNNB1-mutated NSCLC cell lines HCC15 and A427. In both cell lines, LGR6 knockdown inhibited cell growth. LGR6 expression was upregulated in spheroids compared to adherent cultures of A427 cells, suggesting that LGR6 participates in the acquisition of cancer stem cell properties. Immunohistochemical analysis of lung cancer specimens revealed that the LGR6 protein was predominantly overexpressed in SCLCs, large cell neuroendocrine carcinomas, and lung adenocarcinomas, wherein LGR6 overexpression was associated with vascular invasion, the wild-type EGFR genotype, and an unfavorable prognosis. Integrated mRNA sequencing analysis of HCC15 and A427 cells with or without LGR6 knockdown revealed LGR6-related pathways and genes associated with cancer development and stemness properties. CONCLUSIONS Our findings highlight the oncogenic roles of LGR6 overexpression induced by aberrant Wnt/β-catenin signaling in lung cancer.
Collapse
Affiliation(s)
- Noriaki Sunaga
- Department of Respiratory MedicineGunma University Graduate School of MedicineMaebashiJapan
| | - Kyoichi Kaira
- Department of Respiratory Medicine, Comprehensive Cancer Center, International Medical CenterSaitama Medical UniversitySaitamaJapan
| | - Kimihiro Shimizu
- Division of General Thoracic Surgery, Department of SurgeryShinshu University School of MedicineNaganoJapan
| | - Ichidai Tanaka
- Department of Respiratory MedicineNagoya University Graduate School of MedicineNagoyaJapan
| | - Yosuke Miura
- Department of Respiratory MedicineGunma University Graduate School of MedicineMaebashiJapan
| | - Seshiru Nakazawa
- Division of General Thoracic Surgery, Integrative Center of General SurgeryGunma University Graduate School of MedicineMaebashiJapan
| | - Yoichi Ohtaki
- Division of General Thoracic Surgery, Integrative Center of General SurgeryGunma University Graduate School of MedicineMaebashiJapan
| | - Reika Kawabata‐Iwakawa
- Division of Integrated Oncology ResearchGunma University Initiative for Advanced Research, Gunma UniversityMaebashiJapan
| | - Mitsuo Sato
- Division of Host Defense Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Luc Girard
- Hamon Center for Therapeutic Oncology ResearchUniversity of Texas Southwestern Medical Center at DallasDallasTexasUSA
| | - John D. Minna
- Hamon Center for Therapeutic Oncology ResearchUniversity of Texas Southwestern Medical Center at DallasDallasTexasUSA
- Pharmacology, University of Texas Southwestern Medical Center at DallasDallasTexasUSA
- Internal MedicineUniversity of Texas Southwestern Medical Center at DallasDallasTexasUSA
| | - Takeshi Hisada
- Gunma University Graduate School of Health SciencesMaebashiJapan
| |
Collapse
|
4
|
High expression of LGR6 is a poor prognostic factor in esophageal carcinoma. Pathol Res Pract 2023; 242:154312. [PMID: 36701848 DOI: 10.1016/j.prp.2023.154312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND Leucine-rich repeat-containing G-protein-coupled receptor 6 (LGR6) promotes carcinogenesis and progression in some cancer types. However, there are few reports of LGR6 expression in esophageal squamous cell carcinoma (ESCC). LGR6 expression and clinicopathological features in ESCC were investigated by RNAscope, a highly sensitive RNA in situ hybridization method. METHODS Appropriate tumors were selected from 41 cases of ESCC from which tissue microarrays were generated, and LGR6 expression was identified by RNAscope. RESULTS Thirty-seven patients had LGR6 expression. High LGR6 expression was observed in 17 cases and low LGR6 expression in 24 cases. LGR6 expression was significantly higher in high histological grade ESCC than in low histological grade ESCC (P = 0.0023). ESCC patients who received neoadjuvant chemotherapy had significantly higher LGR6 expression than those without neoadjuvant chemotherapy (P = 0.0109). Furthermore, high LGR6 expression showed a poorer prognosis than low LGR6 expression (log-rank test, P = 0.0365). CONCLUSIONS LGR6 may be a prognostic factor and a potential new therapeutic target in ESCC.
Collapse
|
5
|
Ter Steege EJ, Sijnesael T, Enserink L, Klarenbeek S, Haakma WE, Bakker ERM, Derksen PWB. LGR6-dependent conditional inactivation of E-cadherin and p53 leads to invasive skin and mammary carcinomas in mice. Neoplasia 2022; 35:100844. [PMID: 36371908 PMCID: PMC9664519 DOI: 10.1016/j.neo.2022.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/21/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Tissue-specific inactivation of E-cadherin combined with tumor suppressor loss leads to invasive and metastatic cancers in mice. While epidermal E-cadherin loss in mice induces squamous cell carcinomas, inactivation of E-cadherin in the mammary gland leads to invasive lobular carcinoma. To further explore the carcinogenic consequences of cell-cell adhesion loss in these compartments, we developed a new conditional mouse model inactivating E-cadherin (Cdh1) and p53 (Trp53) simultaneously in cells expressing the leucine-rich repeat-containing G-protein coupled receptor 6 (Lgr6), a putative epithelial stem cell marker in the skin and alveolar progenitor marker in the mammary gland. Compound Lgr6-CreERT2;Cdh1F;Trp53F female mice containing either heterozygous or homozygous Cdh1F alleles were bred, and Lgr6-driven Cre expression was activated in pre-puberal mice using tamoxifen. We observed that 41% of the mice (16/39) developed mostly invasive squamous-type skin carcinomas, but also a non-lobular mammary tumor was formed. In contrast to previous K14cre or WAPcre E-cadherin and p53 compound models, no significant differences were detected in the tumor-free survival of Lgr6-CreERT2 heterozygous Cdh1F/WT;Trp53F/F versus homozygous Cdh1F/F;Trp53F/F mice (778 versus 754 days, p=0.5). One Cdh1F homozygous mouse presented with lung metastasis that originated from a non-lobular and ERα negative invasive mammary gland carcinoma with squamous metaplasia. In total, 2/8 (25%) Cdh1F heterozygous and 3/12 (25%) Cdh1F homozygous mice developed metastases to lungs, liver, lymph nodes, or the gastro-intestinal tract. In conclusion, we show that inducible and conditional Lgr6-driven inactivation of E-cadherin and p53 in mice causes squamous cell carcinomas of the skin in approximately 40% of the mice and an occasional ductal-type mammary carcinoma after long latency periods.
Collapse
Affiliation(s)
- Eline J Ter Steege
- The Department of Pathology, University Medical Center Utrecht, The Netherlands
| | - Thijmen Sijnesael
- The Department of Pathology, University Medical Center Utrecht, The Netherlands
| | - Lotte Enserink
- The Department of Pathology, University Medical Center Utrecht, The Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wisse E Haakma
- The Department of Pathology, University Medical Center Utrecht, The Netherlands
| | - Elvira R M Bakker
- The Department of Pathology, University Medical Center Utrecht, The Netherlands
| | - Patrick W B Derksen
- The Department of Pathology, University Medical Center Utrecht, The Netherlands.
| |
Collapse
|
6
|
Zhao M, Li C, Zhang J, Yin Z, Zheng Z, Wan J, Wang M. Maresin-1 and Its Receptors RORα/LGR6 as Potential Therapeutic Target for Respiratory Diseases. Pharmacol Res 2022; 182:106337. [PMID: 35781060 DOI: 10.1016/j.phrs.2022.106337] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 12/15/2022]
Abstract
Maresin-1 is one of the representative specialized pro-resolving mediators that has shown beneficial effects in inflammatory disease models. Recently, two distinct types of receptor molecules were discovered as the targets of maresin-1, further revealing the pro-resolution mechanism of maresin-1. One is retinoic acid-related orphan receptor α (RORα) and the another one is leucine-rich repeat domain-containing G protein-coupled receptor 6 (LGR6). In this review, we summarized the detailed role of maresin-1 and its two different receptors in respiratory diseases. RORα and LGR6 are potential targets for the treatment of respiratory diseases. Future basic research and clinical trials on MaR1 and its receptors should provide useful information for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Chenfei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| |
Collapse
|
7
|
Targeting protein kinases in cancer stem cells. Essays Biochem 2022; 66:399-412. [PMID: 35607921 DOI: 10.1042/ebc20220002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are subpopulations of cancer cells within the tumor bulk that have emerged as an attractive therapeutic target for cancer therapy. Accumulating evidence has shown the critical involvement of protein kinase signaling pathways in driving tumor development, cancer relapse, metastasis, and therapeutic resistance. Given that protein kinases are druggable targets for cancer therapy, tremendous efforts are being made to target CSCs with kinase inhibitors. In this review, we summarize the current knowledge and overview of the roles of protein kinases in various signaling pathways in CSC regulation and drug resistance. Furthermore, we provide an update on the preclinical and clinical studies for the use of kinase inhibitors alone or in combination with current therapies for effective cancer therapy. Despite great premises for the use of kinase inhibitors against CSCs, further investigations are needed to evaluate their efficiencies without any adverse effects on normal stem cells.
Collapse
|
8
|
Hillyar CR, Kanabar SS, Rallis KS, Varghese JS. Complex cross-talk between EZH2 and miRNAs confers hallmark characteristics and shapes the tumor microenvironment. Epigenomics 2022; 14:699-709. [PMID: 35574589 DOI: 10.2217/epi-2021-0534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cancer epigenetic mechanisms support the acquisition of hallmark characteristics during oncogenesis. EZH2 - an important histone methyltransferase that writes histone H3 lysine 27 trimethylation marks - is known to be dysregulated in cancer cells. However, the interactions between EZH2 and miRNAs that form a complex network of cross-talk and reciprocal regulation that enable cancer cells to acquire hallmark characteristics have been relatively poorly appreciated. The specific functions of EZH2 appear to be regulated by a vast array of miRNAs, which direct EZH2 toward regulation over the development of specific hallmark characteristics. This review discusses recent advances in the understanding of EZH2, focusing on its collaboration with miRNAs to orchestrate oncogenesis. These epigenetic processes promote the evasion of apoptosis/cell cycle arrest, cellular dedifferentiation and the establishment of a tumor microenvironment that facilitates local cancer cell invasion, anti-cancer drug resistance and evasion of the immune response.
Collapse
Affiliation(s)
- Christopher Rt Hillyar
- Green Templeton College, University of Oxford, Oxford, OX2 6HG, UK.,Surgery, Women's and Oncology Division, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Shivani S Kanabar
- University of Birmingham Medical School, College of Medical & Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kathrine S Rallis
- Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, E1 2AD, UK
| | - Jajini S Varghese
- Division of Surgery & Interventional Science, Royal Free London NHS Foundation Trust, University College London, London, NW3 2QG, UK
| |
Collapse
|
9
|
Diagnostic value of PPARδ and miRNA-17 expression levels in patients with non-small cell lung cancer. Sci Rep 2021; 11:24136. [PMID: 34921177 PMCID: PMC8683395 DOI: 10.1038/s41598-021-03312-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
The PPARδ gene codes protein that belongs to the peroxisome proliferator-activated receptor (PPAR) family engaged in a variety of biological processes, including carcinogenesis. Specific biological and clinical roles of PPARδ in non-small cell lung cancer (NSCLC) is not fully explained. The association of PPARα with miRNA regulators (e.g. miRNA-17) has been documented, suggesting the existence of a functional relationship of all PPARs with epigenetic regulation. The aim of the study was to determine the PPARδ and miR-17 expression profiles in NSCLC and to assess their diagnostic value in lung carcinogenesis. PPARδ and miR-17 expressions was assessed by qPCR in NSCLC tissue samples (n = 26) and corresponding macroscopically unchanged lung tissue samples adjacent to the primary lesions served as control (n = 26). PPARδ and miR-17 expression were significantly lower in NSCLC than in the control (p = 0.0001 and p = 0.0178; respectively). A receiver operating characteristic (ROC) curve analysis demonstrated the diagnostic potential in discriminating NSCLC from the control with an area under the curve (AUC) of 0.914 for PPARδ and 0.692 for miR-17. Significant increase in PPARδ expression in the control for current smokers vs. former smokers (p = 0.0200) and increase in miR-17 expression in control tissue adjacent to adenocarcinoma subtype (p = 0.0422) were observed. Overexpression of miR-17 was observed at an early stage of lung carcinogenesis, which may suggest that it acts as a putative oncomiR. PPARδ and miR-17 may be markers differentiating tumour tissue from surgical margin and miR-17 may have diagnostic role in NSCLC histotypes differentiation.
Collapse
|
10
|
Increased LGR6 Expression Sustains Long-Term Wnt Activation and Acquisition of Senescence in Epithelial Progenitors in Chronic Lung Diseases. Cells 2021; 10:cells10123437. [PMID: 34943945 PMCID: PMC8700573 DOI: 10.3390/cells10123437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 01/14/2023] Open
Abstract
Chronic lung diseases (CLDs) represent a set of disorders characterized by the progressive loss of proper lung function. Among severe CLDs, the incidence of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) has grown over the last decades, mainly in the elderly population. Several studies have highlighted an increased expression of senescence-related markers in the resident progenitor cells in COPD and IPF, possibly undermining epithelial integrity and contributing to the progression and the aggravation of both diseases. Recently, the chronic activation of the canonical Wnt/β-catenin pathway was shown to induce cellular senescence. Here, we investigated the localization and the expression of leucin-rich repeat-containing G-protein-coupled receptor 6 (LGR6), a protein that activates and potentiates the canonical Wnt signalling. Through immunohistochemical analyses, we identified a lesion-associated rise in LGR6 levels in abnormal lung epithelial progenitors in COPD and IPF when compared to histologically normal tissues. Moreover, in areas of aberrant regeneration, chronic damage and fibrosis, LGR6-expressing epithelial progenitors displayed a major increase in the expression of senescence-associated markers. Our study suggests the involvement of LGR6 in the chronic activation of the Wnt/β-catenin pathway, mediating the impairment and exhaustion of epithelial progenitors in COPD and IPF.
Collapse
|
11
|
Cheng YY, Yang X, Gao X, Song SX, Yang MF, Xie FM. LGR6 promotes glioblastoma malignancy and chemoresistance by activating the Akt signaling pathway. Exp Ther Med 2021; 22:1364. [PMID: 34659510 PMCID: PMC8515564 DOI: 10.3892/etm.2021.10798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Chemoresistance is the primary cause of the poor outcome of glioblastoma multiforme (GBM) therapy. Leucine-rich repeat-containing G-protein coupled receptor 6 (LGR6) is involved in the growth and proliferation of several types of cancer, including gastric cancer and ovarian cancer. Therefore, the aim of the present study was to investigate the role of LGR6 in GBM malignancy and chemoresistance. Cell counting kit-8 and Matrigel®-Transwell assays were conducted to assess GBM cell viability and invasion. The effect of LGR6 on cell cycle progression and activation of Akt signaling was analyzed by performing propidium iodide staining and western blotting, respectively. The results demonstrated that LGR6, a microRNA-1236-3p target candidate, promoted GBM cell viability and invasion, and mediated temozolomide sensitivity in SHG-44 and U251 GBM cells. In addition, LGR6 triggered the activation of the Akt signaling pathway during GBM progression. Collectively, the results of the present study suggested that LGR6 promoted GBM malignancy and chemoresistance, at least in part, by activating the Akt signaling pathway. The results may aid with the identification of a novel therapeutic target and strategy for GBM.
Collapse
Affiliation(s)
- Yuan Yuan Cheng
- Department of Oncology, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Xue Yang
- Department of Oncology, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Xin Gao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Si Xin Song
- Department of Neurosurgery, The Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 270000, P.R. China
| | - Ming Feng Yang
- Institute of Basic Medicine of Shangdong, First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 270000, P.R. China
| | - Fang Min Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 270000, P.R. China
| |
Collapse
|
12
|
Xie C, Liu S, Wu B, Zhao Y, Chen B, Guo J, Qiu S, Cao YM. miR-19 Promotes Cell Proliferation, Invasion, Migration, and EMT by Inhibiting SPRED2-mediated Autophagy in Osteosarcoma Cells. Cell Transplant 2021; 29:963689720962460. [PMID: 33023313 PMCID: PMC7784565 DOI: 10.1177/0963689720962460] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Osteosarcoma is an aggressive malignancy with rapid development and poor prognosis. microRNA-19 (miR-19) plays an important role in several biological processes. Sprouty-related EVH1 domain protein 2 (SPRED2) is a suppressor of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling to inhibit tumor development and progression by promoting autophagy. In this study, we investigated the roles of miR-19, SPRED2, and autophagy in osteosarcoma. We detected the expression of miR-19, SPRED2, epithelial-mesenchymal transition (EMT) markers, and autophagy-related proteins via quantitative real-time polymerase chain reaction or western blot. To evaluate the function of miR-19 and SPRED2, we used MTT and colony formation assays to detect cell proliferation, Transwell, and wound-healing assays to detect cell invasion and migration. Targetscan and luciferase reporter assays confirmed the relationship between SPRED2 and miR-19. The expression of miR-19 was significantly upregulated in osteosarcoma, while SPRED2 was downregulated. miR-19 inhibitor reduced cell proliferation, invasion, migration, and EMT, while its cell biological effects were partially reversed by addition of autophagy inhibitor 3-methyladenine (3-MA) or SPRED2 siRNA in osteosarcoma. SPRED2, a suppressor of ERK/MAPK pathway that is known to trigger autophagy, was identified as a direct target of miR-19. SPRED2 overexpression increased cell proliferation, invasion, migration, and EMT by promoting autophagy, and the effects could be inhibited by 3-MA. Collectively, these findings reveal an underlying mechanism for development of osteosarcoma. miR-19 was upregulated in osteosarcoma cells, and negatively regulated SPRED2, thus promoting the malignant transformation of osteosarcoma cells via inhibiting SPRED2-induced autophagy. Therefore, miR-19/SPRED2 may be a potential target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Chuhai Xie
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shengyao Liu
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Boyi Wu
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Zhao
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Binwei Chen
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianhong Guo
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - ShouHong Qiu
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan-Ming Cao
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Zhu X, Kudo M, Huang X, Sui H, Tian H, Croce CM, Cui R. Frontiers of MicroRNA Signature in Non-small Cell Lung Cancer. Front Cell Dev Biol 2021; 9:643942. [PMID: 33898432 PMCID: PMC8058364 DOI: 10.3389/fcell.2021.643942] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide and non-small cell lung cancer (NSCLC) accounts for more than 80% of all lung cancer cases. Recent advancements in diagnostic tools, surgical treatments, chemotherapies, and molecular targeted therapies that improved the therapeutic efficacy in NSCLC. However, the 5-years relative survival rate of NSCLC is only about 20% due to the inadequate screening methods and late onset of clinical symptoms. Dysregulation of microRNAs (miRNAs) was frequently observed in NSCLC and closely associated with NSCLC development, progression, and metastasis through regulating their target genes. In this review, we provide an updated overview of aberrant miRNA signature in NSCLC, and discuss the possibility of miRNAs becoming a diagnostic and therapeutic tool. We also discuss the possible causes of dysregulated miRNAs in NSCLC.
Collapse
Affiliation(s)
- Xinping Zhu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Masahisa Kudo
- Comprehensive Cancer Center, Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| | - Xiangjie Huang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hehuan Sui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Haishan Tian
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Carlo M Croce
- Comprehensive Cancer Center, Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| | - Ri Cui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Comprehensive Cancer Center, Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
14
|
LGR6 activates the Wnt/β-catenin signaling pathway and forms a β-catenin/TCF7L2/LGR6 feedback loop in LGR6 high cervical cancer stem cells. Oncogene 2021; 40:6103-6114. [PMID: 34489551 PMCID: PMC8530990 DOI: 10.1038/s41388-021-02002-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023]
Abstract
The leucine-rich repeat-containing G-protein-coupled receptor 6 (LGR6) is considered to be a stem cell marker in many normal tissues and promotes tissue development, regeneration, and repair. LGR6 is also related to the initiation and progression of some malignant tumors. However, the role of LGR6 in cervical cancer has not been reported. Here, immunohistochemistry and western blotting showed that LGR6 was significantly upregulated in cervical cancer, compared with the normal cervix. By analyzing The Cancer Genome Atlas database, LGR6 was found to be correlated with a poor prognosis of cervical cancer. Then, a small population of LGR6high cells isolated by using the fluorescence-activated cell sorting exhibited enhanced properties of cancer stem cells including self-renewal, differentiation, and tumorigenicity. Moreover, RNA sequencing revealed that LGR6 was correlated with the Wnt signaling pathway and TOP/FOP, reverse transcription-PCR, and western blotting further proved that LGR6 could activate the Wnt/β-catenin signaling pathway. Interestingly, LGR6 upregulated the expression of TCF7L2 by activating the Wnt/β-catenin pathway. Then, TCF7L2 combining with β-catenin in the nucleus enhanced LGR6 transcription by binding the promoter of LGR6, which further activated the Wnt signaling to form a positive feedback loop. Thus, our study demonstrated that LGR6 activated a novel β-catenin/TCF7L2/LGR6-positive feedback loop in LGR6high cervical cancer stem cells (CSCs), which provided a new therapeutic strategy for targeting cervical CSCs to improve the prognosis of cervical cancer patients.
Collapse
|
15
|
Kong Y, Ou X, Li X, Zeng Y, Gao G, Lyu N, Liu P. LGR6 Promotes Tumor Proliferation and Metastasis through Wnt/β-Catenin Signaling in Triple-Negative Breast Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:351-359. [PMID: 32775619 PMCID: PMC7403884 DOI: 10.1016/j.omto.2020.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022]
Abstract
Leucine-rich-repeat-containing G protein-coupled receptor 6 (LGR6) has been identified as the stem cell marker in multiple normal tissues and malignancies. Previous studies implicated paradoxical functions of LGR6 as a tumor-suppressor gene or oncogene given to the specific context. To explore the exact role of LGR6 in triple-negative breast cancer (TNBC) that never has been studied before, in this study, we assessed LGR6 expression levels by RT-PCR and immunohistochemistry. LGR6 stable expressing/silenced cells were established, and functional assays on tumor proliferation, as well as metastasis, were conducted both in vitro and in vivo. Here, we found that LGR6 was overexpressed in TNBC, which correlated with poor disease-free and overall survivals. Functional assays both in vitro and in vivo showed that LGR6 promotes tumor proliferation and metastasis. LGR6 also increased the ability of tumor spheroid formation. Underlying mechanism exploration further revealed that the oncogenic role of LGR6 might be associated with the Wnt/β-catenin pathway. In conclusion, our findings first proved that LGR6 acts as an oncogene in (TNBC), indicating that LGR6 might be a potential therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- Yanan Kong
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 East Dongfeng Road, Guangzhou 510060, China
| | - Xueqi Ou
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 East Dongfeng Road, Guangzhou 510060, China
| | - Xing Li
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 East Dongfeng Road, Guangzhou 510060, China
| | - Yan Zeng
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 East Dongfeng Road, Guangzhou 510060, China
| | - Guanfeng Gao
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 East Dongfeng Road, Guangzhou 510060, China
| | - Ning Lyu
- Department of Minimally Invasive Interventional Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 East Dongfeng Road, Guangzhou 510060, China
| | - Peng Liu
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 East Dongfeng Road, Guangzhou 510060, China
| |
Collapse
|
16
|
Marjanovic ND, Hofree M, Chan JE, Canner D, Wu K, Trakala M, Hartmann GG, Smith OC, Kim JY, Evans KV, Hudson A, Ashenberg O, Porter CBM, Bejnood A, Subramanian A, Pitter K, Yan Y, Delorey T, Phillips DR, Shah N, Chaudhary O, Tsankov A, Hollmann T, Rekhtman N, Massion PP, Poirier JT, Mazutis L, Li R, Lee JH, Amon A, Rudin CM, Jacks T, Regev A, Tammela T. Emergence of a High-Plasticity Cell State during Lung Cancer Evolution. Cancer Cell 2020; 38:229-246.e13. [PMID: 32707077 PMCID: PMC7745838 DOI: 10.1016/j.ccell.2020.06.012] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/13/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Tumor evolution from a single cell into a malignant, heterogeneous tissue remains poorly understood. Here, we profile single-cell transcriptomes of genetically engineered mouse lung tumors at seven stages, from pre-neoplastic hyperplasia to adenocarcinoma. The diversity of transcriptional states increases over time and is reproducible across tumors and mice. Cancer cells progressively adopt alternate lineage identities, computationally predicted to be mediated through a common transitional, high-plasticity cell state (HPCS). Accordingly, HPCS cells prospectively isolated from mouse tumors and human patient-derived xenografts display high capacity for differentiation and proliferation. The HPCS program is associated with poor survival across human cancers and demonstrates chemoresistance in mice. Our study reveals a central principle underpinning intra-tumoral heterogeneity and motivates therapeutic targeting of the HPCS.
Collapse
Affiliation(s)
- Nemanja Despot Marjanovic
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Computational and Systems Biology PhD Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matan Hofree
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jason E Chan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David Canner
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Katherine Wu
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marianna Trakala
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Griffin G Hartmann
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Olivia C Smith
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jonathan Y Kim
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Kelly Victoria Evans
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Anna Hudson
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Caroline B M Porter
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alborz Bejnood
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ayshwarya Subramanian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kenneth Pitter
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yan Yan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Toni Delorey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Devan R Phillips
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nisargbhai Shah
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ojasvi Chaudhary
- The Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexander Tsankov
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Travis Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pierre P Massion
- Department of Medicine and Cancer Early Detection and Prevention Initiative, Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John T Poirier
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Linas Mazutis
- The Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ruifang Li
- Epigenetics Technology Innovation Lab, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joo-Hyeon Lee
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; The Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cell and Developmental Biology, Weill-Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
17
|
Jiang Y, Zhuo X, Mao C. G Protein-coupled Receptors in Cancer Stem Cells. Curr Pharm Des 2020; 26:1952-1963. [DOI: 10.2174/1381612826666200305130009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022]
Abstract
G protein-coupled receptors (GPCRs) are highly expressed on a variety of tumour tissues while several
GPCR exogenous ligands become marketed pharmaceuticals. In recent decades, cancer stem cells (CSCs) become
widely investigated drug targets for cancer therapy but the underlying mechanism is still not fully elucidated.
There are vigorous participations of GPCRs in CSCs-related signalling and functions, such as biomarkers for
CSCs, activation of Wnt, Hedgehog (HH) and other signalling to facilitate CSCs progressions. This relationship
can not only uncover a novel molecular mechanism for GPCR-mediated cancer cell functions but also assist our
understanding of maintaining and modulating CSCs. Moreover, GPCR antagonists and monoclonal antibodies
could be applied to impair CSCs functions and consequently attenuate tumour growth, some of which have been
undergoing clinical studies and are anticipated to turn into marketed anticancer drugs. Therefore, this review
summarizes and provides sufficient evidences on the regulation of GPCR signalling in the maintenance, differentiation
and pluripotency of CSCs, suggesting that targeting GPCRs on the surface of CSCs could be potential
therapeutic strategies for cancer therapy.
Collapse
Affiliation(s)
- Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xin Zhuo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Canquan Mao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Triana-Martínez F, Loza MI, Domínguez E. Beyond Tumor Suppression: Senescence in Cancer Stemness and Tumor Dormancy. Cells 2020; 9:cells9020346. [PMID: 32028565 PMCID: PMC7072600 DOI: 10.3390/cells9020346] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
Here, we provide an overview of the importance of cellular fate in cancer as a group of diseases of abnormal cell growth. Tumor development and progression is a highly dynamic process, with several phases of evolution. The existing evidence about the origin and consequences of cancer cell fate specification (e.g., proliferation, senescence, stemness, dormancy, quiescence, and cell cycle re-entry) in the context of tumor formation and metastasis is discussed. The interplay between these dynamic tumor cell phenotypes, the microenvironment, and the immune system is also reviewed in relation to cancer. We focus on the role of senescence during cancer progression, with a special emphasis on its relationship with stemness and dormancy. Selective interventions on senescence and dormancy cell fates, including the specific targeting of cancer cell populations to prevent detrimental effects in aging and disease, are also reviewed. A new conceptual framework about the impact of synthetic lethal strategies by using senogenics and then senolytics is given, with the promise of future directions on innovative anticancer therapies.
Collapse
|
19
|
Chai T, Shen Z, Zhang Z, Chen S, Gao L, Zhang P, Lin W, Kang M, Lin J. LGR6 is a potential diagnostic and prognostic marker for esophageal squamous cell carcinoma. J Clin Lab Anal 2020; 34:e23121. [PMID: 31917882 PMCID: PMC7171331 DOI: 10.1002/jcla.23121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/22/2019] [Accepted: 10/26/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Leucine-rich repeat-coupled receptor 6 (LGR6) is a marker of the skin, nails, and other types of adult tissue stem cells and has been widely found to be related to the development and progression of a variety of cancer types. The clinical significance and biological function of LGR6 in esophageal squamous cell carcinoma (ESCC) have not been determined. METHODS The expression of LGR6 at the transcriptional level was analyzed by searching the TCGA and UCSC data sets. Immunohistochemistry, WB, and q-PCR were used to detect the expression of LGR6 in ESCC and adjacent normal tissues. LGR6 PPI networks and KEGG pathways were used to analyze the potential biological functions of LGR6. RESULTS The expression of LGR6 in ESCC tissues was significantly higher than that in normal tissues and was negatively correlated with the differentiation degree of ESCC and the prognosis of the patients but not closely correlated with the TNM stage of ESCC. PPI networks showed that LGR6 had a close interaction with RSPO1, RSPO2, RSPO3, and RSPO4. KEGG pathway analysis showed that LGR6 activated the Wnt/β-catenin signaling pathway by binding with RSPO ligands to promote the progression of ESCC. CONCLUSION LGR6 can serve as a potential diagnostic and prognostic marker for ESCC.
Collapse
Affiliation(s)
- Tianci Chai
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of anesthesiology, Xinyi People's Hospital, Xuzhou, China
| | - Zhimin Shen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhenyang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Sui Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lei Gao
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wenwei Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jiangbo Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
20
|
microRNA: The Impact on Cancer Stemness and Therapeutic Resistance. Cells 2019; 9:cells9010008. [PMID: 31861404 PMCID: PMC7016867 DOI: 10.3390/cells9010008] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer ranks as the second leading cause of death worldwide, causing a large social and economic burden. However, most anti-cancer treatments face the problems of tumor recurrence and metastasis. Therefore, finding an effective cure for cancer needs to be solved urgently. Recently, the discovery of cancer stem cells (CSCs) provides a new orientation for cancer research and therapy. CSCs share main characteristics with stem cells and are able to generate an entire tumor. Besides, CSCs usually escape from current anti-cancer therapies, which is partly responsible for tumor recurrence and poor prognosis. microRNAs (miRNAs) belong to small noncoding RNA and regulate gene post-transcriptional expression. The dysregulation of miRNAs leads to plenty of diseases, including cancer. The aberrant miRNA expression in CSCs enhances stemness maintenance. In this review, we summarize the role of miRNAs on CSCs in the eight most common cancers, hoping to bridge the research of miRNAs and CSCs with clinical applications. We found that miRNAs can act as tumor promoter or suppressor. The dysregulation of miRNAs enhances cell stemness and contributes to tumor metastasis and therapeutic resistance via the formation of feedback loops and constitutive activation of carcinogenic signaling pathways. More importantly, some miRNAs may be potential targets for diagnosis, prognosis, and cancer treatments.
Collapse
|
21
|
Huang Z, Ma N, Xiong YL, Wang L, Li WM, Lai YY, Zhang CX, Zhang ZP, Li XF, Zhao JB. Aberrantly High Expression Of NOK/STYK1 Is Tightly Associated With The Activation Of The AKT/GSK3β/N-Cadherin Pathway In Non-Small Cell Lung Cancer. Onco Targets Ther 2019; 12:10299-10309. [PMID: 31819514 PMCID: PMC6885570 DOI: 10.2147/ott.s210014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose High metastasis is a leading risk factor for the survival of non-small cell lung cancer (NSCLC) and epithelial-mesenchymal transition (EMT) is a vital step of metastasis. The expression of novel oncogene with kinase domain (NOK) has been observed in some human malignancies, including non-small cell lung cancer (NSCLC); however, the biological function of NOK in NSCLC remains unclear. In the study, we explored the function of NOK in NSCLC, with an aim to elucidate the relevant underlying mechanisms. Patients and methods We investigate the expression of NOK, p-Akt, p-GSK-3β, E-cadherin and N-cadherin expression by immunohistochemical analysis using tissue microarrays of 72 paired NSCLC samples of cancerous and adjacent normal tissues. The associations between NOK expression and clinicopathological factors, overall survival, other proteins were assessed. Immunofluorescence analysis of NSCLC tissues was performed to study the location of NOK, Akt and GSK-3β. Up or down-regulated of NOK were conducted in two NSCLC cell lines to analyze its impact on AKT/GSK3β pathway. Results Statistical analysis revealed NOK expression increased in NSCLC tissues compared with normal tissues (P<0.05). It also showed that low NOK expression were associated with a higher possibility of non-lymphatic metastasis, an early pN stage and clinical stage (P<0.05). Moreover, NOK expression was positively correlated with the expression of oncogene p-Akt (Thr308), p-GSK-3β (Ser9) and N-cadherin (P<0.05). Immunofluorescence analysis of NSCLC tissues revealed that NOK is co-located with Akt and GSK-3β. Further study in NSCLC cell lines revealed that NOK overexpression can activate the AKT/GSK3β pathway. Conversely, knockdown of NOK can suppress the AKT/GSK3β pathway. Conclusion Our results suggest that NOK overexpression correlated significantly with lymphatic metastasis, advanced pN and clinical stage in NSCLC. And NOK may promote EMT by activating the AKT/GSK3β/N-cadherin pathway in NSCLC.
Collapse
Affiliation(s)
- Zhao Huang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Nan Ma
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Yan-Lu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Lei Wang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Wei-Miao Li
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Yuan-Yang Lai
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Chen-Xi Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Zhi-Pei Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Xiao-Fei Li
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Jin-Bo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| |
Collapse
|
22
|
Ruan X, Liu A, Zhong M, Wei J, Zhang W, Rong Y, Liu W, Li M, Qing X, Chen G, Li R, Liao Y, Liu Q, Zhang X, Ren D, Wang Y. Silencing LGR6 Attenuates Stemness and Chemoresistance via Inhibiting Wnt/β-Catenin Signaling in Ovarian Cancer. Mol Ther Oncolytics 2019; 14:94-106. [PMID: 31193124 PMCID: PMC6517611 DOI: 10.1016/j.omto.2019.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022] Open
Abstract
Leucine-rich-repeat-containing G protein-coupled receptors (LGRs) have been widely found to be implicated with development and progression in multiple cancer types. However, the clinical significance and biological functions of LGR6 in ovarian cancer remains unclear. In this study, LGR6 expression was mainly examined by immunohistochemistry. Functional assays in vitro and animal experiments in vivo were carried out to explore the effect of LGR6 on cancer stem cell (CSC) characteristics and chemotherapeutic responses in ovarian cancer cells. Luciferase assays and GSEA were used to discern the underlying mechanisms contributing to the roles of LGR6 in ovarian cancer. Here, we reported that LGR6 was upregulated in ovarian cancer, which positively correlated with poor chemotherapeutic response and progression survival in ovarian cancer patients. Loss-of-function assays showed that downregulating LGR6 abrogated the CSC-like phenotype and chemoresistance in vitro. More importantly, silencing LGR6 improved the chemoresistance of ovarian cancer cells to cisplatin in vivo. Mechanistic investigation further revealed that silencing LGR6 inhibited stemness and chemoresistance by repressing Wnt/β-catenin signaling. Collectively, our results uncover a novel mechanism contributing to LGR6-induced chemotherapeutic resistance in ovarian cancer, providing the evidence for LGR6 as a potential therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Xiaohong Ruan
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People’s Republic of China
- Department of Gynecology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, People’s Republic of China
| | - Aibin Liu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, People’s Republic of China
| | - Meigong Zhong
- Department of Pharmacy, Jiangmen Maternity and Child Health Care Hospital, Jiangmen 529030, China
| | - Jihong Wei
- Department of Gynecology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, People’s Republic of China
| | - Weijian Zhang
- Department of Gynecology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, People’s Republic of China
| | - Yingrou Rong
- Department of Gynecology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, People’s Republic of China
| | - Wanmin Liu
- Department of Gynecology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, People’s Republic of China
| | - Mingwei Li
- Department of Gynecology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, People’s Republic of China
| | - Xingrong Qing
- Department of Gynecology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, People’s Republic of China
| | - Gaowen Chen
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People’s Republic of China
| | - Ronggang Li
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, People’s Republic of China
| | - Yuehua Liao
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, People’s Republic of China
| | - Qiongru Liu
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, People’s Republic of China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Dong Ren
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Yifeng Wang
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People’s Republic of China
| |
Collapse
|
23
|
Huang G, Wang M, Li X, Wu J, Chen S, Du N, Li K, Wang J, Xu C, Ren H, Tang SC, Sun X. TUSC7 suppression of Notch activation through sponging MiR-146 recapitulated the asymmetric cell division in lung adenocarcinoma stem cells. Life Sci 2019; 232:116630. [PMID: 31279783 DOI: 10.1016/j.lfs.2019.116630] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022]
Abstract
AIMS Lung adenocarcinoma consists of multiple therapeutic targets, however, patients will inevitably progress to later stage diagnosis with Tyrosine Kinase Inhibitor treatment resistance. We aim to investigate the roles of non-coding TUSC7 in ordering the cell division tendency, helping to sensitize the resistance in a miRNA incorporating way. MATERIALS AND METHODS Online study of bioinformatics analysis, molecular experiments of luciferase test, immunofluorescence staining and qRT-PCR were applied to dig out the mechanistic regulations. KEY FINDINGS TUSC-7 inhibited the renewal ability of adenocarcinoma stem cells, yielding to asymmetric cell splitting. Informatics analysis and the luciferase testing confirmed the 3'UTR binding site, and revealed the post-transcriptional regulation of NUMB referring to miR-146. TUSC-7 sponged miR-146 and abolished its degradation toward to NUMB, and this integrated cascade made several genes become tangled to full functionality. SIGNIFICANCE TUSC-7 was proved to be one strong suppressive lnc-RNA in lung adenocarcinoma stem cells, functioning through inactivating NOTCH signaling, and the turbulence on division modes precisely pointed to the key mechanisms of stem cells' renewal. The decreasing of tumor suppressive miR-146 was necessary in TUSC-7 conducted renewal repression, despite it alone could also reduce the renewal efficiency, indicating that more complicated non-coding genes may be involved in its regulation.
Collapse
Affiliation(s)
- Guanglin Huang
- Department of Thoracic Surgery, The Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province 710061, China; Department of General Surgery, Xingyuan Hospital, Yulin City, Shaanxi Province 719000, China
| | - Meng Wang
- Department of Thoracic Surgery, The Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province 710061, China
| | - Xiang Li
- Department of Thoracic Surgery, The Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province 710061, China
| | - Jie Wu
- Department of Thoracic Surgery, The Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province 710061, China
| | - Sisi Chen
- Department of Thoracic Surgery, The Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province 710061, China
| | - Ning Du
- Department of Thoracic Surgery, The Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province 710061, China
| | - Kai Li
- Department of Thoracic Surgery, The Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province 710061, China
| | - Jichang Wang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province 710061, China
| | - Chongwen Xu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province 710061, China
| | - Hong Ren
- Department of Thoracic Surgery, The Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province 710061, China
| | - Shou-Ching Tang
- University of Mississippi Medical Center, Cancer Center and Research Institute, 2500 North State Street, Jackson, MS 39216, USA.
| | - Xin Sun
- Department of Thoracic Surgery, The Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province 710061, China.
| |
Collapse
|
24
|
Yin J, Hu W, Pan L, Fu W, Dai L, Jiang Z, Zhang F, Zhao J. let‑7 and miR‑17 promote self‑renewal and drive gefitinib resistance in non‑small cell lung cancer. Oncol Rep 2019; 42:495-508. [PMID: 31233201 PMCID: PMC6609324 DOI: 10.3892/or.2019.7197] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
Epidermal growth factor receptor‑tyrosinase kinase inhibitor (EGFR‑TKI) resistance represents a major obstacle in the therapy of non‑small cell lung cancer (NSCLC), and the underlying molecular mechanisms are unknown. In this study, it was found that let‑7 family expression was downregulated and miR‑17 family expression was upregulated in gefitinib‑resistant PC9/GR cells compared with gefitinib‑sensitive PC9 cells. The downregulation of let‑7 and upregulation of miR‑17 have significant clinical relevance to gefitinib resistance in NSCLC. Moreover, it was shown that downregulation of let‑7 and upregulation of miR‑17 promoted resistance to gefitinib by regulating the self‑renewal capability of NSCLC cells. In addition, let‑7 participated in the maintenance of stem cell characteristics by regulating the target gene MYC, and miR‑17 participated in regulation of the cell cycle by regulating the target gene CDKN1A. In NSCLC cells, low expression of let‑7 increased MYC expression to help maintain the undifferentiated status, and high expression of miR‑17 decreased CDKN1A expression to help maintain the proliferative potential. Thus, both let‑7 and miR‑17 promoted self‑renewal, which is typical of stem cell‑like characteristics and resulted in gefitinib resistance. Therefore, this study demonstrated that let‑7 and miR‑17 were involved in the regulation of EGFR‑TKI resistance, and could be used as predictive biomarkers of EGFR‑TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Jun Yin
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Weimin Hu
- Department of Abdominal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Lei Pan
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Wenfan Fu
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Lu Dai
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Zeyong Jiang
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Feng Zhang
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Jian Zhao
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| |
Collapse
|
25
|
Yang XQ, Zhang CX, Wang JK, Wang L, Du X, Song YF, Liu D. Transcriptional regulation of the porcine miR-17-92 cluster. Mol Genet Genomics 2019; 294:1023-1036. [DOI: 10.1007/s00438-019-01560-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/06/2019] [Indexed: 01/28/2023]
|
26
|
Functional link between plasma membrane spatiotemporal dynamics, cancer biology, and dietary membrane-altering agents. Cancer Metastasis Rev 2019; 37:519-544. [PMID: 29860560 DOI: 10.1007/s10555-018-9733-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cell plasma membrane serves as a nexus integrating extra- and intracellular components, which together enable many of the fundamental cellular signaling processes that sustain life. In order to perform this key function, plasma membrane components assemble into well-defined domains exhibiting distinct biochemical and biophysical properties that modulate various signaling events. Dysregulation of these highly dynamic membrane domains can promote oncogenic signaling. Recently, it has been demonstrated that select membrane-targeted dietary bioactives (MTDBs) have the ability to remodel plasma membrane domains and subsequently reduce cancer risk. In this review, we focus on the importance of plasma membrane domain structural and signaling functionalities as well as how loss of membrane homeostasis can drive aberrant signaling. Additionally, we discuss the intricacies associated with the investigation of these membrane domain features and their associations with cancer biology. Lastly, we describe the current literature focusing on MTDBs, including mechanisms of chemoprevention and therapeutics in order to establish a functional link between these membrane-altering biomolecules, tuning of plasma membrane hierarchal organization, and their implications in cancer prevention.
Collapse
|
27
|
Kinehara Y, Nagatomo I, Koyama S, Ito D, Nojima S, Kurebayashi R, Nakanishi Y, Suga Y, Nishijima-Futami Y, Osa A, Nakatani T, Kato Y, Nishide M, Hayama Y, Higashiguchi M, Morimura O, Miyake K, Kang S, Minami T, Hirata H, Iwahori K, Takimoto T, Takamatsu H, Takeda Y, Hosen N, Hoshino S, Shintani Y, Okumura M, Kumagai T, Nishino K, Imamura F, Nakatsuka SI, Kijima T, Kida H, Kumanogoh A. Semaphorin 7A promotes EGFR-TKI resistance in EGFR mutant lung adenocarcinoma cells. JCI Insight 2018; 3:123093. [PMID: 30568033 DOI: 10.1172/jci.insight.123093] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/06/2018] [Indexed: 12/17/2022] Open
Abstract
Although responses to EGFR tyrosine kinase inhibitors (EGFR-TKIs) are initially positive, 30%-40% of patients with EGFR-mutant tumors do not respond well to EGFR-TKIs, and most lung cancer patients harboring EGFR mutations experience relapse with resistance. Therefore, it is necessary to identify not only the mechanisms underlying EGFR-TKI resistance, but also potentially novel therapeutic targets and/or predictive biomarkers for EGFR-mutant lung adenocarcinoma. We found that the GPI-anchored protein semaphorin 7A (SEMA7A) is highly induced by the EGFR pathway, via mTOR signaling, and that expression levels of SEMA7A in human lung adenocarcinoma specimens were correlated with mTOR activation. Investigations using cell culture and animal models demonstrated that loss or overexpression of SEMA7A made cells less or more resistant to EGFR-TKIs, respectively. The resistance was due to the inhibition of apoptosis by aberrant activation of ERK. The ERK signal was suppressed by knockdown of integrin β1 (ITGB1). Furthermore, in patients with EGFR mutant tumors, higher SEMA7A expression in clinical samples predicted poorer response to EGFR-TKI treatment. Collectively, these data show that the SEMA7A-ITGB1 axis plays pivotal roles in EGFR-TKI resistance mediated by ERK activation and apoptosis inhibition. Moreover, our results reveal the potential utility of SEMA7A not only as a predictive biomarker, but also as a potentially novel therapeutic target in EGFR-mutant lung adenocarcinoma.
Collapse
Affiliation(s)
- Yuhei Kinehara
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shohei Koyama
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Daisuke Ito
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Satoshi Nojima
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan.,Department of Pathology, Osaka University Graduate school of Medicine, Suita, Osaka, Japan
| | - Ryota Kurebayashi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshimitsu Nakanishi
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Yasuhiko Suga
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Yu Nishijima-Futami
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Akio Osa
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takeshi Nakatani
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Yasuhiro Kato
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Masayuki Nishide
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Yoshitomo Hayama
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Masayoshi Higashiguchi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Osamu Morimura
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kotaro Miyake
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Sujin Kang
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan.,Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Toshiyuki Minami
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kota Iwahori
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takayuki Takimoto
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hyota Takamatsu
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Naoki Hosen
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Meinoshin Okumura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | - Shin-Ichi Nakatsuka
- Department of Pathology, Osaka International Cancer Institute, Osaka, Osaka, Japan
| | - Takashi Kijima
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Hiroshi Kida
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| |
Collapse
|
28
|
Ma W, Feng W, Tan J, Xu A, Hu Y, Ning L, Kang Y, Wang L, Zhao Z. miR-497 may enhance the sensitivity of non-small cell lung cancer cells to gefitinib through targeting the insulin-like growth factor-1 receptor. J Thorac Dis 2018; 10:5889-5897. [PMID: 30505497 DOI: 10.21037/jtd.2018.10.40] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background Recently, studies have demonstrated that microRNA-497 (miR-497) plays an important role in modulating tumor cell sensitivity to chemotherapeutic drugs; however, its role in cellular resistance to the effects of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in treatment of non-small cell lung cancer (NSCLC) is not fully understood. In this study, we explored the potential of miR-497 in targeting the insulin-like growth factor-1 receptor (IGF-1R) signaling pathways to overcome gefitinib resistance. Methods A gefitinib resistant human lung adenocarcinoma A549 cell line (A549/GR) was established by the method of gefitinib mutagenesis culture. Next, the A549/GR cells were transfected with miR-497 mimics to establish an miR-497 overexpression model, designated A549/GR-miR497-mimic. MTT assay was used to assess cell resistance to gefitinib, and western blot assay was employed to evaluate alterations of IGF-1R and the AKT1 signaling pathway. Results We found that A549/GR-miR497-mimic cells (IC50 =33.76±0.97 µmol/L) were more sensitive to gefitinib than the control group (P<0.01). In addition, the expression levels of IGF-1R and phosphorylated AKT1 (p-AKT1) in A549/GR-miR497-mimic cells were reduced. Conclusions We demonstrated that miR-497 may have the effect of reversing gefitinib resistance and increasing the sensitivity of NSCLC cells to EGFR-TKIs by inhibiting the expression of IGF-1R and reducing activation of the downstream AKT signaling pathway. Thus, miR-497 plays a vital role in the acquired resistance to EGFR-TKIs, and it may represent a potential therapeutic strategy to treat NSCLC exhibiting resistance to EGFR-TKIs.
Collapse
Affiliation(s)
- Wei Ma
- The First Affiliated Hospital of Jinan University, Guangzhou 510000, China.,Department of Respiration, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Weiye Feng
- Department of Respiration, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510000, China
| | - Jie Tan
- Department of Respiration, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510000, China
| | - Airu Xu
- Department of Respiration, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Yudong Hu
- Department of Respiration, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Lanlan Ning
- Department of Electrocardiogram, Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Yanhong Kang
- Department of Respiration, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510000, China
| | - Liuqian Wang
- Quality Control Department, Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Ziwen Zhao
- The First Affiliated Hospital of Jinan University, Guangzhou 510000, China.,Department of Respiration, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| |
Collapse
|
29
|
Wang W, Ding S, Zhang H, Li J, Zhan J, Zhang H. G protein-coupled receptor LGR6 is an independent risk factor for colon adenocarcinoma. Front Med 2018; 13:482-491. [PMID: 29971639 DOI: 10.1007/s11684-018-0633-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023]
Abstract
LGR6 is a member of the G protein-coupled receptor family that plays a tumor-suppressive role in colon cancer. However, the relationship between LGR6 expression in patients and clinicopathological factors remains unclear. This study aimed to clarify whether the expression level of LGR6 is correlated with colon adenocarcinoma progression. Immunohistochemistry was used to detect LGR6 expression in colon adenoma tissues (n = 21), colon adenocarcinoma tissues (n = 156), and adjacent normal tissues (n = 124). The expression levels of LGR6 in colon adenoma and adenocarcinoma were significantly higher than those in normal colon epithelial tissues (P < 0.001). Low LGR6 expression predicted a short overall survival in patients with colon adenocarcinoma (log-rank test, P = 0.016). Univariate and multivariate survival analyses showed that, in addition to N and M classification, LGR6 expression served as an independent prognostic factor. Thus, low expression of LGR6 can be used as an independent prognostic parameter in patients with colon adenocarcinoma.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China.
| | - Hejun Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Jun Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Jun Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, and Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing, 100191, China.
| | - Hongquan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, and Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
30
|
Ke J, Ma P, Chen J, Qin J, Qian H. LGR6 promotes the progression of gastric cancer through PI3K/AKT/mTOR pathway. Onco Targets Ther 2018; 11:3025-3033. [PMID: 29872314 PMCID: PMC5973468 DOI: 10.2147/ott.s149303] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background In the present study, we aimed to investigate the role of LGR6 in the progression of gastric cancer (GC) and explore the intrinsic molecular mechanisms. Materials and methods The lentiviral LGR6 shRNA (sh-LGR6) and lentiviral expression vector of LGR6 gene (OE-LGR6) were used to regulate the LGR6 expression. Furthermore, we performed in vitro experiments to observe whether PI3K/AKT/mTOR pathway was affected by LGR6 and assess the role of LGR6 in the proliferation, apoptosis, migration, and invasion of GC cells. Results Our data showed that phosphorylated AKT and mTOR were downregulated by sh-LGR6 (P<0.05). The expressions of proapoptotic proteins Bax and Caspase-3 were upregulated by sh-LGR6 (P<0.05); the expression of antiapoptotic protein Bcl2 was downregulated by sh-LGR6 (P<0.001). Besides, the functional experiments proved that sh-LGR6 could promote the apoptosis of GC cells and inhibit the proliferation, invasion, and migration of GC cells (P<0.001). Compared with sh-LGR6, OE-LGR6 led to the opposite results. Conclusion LGR6 is an antiapoptosis protein which controls the progression of GC through PI3K/AKT/mTOR pathway. More in vivo experiments and clinical trials are necessary to confirm the possibility of LGR6 in tumor therapy.
Collapse
Affiliation(s)
- Jing Ke
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Peng Ma
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Jinpeng Chen
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Jun Qin
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Haixin Qian
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
31
|
Zhang W, Yi X, An Y, Guo S, Li S, Song P, Chang Y, Zhang S, Gao T, Wang G, Li C. MicroRNA-17-92 cluster promotes the proliferation and the chemokine production of keratinocytes: implication for the pathogenesis of psoriasis. Cell Death Dis 2018; 9:567. [PMID: 29752469 PMCID: PMC5948221 DOI: 10.1038/s41419-018-0621-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/25/2018] [Accepted: 04/20/2018] [Indexed: 01/18/2023]
Abstract
Keratinocytes are the main epidermal cell type that constitutes the skin barrier against environmental damages, which emphasizes the balance between the growth and the death of keratinocytes in maintaining skin homeostasis. Aberrant proliferation of keratinocytes and the secretion of inflammatory factors from keratinocytes are related to the formation of chronic inflammatory skin diseases like psoriasis. MicroRNA-17-92 (miRNA-17-92 or miR-17-92) is a miRNA cluster that regulates cell growth and immunity, but the role of miR-17-92 cluster in keratinocytes and its relation to skin diseases have not been well investigated. In the present study, we initially found that miR-17-92 cluster promoted the proliferation and the cell-cycle progression of keratinocytes via suppressing cyclin-dependent kinase inhibitor 2B (CDKN2B). Furthermore, miR-17-92 cluster facilitated the secretion of C-X-C motif chemokine ligand 9 (CXCL9) and C-X-C motif chemokine ligand 10 (CXCL10) from keratinocytes by inhibiting suppressor of cytokine signaling 1 (SOCS1), which enhanced the chemotaxis for T lymphocytes formed by keratinocytes. In addition, we detected increased expression of miR-17-92 cluster in psoriatic lesions and the level of lesional miR-17-92 cluster was positively correlated with the disease severity in psoriasis patients. At last, miR-17-92 cluster was increased in keratinocytes by cytokines through the activation of signal transducers and activators of transcription 1 (STAT1) signaling pathway. Our findings demonstrate that cytokine-induced overexpression of miR-17-92 cluster can promote the proliferation and the immune function of keratinocytes, and thus may contribute to the development of inflammatory skin diseases like psoriasis, which implicates miR-17-92 cluster as a potential therapeutic target for psoriasis and other skin diseases with similar inflammatory pathogenesis.
Collapse
Affiliation(s)
- Weigang Zhang
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | - Xiuli Yi
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | - Yawen An
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | - Sen Guo
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | - Shuli Li
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | - Pu Song
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | - Yuqian Chang
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | - Shaolong Zhang
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | - Gang Wang
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | - Chunying Li
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi, China.
| |
Collapse
|
32
|
Wang F, Dai CQ, Zhang LR, Bing C, Qin J, Liu YF. Downregulation of Lgr6 inhibits proliferation and invasion and increases apoptosis in human colorectal cancer. Int J Mol Med 2018; 42:625-632. [PMID: 29693156 DOI: 10.3892/ijmm.2018.3633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/30/2018] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to analyze the role of leucine‑rich repeat‑containing G‑protein coupled receptor 6 (Lgr6) in the proliferation and invasion of colorectal cancer (CRC) cells, and to investigate its possible mechanisms. The expression of Lgr6 in CRC tissues was observed by real time‑quantitative polymerase chain reaction and western blotting. Then cell viability, apoptosis and cell invasion was measured by MTT, flow cytometry or Matrigel‑Transwell system, respectively in CRC cells after transfected with Lgr6 siRNA or Lgr6 vector. Furthermore, the expression of apoptosis‑associated protein and PI3K/AKT signaling (phosphorylated‑PI3K, phosphorylated‑AKT, t‑PI3K, t‑AKT) were measured by real‑time PCR/or western blot analysis. The results demonstrated that the level of Lgr6 was higher in CRC tissues than that in adjacent tissues, and Lgr6 overexpression increased CRC proliferation, and invasion of CRC cells in vitro. Notably, suppressing the expression of Lgr6 in CRC cells increased the expression of B‑cell lymphoma-2 (Bcl‑2)‑associated X protein and caspase‑3, but decreased the expression of Bcl‑2 at the mRNA and protein levels. Lgr6 also had the ability to regulate the phosphoinositide 3‑kinase/AKT signaling pathway. It was concluded that Lgr6 has a tumor‑promoting role in the development of CRC, and may serve as a potential diagnostic and prognostic biomarker for the disease.
Collapse
Affiliation(s)
- Fei Wang
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Chun-Qian Dai
- Department of General Surgery, Rudong No. 2 People's Hospital, Rudong, Jiangsu 226400, P.R. China
| | - Li-Rong Zhang
- Department of General Surgery, Rudong No. 2 People's Hospital, Rudong, Jiangsu 226400, P.R. China
| | - Cao Bing
- Department of General Surgery, Rudong No. 2 People's Hospital, Rudong, Jiangsu 226400, P.R. China
| | - Jun Qin
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Yi-Fei Liu
- Department of Pathology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| |
Collapse
|
33
|
Huang Z, Lei W, Hu H, Zhang H, Zhu Y. H19 promotes non‐small‐cell lung cancer (NSCLC) development through STAT3 signaling via sponging miR‐17. J Cell Physiol 2018; 233:6768-6776. [PMID: 29693721 DOI: 10.1002/jcp.26530] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/31/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Zhiwen Huang
- Department of Respiratory Medicine The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
- Department of Respiratory Medicine Affiliated Renhe Hospital of China Three Gorges University Yichang Hubei China
| | - Wei Lei
- Department of Respiratory Medicine The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
| | - Hai‐Bo Hu
- Department of Respiratory Medicine Affiliated Renhe Hospital of China Three Gorges University Yichang Hubei China
| | - Hongyan Zhang
- Department of Respiratory Medicine Affiliated Renhe Hospital of China Three Gorges University Yichang Hubei China
| | - Yehan Zhu
- Department of Respiratory Medicine The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
| |
Collapse
|
34
|
Quattrochi B, Gulvady A, Driscoll DR, Sano M, Klimstra DS, Turner CE, Lewis BC. MicroRNAs of the mir-17~92 cluster regulate multiple aspects of pancreatic tumor development and progression. Oncotarget 2018; 8:35902-35918. [PMID: 28415794 PMCID: PMC5482626 DOI: 10.18632/oncotarget.16277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy characterized by resistance to currently employed chemotherapeutic approaches. Members of the mir-17~92 cluster of microRNAs (miRNAs) are upregulated in PDAC, but the precise roles of these miRNAs in PDAC are unknown. Using genetically engineered mouse models, we show that loss of mir-17~92 reduces ERK pathway activation downstream of mutant KRAS and promotes the regression of KRASG12D-driven precursor pancreatic intraepithelial neoplasias (PanINs) and their replacement by normal exocrine tissue. In a PDAC model driven by concomitant KRASG12D expression and Trp53 heterozygosity, mir-17~92 deficiency extended the survival of mice that lacked distant metastasis. Moreover, mir-17~92-deficient PDAC cell lines display reduced invasion activity in transwell assays, form fewer invadopodia rosettes than mir-17~92-competent cell lines and are less able to degrade extracellular matrix. Specific inhibition of miR-19 family miRNAs with antagomirs recapitulates these phenotypes, suggesting that miR-19 family miRNAs are important mediators of PDAC cell invasion. Together these data demonstrate an oncogenic role for mir-17~92 at multiple stages of pancreatic tumorigenesis and progression; specifically, they link this miRNA cluster to ERK pathway activation and precursor lesion maintenance in vivo and identify a novel role for miR-19 family miRNAs in promoting cancer cell invasion.
Collapse
Affiliation(s)
- Brian Quattrochi
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Anushree Gulvady
- Department of Cell and Developmental Biology, State University of New York Upstate Medical Center, Syracuse, NY 13210, USA
| | - David R Driscoll
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Makoto Sano
- Division of Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi-ku, Tokyo, 173-8610, Japan
| | - David S Klimstra
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical Center, Syracuse, NY 13210, USA
| | - Brian C Lewis
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Department of Radiation Oncology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
35
|
Skronska-Wasek W, Gosens R, Königshoff M, Baarsma HA. WNT receptor signalling in lung physiology and pathology. Pharmacol Ther 2018; 187:150-166. [PMID: 29458107 DOI: 10.1016/j.pharmthera.2018.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The WNT signalling cascades have emerged as critical regulators of a wide variety of biological aspects involved in lung development as well as in physiological and pathophysiological processes in the adult lung. WNTs (secreted glycoproteins) interact with various transmembrane receptors and co-receptors to activate signalling pathways that regulate transcriptional as well as non-transcriptional responses within cells. In physiological conditions, the majority of WNT receptors and co-receptors can be detected in the adult lung. However, dysregulation of WNT signalling pathways contributes to the development and progression of chronic lung pathologies, including idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), asthma and lung cancer. The interaction between a WNT and the (co-)receptor(s) present at the cell surface is the initial step in transducing an extracellular signal into an intracellular response. This proximal event in WNT signal transduction with (cell-specific) ligand-receptor interactions is of great interest as a potential target for pharmacological intervention. In this review we highlight the diverse expression of various WNT receptors and co-receptors in the aforementioned chronic lung diseases and discuss the currently available biologicals and pharmacological tools to modify proximal WNT signalling.
Collapse
Affiliation(s)
- Wioletta Skronska-Wasek
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center for Lung Research, Ludwig Maximilians University Munich, University Hospital Grosshadern, Munich, Germany
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center for Lung Research, Ludwig Maximilians University Munich, University Hospital Grosshadern, Munich, Germany; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Hoeke Abele Baarsma
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center for Lung Research, Ludwig Maximilians University Munich, University Hospital Grosshadern, Munich, Germany; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
36
|
Meng Q, Dai M, Nie X, Zhang W, Xu X, Li J, Mu H, Liu X, Qin L, Zhu X, Yan J, Zheng M. MicroRNA-19 contributes to the malignant phenotypes of osteosarcoma in vitro by targeting Pax6. Tumour Biol 2018; 40:1010428317744704. [PMID: 29345189 DOI: 10.1177/1010428317744704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This study was conducted to detect the expression of miR-19 and Pax6 (Paired box protein 6) in human osteosarcoma cells and the effects on biological characteristics of osteosarcoma cells. Quantitative real-time polymerase chain reaction was used to detect the expression of Pax6 and miR-19 in normal human osteoblasts (hFOB 1.19) and osteosarcoma cell lines (U2OS, Saos-2, and MG-63). Results showed that miR-19 was significantly upregulated in osteosarcoma cell lines compared with that in hFOB 1.19 cells, while the expression of Pax6 messenger RNA was significantly downregulated. Pax6 was defined as the target gene of miR-19 which was validated by luciferase reporter gene analysis. Results indicated that miR-19 had an interaction with Pax6 3'-untranslated region. At the same time, the protein expression of Pax6 was significantly decreased in the MG-63 cells transfected with miR-19 mimic and was notably enhanced in osteosarcoma MG-63 cells transfected with miR-19 inhibitor. These data suggested that Pax6 was a target of miR-19 in osteosarcoma MG-63 cells. The effects of miR-19 on the biological behavior of MG-63 cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and Transwell assay. Results showed that the downregulation of miR-19 inhibited cell viability, reduced the percentage of cells in S phase and the number of cells passing through the Transwell chamber, and increased the number of apoptotic cells. Western blot analysis showed that the inhibition of miR-19 significantly increased the expression of epithelial proteins (E-cadherin and β-catenin) and decreased the expression of mesenchymal protein (Vimentin), extracellular signal-regulated kinase, and phosphorylated extracellular signal-regulated kinase in MG-63 cells. MiR-19 inhibitor and Pax6 small interfering RNA were simultaneously transfected into MG-63 cells. Results from 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and Transwell assay demonstrated that the inhibition of Pax6 expression in MG-63 cells could reverse the cell biological effects induced by the inhibition of miR-19 expression. Based on these findings, it was suggested that miR-19, upregulated in osteosarcoma cells, negatively regulated the expression of Pax6, which can promote the malignant phenotypes of osteosarcoma cells via activation of the extracellular signal-regulated kinase signaling pathways. Therefore, miR-19/Pax6 may offer potential for use as a target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Qingbing Meng
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Ming Dai
- 2 Department of Medical Laboratory, School of Public Health, Nantong University, Nantong, P.R. China
| | - Xuejun Nie
- 3 Department of Ultrasound, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Wensheng Zhang
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Xingli Xu
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Jian Li
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Hongxin Mu
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Xiaolan Liu
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Ling Qin
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Xiaoqi Zhu
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Jun Yan
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Minqian Zheng
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| |
Collapse
|
37
|
Rapp J, Jaromi L, Kvell K, Miskei G, Pongracz JE. WNT signaling - lung cancer is no exception. Respir Res 2017; 18:167. [PMID: 28870231 PMCID: PMC5584342 DOI: 10.1186/s12931-017-0650-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/27/2017] [Indexed: 02/07/2023] Open
Abstract
Since the initial discovery of the oncogenic activity of WNT ligands our understanding of the complex roles for WNT signaling pathways in lung cancers has increased substantially. In the current review, the various effects of activation and inhibition of the WNT signaling pathways are summarized in the context of lung carcinogenesis. Recent evidence regarding WNT ligand transport mechanisms, the role of WNT signaling in lung cancer angiogenesis and drug transporter regulation and the importance of microRNA and posttranscriptional regulation of WNT signaling are also reviewed.
Collapse
Affiliation(s)
- Judit Rapp
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Luca Jaromi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Gyorgy Miskei
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Judit E. Pongracz
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| |
Collapse
|
38
|
Prognostic role of miR-17-92 family in human cancers: evaluation of multiple prognostic outcomes. Oncotarget 2017; 8:69125-69138. [PMID: 28978185 PMCID: PMC5620325 DOI: 10.18632/oncotarget.19096] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/20/2017] [Indexed: 12/31/2022] Open
Abstract
Recent evidence indicates that miR-17–92 family might be an essential prognostic biomarker for human cancers. However, results are still inconsistent. We therefore performed a meta-analysis to evaluate the predictive role of miR-17–92 family in human cancer prognosis. We searched literatures published before March 31th, 2017 inPubMed, Cochrane and Embase databases. Twenty six studies were included in our analyses. The overall hazard ratios (HRs) showed that high expression level of miR-17-92 family was a predictor of poor overall survival (OS): adjusted HRs = 1.71, 95% confidence intervals (CIs): 1.39–2.11, p < 0.00001, and poor disease-free survival (DFS): adjusted HRs = 2.29, 95% CIs: 1.41–3.72, p = 0.0008. However, no association between miR-17-92 family expression and cancer progress-free survival (PFS) was found (p > 0.05). Subgroup analyses showed that high expression of miR-17-92 family was associated with poor OS (adjusted HRs = 1.89, 95% CIs: 1.43–2.49, p < 0.00001) and DFS (adjusted HRs = 2.83, 95% CIs: 1.59–5.04, p = 0.0003) among the Asian, and no association was found for the Caucasian (p > 0.05). Besides, the HRs of miR-17-92 family high expression in tissue and serum samples was 1.68 (1.35–2.09) and 2.20 (1.08–4.46) for OS, and 1.73 (0.80–3.74) and 3.37 (2.25–5.02) for DFS. It also found that high expression of miR-17-92 family predicted a poor OS in breast cancer, esophageal squamous cell carcinoma, lymphoma and other cancers. Findings suggest that miR-17-92 family can be an effective predictor for prognosis prediction in cancer patients.
Collapse
|
39
|
Kumar A, Rimando AM, Levenson AS. Resveratrol and pterostilbene as a microRNA-mediated chemopreventive and therapeutic strategy in prostate cancer. Ann N Y Acad Sci 2017; 1403:15-26. [PMID: 28662290 DOI: 10.1111/nyas.13372] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/23/2022]
Abstract
Growing evidence indicates that deregulation of the epigenetic machinery comprising the microRNA (miRNA) network is a critical factor in the progression of various diseases, including cancer. Concurrently, dietary phytochemicals are being intensively studied for their miRNA-mediated health-beneficial properties, such as anti-inflammatory, cardioprotective, antioxidative, and anticancer properties. Available experimental data have suggested that dietary polyphenols may be effective miRNA-modulating chemopreventive and therapeutic agents. Moreover, noninvasive detection of changes in miRNA expression in liquid biopsies opens enormous possibilities for their clinical utilization as novel prognostic and predictive biomarkers. In our published studies, we identified resveratrol-regulated miRNA profiles in prostate cancer. Resveratrol downregulated the phosphatase and tensin homolog (PTEN)-targeting members of the oncogenic miR-17 family of miRNAs, which are overexpressed in prostate cancer. We have functionally validated the miRNA-mediated ability of resveratrol and its potent analog pterostilbene to rescue the tumor suppressor activity of PTEN in vitro and in vivo. Taken together, our findings implicate the use of resveratrol and its analogs as an attractive miRNA-mediated chemopreventive and therapeutic strategy in prostate cancer and the use of circulating miRNAs as potential predictive biomarkers for clinical development.
Collapse
Affiliation(s)
- Avinash Kumar
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York
| | - Agnes M Rimando
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, Oxford, Mississippi
| | - Anait S Levenson
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York
| |
Collapse
|
40
|
Repurposing Established Compounds to Target Pancreatic Cancer Stem Cells (CSCs). Med Sci (Basel) 2017; 5:medsci5020014. [PMID: 29099030 PMCID: PMC5635789 DOI: 10.3390/medsci5020014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/11/2017] [Accepted: 06/11/2017] [Indexed: 02/08/2023] Open
Abstract
The diagnosis of pancreatic ductal adenocarcinoma (PDAC) carries a dismal prognosis, in particular, when patients present with unresectable disease. While significant progress has been made in understanding the biology of PDAC, this knowledge has not translated into a clear clinical benefit and current chemotherapeutic strategies only offer a modest improvement in overall survival. Accordingly, novel approaches are desperately needed. One hypothesis that could—at least in part—explain the desolate response of PDAC to chemotherapy is the so-called cancer stem cell (CSC) concept, which attributes specific traits, such as chemoresistance, metastatic potential and a distinct metabolism to a small cellular subpopulation of the whole tumor. At the same time, however, some of these attributes could make CSCs more permissive for novel therapeutic strategies with compounds that are already in clinical use. Most recently, several publications have tried to enlighten the field with the idea of repurposing established drugs for antineoplastic use. As such, recycling drugs could present an intriguing and fast-track method with new therapeutic paradigms in anti-cancer and anti-CSC treatments. Here, we aim to summarize important aspects and novel findings of this emerging field.
Collapse
|
41
|
Gu Y, Liu S, Zhang X, Chen G, Liang H, Yu M, Liao Z, Zhou Y, Zhang CY, Wang T, Wang C, Zhang J, Chen X. Oncogenic miR-19a and miR-19b co-regulate tumor suppressor MTUS1 to promote cell proliferation and migration in lung cancer. Protein Cell 2017; 8:455-466. [PMID: 28364280 PMCID: PMC5445029 DOI: 10.1007/s13238-017-0393-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 02/23/2017] [Indexed: 01/04/2023] Open
Abstract
MTUS1 (microtubule-associated tumor suppressor 1) has been identified that can function as a tumor suppressor gene in many malignant tumors. However, the function and mechanisms underlying the regulation of MTUS1 are unclear. In the present study, we reported that miR-19a and miR-19b (miR-19a/b) promote proliferation and migration of lung cancer cells by targeting MTUS1. First, MTUS1 was proved to function as a tumor suppressor in lung cancer and was linked to cell proliferation and migration promotion. Second, an inverse correlation between miR-19a/b expression and MTUS1 mRNA/protein expression was noted in human lung cancer tissues. Third, MTUS1 was appraised as a direct target of miR-19a/b by bioinformatics analysis. Fourth, direct MTUS1 regulation by miR-19a/b in lung cancer cells was experimentally affirmed by cell transfection assay and luciferase reporter assay. Finally, miR-19a/b were shown to cooperatively repress MTUS1 expression and synergistically regulate MTUS1 expression to promote lung cancer cell proliferation and migration. In conclusion, our findings have provided the first clues regarding the roles of miR-19a/b, which appear to function as oncomirs in lung cancer by downregulating MTUS1.
Collapse
Affiliation(s)
- Yuanyuan Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for Micro, RNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Shuoxin Liu
- The Second Department of Medical Oncology, Linyi Tumor Hospital, Linyi, 276000, China
| | - Xiaodan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for Micro, RNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Guimin Chen
- The Second Department of Medical Oncology, Linyi Tumor Hospital, Linyi, 276000, China
| | - Hongwei Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for Micro, RNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Mengchao Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for Micro, RNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Zhicong Liao
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University and Nanjing Multi-Center Biobank, Nanjing, 210008, China
| | - Yong Zhou
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University and Nanjing Multi-Center Biobank, Nanjing, 210008, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for Micro, RNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Tao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for Micro, RNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210046, China.
| | - Chen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for Micro, RNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210046, China.
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for Micro, RNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210046, China.
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for Micro, RNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210046, China.
| |
Collapse
|
42
|
Zhu J, Wang S, Chen Y, Li X, Jiang Y, Yang X, Li Y, Wang X, Meng Y, Zhu M, Ma X, Huang C, Wu R, Xie C, Geng S, Wu J, Zhong C, Han H. miR-19 targeting of GSK3β mediates sulforaphane suppression of lung cancer stem cells. J Nutr Biochem 2017; 44:80-91. [PMID: 28431267 DOI: 10.1016/j.jnutbio.2017.02.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/21/2017] [Accepted: 02/25/2017] [Indexed: 12/17/2022]
Abstract
Cancer stem cells (CSCs) play a central role in the development of cancer. The canonical Wnt/β-catenin pathway is critical for maintaining stemness of CSCs. Phytochemicals from dietary compounds possess anti-CSCs properties and have been characterized as promising therapeutic agents for the prevention and treatment of many cancers. To date, the involvement and function of miR-19, a key oncogenic miRNA, in regulating Wnt/β-catenin pathway and lung CSCs has not been defined. Meanwhile, the effect of sulforaphane (SFN) on lung CSCs also remains to be elucidated. Here, we reported that lung CSCs up-regulated miR-19a and miR-19b expression. Overexpression of miR-19a/19b enhanced the ability of tumorsphere formation, up-regulated the expression of lung CSCs markers, increased Wnt/β-catenin pathway activation and β-catenin/TCF transcriptional activity in lung CSCs. In contrary, down-regulation of miR-19 suppressed lung CSCs activity and Wnt/β-catenin activation. We further revealed that miR-19 activated Wnt/β-catenin pathway by directly targeting GSK3β, the key negative modulator of this pathway. Moreover, we showed that SFN exhibited inhibitory effect on lung CSCs through suppressing miR-19 and Wnt/β-catenin pathway. Taken together, these data illustrate the role of miR-19 in regulating lung CSCs traits and miR-19/GSK3β/β-catenin axis in SFN intervention of lung CSCs. Findings from this study could provide important new insights into the molecular mechanisms of lung CSCs regulation as well as its target intervention.
Collapse
Affiliation(s)
- Jianyun Zhu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shijia Wang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yue Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ye Jiang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xue Yang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoqian Wang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yu Meng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingming Zhu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Ma
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cong Huang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Rui Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shanshan Geng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jieshu Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Hongyu Han
- Department of Clinical Nutrition, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
43
|
OV6 + cancer stem cells drive esophageal squamous cell carcinoma progression through ATG7-dependent β-catenin stabilization. Cancer Lett 2017; 391:100-113. [DOI: 10.1016/j.canlet.2017.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/15/2017] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
|
44
|
Li C, Lyu J, Meng QH. MiR-93 Promotes Tumorigenesis and Metastasis of Non-Small Cell Lung Cancer Cells by Activating the PI3K/Akt Pathway via Inhibition of LKB1/ PTEN/ CDKN1A. J Cancer 2017; 8:870-879. [PMID: 28382150 PMCID: PMC5381176 DOI: 10.7150/jca.17958] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) accounts for approximately 85% of clinical lung cancer cases. MicroRNA-93 (miR-93) is an oncomiR in many types of human cancer, exerting pivotal effects in the development and progression of malignancies, including NSCLC. However, the mechanism underlying miR-93 involvement in NSCLC is unknown. Our purpose was to reveal and explain this mechanism, with the goal of contributing to the development of new diagnostic biomarkers and individualized therapeutic tools. METHODS The expression of miR-93 was determined in NSCLC cell lines A549, H1975, and H1299. The cells were transfected with control plasmids (Mock group), miR-93 overexpression plasmids (miR-93 Up group), or miR-93 inhibitor plasmids (miR-93 Down group) to generate stable miR-93-overexpressing or -depleted cells. The effects of miR-93 on proliferation, migration, and invasion of these cells were determined. The in vivo effects of miR-93 on tumor metastasis were determined in an NSCLC xenograft mouse model. The molecular mechanisms underlying these effects were investigated via dual luciferase reporter assay and western blotting. RESULTS MiR-93 expression levels were significantly greater in the NSCLC cell lines than in normal lung epithelial cells. Cell proliferation, migration, and invasion were significantly stimulated by miR-93 upregulation (all P<0.05) and inhibited by miR-93 downregulation. Dual luciferase reporter assay demonstrated that miR-93 directly bound with the 3'-untranslated region of the tumor suppressor gene LKB1. Western blotting analysis indicated that miR-93 activated the PI3K/Akt pathway by inhibiting LKB1, PTEN, and p21. Increased expression of miR-93 induced significant hepatic metastasis of lung cancer in the xenograft mouse model. CONCLUSION Overexpression of miR-93 facilitates tumorigenesis and metastasis of NSCLC. These findings provide novel insight into the mechanism of miR-93 involvement in NSCLC, suggesting that miR-93 may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Chunmei Li
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qing H Meng
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China;; Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
45
|
Wang K, Jin W, Jin P, Fei X, Wang X, Chen X. miR-211-5p Suppresses Metastatic Behavior by Targeting SNAI1 in Renal Cancer. Mol Cancer Res 2017; 15:448-456. [PMID: 28057716 DOI: 10.1158/1541-7786.mcr-16-0288] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 11/16/2022]
Abstract
The Snail family transcriptional repressor 1 (SNAI1) is known to promote metastatic phenotypes in renal cell carcinoma (RCC). However, the mechanism by which SNAI1 promotes RCC metastasis remains largely unexplored. Here, bioinformatics and quantitative validation revealed that miR-211-5p was downregulated in metastatic RCC clinical specimens compared with nonmetastatic RCC tissues. Overexpression of miR-211-5p suppressed RCC cell migration and invasion via downregulation of SNAI1 expression. Luciferase reporter assays demonstrated that miR-211-5p directly targeted 3'-UTR of SNAI1. Furthermore, miR-211-5p decreased xenograft tumor weight and reduced in vivo tumor metastasis in mice. These findings indicate that miR-211-5p-mediated inhibition of SNAIL1 expression contributes to the suppression of RCC progression.Implications: Targeting the miR-211-5p/SNAI1 signaling pathway may be a novel therapeutic approach for the treatment of RCC metastasis. Mol Cancer Res; 15(4); 448-56. ©2017 AACR.
Collapse
Affiliation(s)
- Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Jin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Jin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiang Fei
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
46
|
Liu Y, Sun Z, Xu D, Liu J, Li X, Wu X, Zhang Y, Wang Q, Huang C, Meng X, Li J. Hesperidin derivative-11 inhibits fibroblast-like synoviocytes proliferation by activating Secreted frizzled-related protein 2 in adjuvant arthritis rats. Eur J Pharmacol 2017; 794:173-183. [DOI: 10.1016/j.ejphar.2016.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 12/17/2022]
|