1
|
Ma T, Jin L, Bai S, Liu Z, Wang S, Shen B, Cho Y, Cao S, Sun MJS, Fazli L, Zhang D, Wedderburn C, Zhang DY, Mugon G, Ungerleider N, Baddoo M, Zhang K, Schiavone LH, Burkhardt BR, Fan J, You Z, Flemington EK, Dong X, Dong Y. Loss of feedback regulation between FAM3B and androgen receptor driving prostate cancer progression. J Natl Cancer Inst 2024; 116:421-433. [PMID: 37847647 PMCID: PMC10919334 DOI: 10.1093/jnci/djad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Although the fusion of the transmembrane serine protease 2 gene (TMPRSS2) with the erythroblast transformation-specific-related gene (ERG), or TMPRSS2-ERG, occurs frequently in prostate cancer, its impact on clinical outcomes remains controversial. Roughly half of TMPRSS2-ERG fusions occur through intrachromosomal deletion of interstitial genes and the remainder via insertional chromosomal rearrangements. Because prostate cancers with deletion-derived TMPRSS2-ERG fusions are more aggressive than those with insertional fusions, we investigated the impact of interstitial gene loss on prostate cancer progression. METHODS We conducted an unbiased analysis of transcriptome data from large collections of prostate cancer samples and employed diverse in vitro and in vivo models combined with genetic approaches to characterize the interstitial gene loss that imposes the most important impact on clinical outcome. RESULTS This analysis identified FAM3B as the top-ranked interstitial gene whose loss is associated with a poor prognosis. The association between FAM3B loss and poor clinical outcome extended to fusion-negative prostate cancers where FAM3B downregulation occurred through epigenetic imprinting. Importantly, FAM3B loss drives disease progression in prostate cancer. FAM3B acts as an intermediator of a self-governing androgen receptor feedback loop. Specifically, androgen receptor upregulates FAM3B expression by binding to an intronic enhancer to induce an enhancer RNA and facilitate enhancer-promoter looping. FAM3B, in turn, attenuates androgen receptor signaling. CONCLUSION Loss of FAM3B in prostate cancer, whether through the TMPRSS2-ERG translocation or epigenetic imprinting, causes an exit from this autoregulatory loop to unleash androgen receptor activity and prostate cancer progression. These findings establish FAM3B loss as a new driver of prostate cancer progression and support the utility of FAM3B loss as a biomarker to better define aggressive prostate cancer.
Collapse
Affiliation(s)
- Tianfang Ma
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Lianjin Jin
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Shanshan Bai
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Zhan Liu
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Shuo Wang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Urological Department, Peking University Cancer Hospital & Institute, Beijing, China
| | - Beibei Shen
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yeyoung Cho
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Subing Cao
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Meijuan J S Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ladan Fazli
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - David Zhang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Duke University, Durham, NC, USA
| | - Chiyaro Wedderburn
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Derek Y Zhang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- University of Southern California, Los Angeles, CA, USA
| | - Gavisha Mugon
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nathan Ungerleider
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Melody Baddoo
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Kun Zhang
- Department of Computer Science, Bioinformatics Facility of Xavier RCMI Center of Cancer Research, Xavier University of Louisiana, New Orleans, LA, USA
| | | | - Brant R Burkhardt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Jia Fan
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Zongbing You
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Erik K Flemington
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Xuesen Dong
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Yan Dong
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| |
Collapse
|
2
|
Gong T, Jaratlerdsiri W, Jiang J, Willet C, Chew T, Patrick SM, Lyons RJ, Haynes AM, Pasqualim G, Brum IS, Stricker PD, Mutambirwa SBA, Sadsad R, Papenfuss AT, Bornman RMS, Chan EKF, Hayes VM. Genome-wide interrogation of structural variation reveals novel African-specific prostate cancer oncogenic drivers. Genome Med 2022; 14:100. [PMID: 36045381 PMCID: PMC9434886 DOI: 10.1186/s13073-022-01096-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND African ancestry is a significant risk factor for advanced prostate cancer (PCa). Mortality rates in sub-Saharan Africa are 2.5-fold greater than global averages. However, the region has largely been excluded from the benefits of whole genome interrogation studies. Additionally, while structural variation (SV) is highly prevalent, PCa genomic studies are still biased towards small variant interrogation. METHODS Using whole genome sequencing and best practice workflows, we performed a comprehensive analysis of SVs for 180 (predominantly Gleason score ≥ 8) prostate tumours derived from 115 African, 61 European and four ancestrally admixed patients. We investigated the landscape and relationship of somatic SVs in driving ethnic disparity (African versus European), with a focus on African men from southern Africa. RESULTS Duplication events showed the greatest ethnic disparity, with a 1.6- (relative frequency) to 2.5-fold (count) increase in African-derived tumours. Furthermore, we found duplication events to be associated with CDK12 inactivation and MYC copy number gain, and deletion events associated with SPOP mutation. Overall, African-derived tumours were 2-fold more likely to present with a hyper-SV subtype. In addition to hyper-duplication and deletion subtypes, we describe a new hyper-translocation subtype. While we confirm a lower TMPRSS2-ERG fusion-positive rate in tumours from African cases (10% versus 33%), novel African-specific PCa ETS family member and TMPRSS2 fusion partners were identified, including LINC01525, FBXO7, GTF3C2, NTNG1 and YPEL5. Notably, we found 74 somatic SV hotspots impacting 18 new candidate driver genes, with CADM2, LSAMP, PTPRD, PDE4D and PACRG having therapeutic implications for African patients. CONCLUSIONS In this first African-inclusive SV study for high-risk PCa, we demonstrate the power of SV interrogation for the identification of novel subtypes, oncogenic drivers and therapeutic targets. Identifying a novel spectrum of SVs in tumours derived from African patients provides a mechanism that may contribute, at least in part, to the observed ethnic disparity in advanced PCa presentation in men of African ancestry.
Collapse
Affiliation(s)
- Tingting Gong
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Weerachai Jaratlerdsiri
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Jue Jiang
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Cali Willet
- Sydney Informatics Hub, University of Sydney, Sydney, NSW, Australia
| | - Tracy Chew
- Sydney Informatics Hub, University of Sydney, Sydney, NSW, Australia
| | - Sean M Patrick
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Ruth J Lyons
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Anne-Maree Haynes
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Gabriela Pasqualim
- Endocrine and Tumor Molecular Biology Laboratory, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Genetics, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Ilma Simoni Brum
- Endocrine and Tumor Molecular Biology Laboratory, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Phillip D Stricker
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Department of Urology, St. Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Shingai B A Mutambirwa
- Department of Urology, Sefako Makgatho Health Science University, Dr George Mukhari Academic Hospital, Medunsa, Ga-Rankuwa, South Africa
| | - Rosemarie Sadsad
- Sydney Informatics Hub, University of Sydney, Sydney, NSW, Australia
| | - Anthony T Papenfuss
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Riana M S Bornman
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Eva K F Chan
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- NSW Health Pathology, Sydney, Australia
| | - Vanessa M Hayes
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.
- Faculty of Health Sciences, University of Limpopo, Turfloop Campus, Mankweng, South Africa.
| |
Collapse
|
3
|
Panagopoulos I, Heim S. Interstitial Deletions Generating Fusion Genes. Cancer Genomics Proteomics 2021; 18:167-196. [PMID: 33893073 DOI: 10.21873/cgp.20251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
A fusion gene is the physical juxtaposition of two different genes resulting in a structure consisting of the head of one gene and the tail of the other. Gene fusion is often a primary neoplasia-inducing event in leukemias, lymphomas, solid malignancies as well as benign tumors. Knowledge about fusion genes is crucial not only for our understanding of tumorigenesis, but also for the diagnosis, prognostication, and treatment of cancer. Balanced chromosomal rearrangements, in particular translocations and inversions, are the most frequent genetic events leading to the generation of fusion genes. In the present review, we summarize the existing knowledge on chromosome deletions as a mechanism for fusion gene formation. Such deletions are mostly submicroscopic and, hence, not detected by cytogenetic analyses but by array comparative genome hybridization (aCGH) and/or high throughput sequencing (HTS). They are found across the genome in a variety of neoplasias. As tumors are increasingly analyzed using aCGH and HTS, it is likely that more interstitial deletions giving rise to fusion genes will be found, significantly impacting our understanding and treatment of cancer.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Maitland NJ. Resistance to Antiandrogens in Prostate Cancer: Is It Inevitable, Intrinsic or Induced? Cancers (Basel) 2021; 13:327. [PMID: 33477370 PMCID: PMC7829888 DOI: 10.3390/cancers13020327] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/20/2022] Open
Abstract
Increasingly sophisticated therapies for chemical castration dominate first-line treatments for locally advanced prostate cancer. However, androgen deprivation therapy (ADT) offers little prospect of a cure, as resistant tumors emerge rather rapidly, normally within 30 months. Cells have multiple mechanisms of resistance to even the most sophisticated drug regimes, and both tumor cell heterogeneity in prostate cancer and the multiple salvage pathways result in castration-resistant disease related genetically to the original hormone-naive cancer. The timing and mechanisms of cell death after ADT for prostate cancer are not well understood, and off-target effects after long-term ADT due to functional extra-prostatic expression of the androgen receptor protein are now increasingly being recorded. Our knowledge of how these widely used treatments fail at a biological level in patients is deficient. In this review, I will discuss whether there are pre-existing drug-resistant cells in a tumor mass, or whether resistance is induced/selected by the ADT. Equally, what is the cell of origin of this resistance, and does it differ from the treatment-naïve tumor cells by differentiation or dedifferentiation? Conflicting evidence also emerges from studies in the range of biological systems and species employed to answer this key question. It is only by improving our understanding of this aspect of treatment and not simply devising another new means of androgen inhibition that we can improve patient outcomes.
Collapse
Affiliation(s)
- Norman J Maitland
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
5
|
Sussman RT, Oran AR, Paolillo C, Lieberman D, Morrissette JJD, Rosenbaum JN. Validation of a Next-Generation Sequencing Assay Targeting RNA for the Multiplexed Detection of Fusion Transcripts and Oncogenic Isoforms. Arch Pathol Lab Med 2019; 144:90-98. [PMID: 31211614 DOI: 10.5858/arpa.2018-0441-oa] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Next-generation sequencing is a high-throughput method for detecting genetic abnormalities and providing prognostic and therapeutic information for patients with cancer. Oncogenic fusion transcripts are among the various classifications of genetic abnormalities present in tumors and are typically detected clinically with fluorescence in situ hybridization (FISH). However, FISH probes only exist for a limited number of targets, do not provide any information about fusion partners, cannot be multiplex, and have been shown to be limited in specificity for common targets such as ALK. OBJECTIVE.— To validate an anchored multiplex polymerase chain reaction-based panel for the detection of fusion transcripts in a university hospital-based clinical molecular diagnostics laboratory. DESIGN.— We used 109 unique clinical specimens to validate a custom panel targeting 104 exon boundaries from 17 genes involved in fusions in solid tumors. The panel can accept as little as 100 ng of total nucleic acid from PreservCyt-fixed tissue, and formalin-fixed, paraffin-embedded specimens with as little as 10% tumor nuclei. RESULTS.— Using FISH as the gold standard, this assay has a sensitivity of 88.46% and a specificity of 95.83% for the detection of fusion transcripts involving ALK, RET, and ROS1 in lung adenocarcinomas. Using a validated next-generation sequencing assay as the orthogonal gold standard for the detection of EGFR variant III (EGFRvIII) in glioblastomas, the assay is 92.31% sensitive and 100% specific. CONCLUSIONS.— This multiplexed assay is tumor and fusion partner agnostic and will provide clinical utility in therapy selection for patients with solid tumors.
Collapse
Affiliation(s)
- Robyn T Sussman
- From the Center for Personalized Diagnostics, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| | - Amanda R Oran
- From the Center for Personalized Diagnostics, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| | - Carmela Paolillo
- From the Center for Personalized Diagnostics, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| | - David Lieberman
- From the Center for Personalized Diagnostics, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| | - Jennifer J D Morrissette
- From the Center for Personalized Diagnostics, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| | - Jason N Rosenbaum
- From the Center for Personalized Diagnostics, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
6
|
Murphy SJ, Harris FR, Kosari F, Barreto Siqueira Parrilha Terra S, Nasir A, Johnson SH, Serla V, Smadbeck JB, Halling GC, Karagouga G, Sukov WR, Leventakos K, Yang P, Peikert T, Mansfield AS, Wigle DA, Yi ES, Kipp BR, Vasmatzis G, Aubry MC. Using Genomics to Differentiate Multiple Primaries From Metastatic Lung Cancer. J Thorac Oncol 2019; 14:1567-1582. [PMID: 31103780 DOI: 10.1016/j.jtho.2019.05.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 04/01/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Genomic technologies present a promising mechanism of resolving the clinical dilemma of distinguishing independent primary tumors from intrapulmonary metastases in NSCLC. We evaluated the utility of discordant mapping somatic junctions from chromosomal rearrangements in diagnosing metastatic disease compared to the current standard histologic review. MATERIAL AND METHODS Mate-pair sequencing was performed on DNA extracted from 76 distinct tumors from 37 cases of multiple lung cancers. Discordant mapping junctions and chromosomal copy levels were assessed for each tumor. Blood-derived DNA was available on 22 of these cases for germline assessments. A lung cancer next-generation sequencing panel was additionally performed on tumor pairs from 17 patients. RESULTS Whereas mate-pair sequencing was able to classify lineage in all tumor pairs, histologic review appeared to misclassify lineage in 9 of 33 (27%) same-histology tumor pair comparisons. Based on disagreement between the reviewing pathologists, histopathologic lineage was classified as indeterminate in seven cases. In two cases where pathologists agreed on a metastatic call, no shared junctions were found suggesting independent primaries. Although germline junctions passing algorithmic filters were common, on average less than three were present and all had predictable structures of small focal rearrangements or transposons. Evaluation of shared chromosomal copy changes and driver mutations through a lung cancer next-generation sequencing panel, while informative, were nondefinitive in calling lineage in all cases. CONCLUSIONS The highly unique nature and prevalence of chromosomal rearrangement in lung cancers provide a useful and definitive technique for calling lineage in multifocal lung cancer.
Collapse
Affiliation(s)
- Stephen J Murphy
- Center for Individualized Medicine, Biomarker Discovery Program, Mayo Clinic, Rochester, Minnesota
| | - Faye R Harris
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Farhad Kosari
- Center for Individualized Medicine, Biomarker Discovery Program, Mayo Clinic, Rochester, Minnesota
| | - Simone Barreto Siqueira Parrilha Terra
- Center for Individualized Medicine, Biomarker Discovery Program, Mayo Clinic, Rochester, Minnesota; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Aqsa Nasir
- Center for Individualized Medicine, Biomarker Discovery Program, Mayo Clinic, Rochester, Minnesota
| | - Sarah H Johnson
- Center for Individualized Medicine, Biomarker Discovery Program, Mayo Clinic, Rochester, Minnesota
| | - Vishnu Serla
- Center for Individualized Medicine, Biomarker Discovery Program, Mayo Clinic, Rochester, Minnesota; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - James B Smadbeck
- Center for Individualized Medicine, Biomarker Discovery Program, Mayo Clinic, Rochester, Minnesota
| | - Geoffrey C Halling
- Center for Individualized Medicine, Biomarker Discovery Program, Mayo Clinic, Rochester, Minnesota
| | - Giannoula Karagouga
- Center for Individualized Medicine, Biomarker Discovery Program, Mayo Clinic, Rochester, Minnesota
| | - William R Sukov
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Ping Yang
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Tobias Peikert
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Dennis A Wigle
- Department of General Thoracic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Eunhee S Yi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Benjamin R Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - George Vasmatzis
- Center for Individualized Medicine, Biomarker Discovery Program, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
7
|
Johnson SH, Smadbeck J, Harris F, Mansfield A, Gaitatzes A, Murphy S, Vasmatzis G. 9. Detection of fusion genes from complex rearrangements reported by genome-wide mate-pair sequencing (MPseq). Cancer Genet 2018. [DOI: 10.1016/j.cancergen.2018.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
|