1
|
Wang Y, Vandewalle N, De Veirman K, Vanderkerken K, Menu E, De Bruyne E. Targeting mTOR signaling pathways in multiple myeloma: biology and implication for therapy. Cell Commun Signal 2024; 22:320. [PMID: 38862983 PMCID: PMC11165851 DOI: 10.1186/s12964-024-01699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Multiple Myeloma (MM), a cancer of terminally differentiated plasma cells, is the second most prevalent hematological malignancy and is incurable due to the inevitable development of drug resistance. Intense protein synthesis is a distinctive trait of MM cells, supporting the massive production of clonal immunoglobulins or free light chains. The mammalian target of rapamycin (mTOR) kinase is appreciated as a master regulator of vital cellular processes, including regulation of metabolism and protein synthesis, and can be found in two multiprotein complexes, mTORC1 and mTORC2. Dysregulation of these complexes is implicated in several types of cancer, including MM. Since mTOR has been shown to be aberrantly activated in a large portion of MM patients and to play a role in stimulating MM cell survival and resistance to several existing therapies, understanding the regulation and functions of the mTOR complexes is vital for the development of more effective therapeutic strategies. This review provides a general overview of the mTOR pathway, discussing key discoveries and recent insights related to the structure and regulation of mTOR complexes. Additionally, we highlight findings on the mechanisms by which mTOR is involved in protein synthesis and delve into mTOR-mediated processes occurring in MM. Finally, we summarize the progress and current challenges of drugs targeting mTOR complexes in MM.
Collapse
Affiliation(s)
- Yanmeng Wang
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Niels Vandewalle
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Kim De Veirman
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Universitair Ziekenhuis Brussel (UZ Brussel), Jette, Belgium
| | - Karin Vanderkerken
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Eline Menu
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium.
| | - Elke De Bruyne
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium.
| |
Collapse
|
2
|
Acuña M. Scaffolding Supports the Hippo. Cell Mol Gastroenterol Hepatol 2024; 18:101363. [PMID: 38848765 PMCID: PMC11452332 DOI: 10.1016/j.jcmgh.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024]
Affiliation(s)
- Mariana Acuña
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
3
|
Heestermans R, Schots R, De Becker A, Van Riet I. Liquid Biopsies as Non-Invasive Tools for Mutation Profiling in Multiple Myeloma: Application Potential, Challenges, and Opportunities. Int J Mol Sci 2024; 25:5208. [PMID: 38791247 PMCID: PMC11121516 DOI: 10.3390/ijms25105208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Over the last decades, the survival of multiple myeloma (MM) patients has considerably improved. However, despite the availability of new treatments, most patients still relapse and become therapy-resistant at some point in the disease evolution. The mutation profile has an impact on MM patients' outcome, while typically evolving over time. Because of the patchy bone marrow (BM) infiltration pattern, the analysis of a single bone marrow sample can lead to an underestimation of the known genetic heterogeneity in MM. As a result, interest is shifting towards blood-derived liquid biopsies, which allow for a more comprehensive and non-invasive genetic interrogation without the discomfort of repeated BM aspirations. In this review, we compare the application potential for mutation profiling in MM of circulating-tumor-cell-derived DNA, cell-free DNA and extracellular-vesicle-derived DNA, while also addressing the challenges associated with their use.
Collapse
Affiliation(s)
- Robbe Heestermans
- Department of Clinical Biology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Translational Oncology Research Center (Team Hematology and Immunology), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Rik Schots
- Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Translational Oncology Research Center (Team Hematology and Immunology), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ann De Becker
- Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Translational Oncology Research Center (Team Hematology and Immunology), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ivan Van Riet
- Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Translational Oncology Research Center (Team Hematology and Immunology), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
4
|
Xu C, Fang T, Qu J, Miao Y, Tian L, Zhang M, Zhuang H, Sun B, Chen L. RASSF4 Attenuates Metabolic Dysfunction-Associated Steatotic Liver Disease Progression via Hippo Signaling and Suppresses Hepatocarcinogenesis. Cell Mol Gastroenterol Hepatol 2024; 18:101348. [PMID: 38697356 PMCID: PMC11217689 DOI: 10.1016/j.jcmgh.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) is a dynamic chronic liver disease closely related to metabolic abnormalities such as diabetes and obesity. MASLD can further progress to metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). However, the mechanisms underlying the progression of MASLD and further progression to liver fibrosis and liver cancer are unknown. METHODS In this study, we performed transcriptome analysis in livers from mice with MASLD and found suppression of a potential anti-oncogene, RAS association domain protein 4 (RASSF4). RASSF4 expression levels were measured in liver or tumor tissues of patients with MASH or HCC, respectively. We established RASSF4 overexpression and knockout mouse models. The effects of RASSF4 were evaluated by quantitative polymerase chain reaction, Western blotting, histopathological analysis, wound healing assays, Transwell assays, EdU incorporation assays, colony formation assays, sorafenib sensitivity assays, and tumorigenesis assays. RESULTS RASSF4 was significantly down-regulated in MASH and HCC samples. Using liver-specific RASSF4 knockout mice, we demonstrated that loss of hepatic RASSF4 exacerbated hepatic steatosis and fibrosis. In contrast, RASSF4 overexpression prevented steatosis in MASLD mice. In addition, RASSF4 in hepatocytes suppressed the activation of hepatic stellate cells (HSCs) by reducing transforming growth factor beta secretion. Moreover, we found that RASSF4 is an independent prognostic factor for HCC. Mechanistically, we found that RASSF4 in the liver interacts with MST1 to inhibit YAP nuclear translocation through the Hippo pathway. CONCLUSIONS These findings establish RASSF4 as a therapeutic target for MASLD and HCC.
Collapse
Affiliation(s)
- Chaofei Xu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Ting Fang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jingru Qu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yahui Miao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Lei Tian
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Man Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Hao Zhuang
- Department of Hepatobiliopancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
5
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
6
|
Akram F, Tanveer R, Andleeb S, Shah FI, Ahmad T, Shehzadi S, Akhtar AM, Syed G. Deciphering the Epigenetic Symphony of Cancer: Insights and Epigenetic Therapies Implications. Technol Cancer Res Treat 2024; 23:15330338241250317. [PMID: 38780251 PMCID: PMC11119348 DOI: 10.1177/15330338241250317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
Epigenetic machinery is a cornerstone in normal cell development, orchestrating tissue-specific gene expression in mammalian cells. Aberrations in this intricate landscape drive substantial changes in gene function, emerging as a linchpin in cancer etiology and progression. While cancer was conventionally perceived as solely a genetic disorder, its contemporary definition encompasses genetic alterations intertwined with disruptive epigenetic abnormalities. This review explores the profound impact of DNA methylation, histone modifications, and noncoding RNAs on fundamental cellular processes. When these pivotal epigenetic mechanisms undergo disruption, they intricately guide the acquisition of the 6 hallmark characteristics of cancer within seemingly normal cells. Leveraging the latest advancements in decoding these epigenetic intricacies holds immense promise, heralding a new era in developing targeted and more efficacious treatment modalities against cancers driven by aberrant epigenetic modifications.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Rida Tanveer
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Sahar Andleeb
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Fatima Iftikhar Shah
- Department of Medical Lab Technology, The University of Lahore, Lahore, Pakistan
| | - Tayyab Ahmad
- Department of Medicine, Fatima Memorial Hospital, Lahore, Pakistan
| | - Somia Shehzadi
- Department of Medical Lab Technology, The University of Lahore, Lahore, Pakistan
| | | | - Ghania Syed
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
7
|
Jia Y, Liu R, Shi L, Feng Y, Zhang L, Guo N, He A, Kong G. Integrative analysis of the prognostic value and immune microenvironment of mitophagy-related signature for multiple myeloma. BMC Cancer 2023; 23:859. [PMID: 37700273 PMCID: PMC10496355 DOI: 10.1186/s12885-023-11371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a fatal malignant tumor in hematology. Mitophagy plays vital roles in the pathogenesis and drug sensitivity of MM. METHODS We acquired transcriptomic expression data and clinical index of MM patients from NCI public database, and 36 genes involved in mitophagy from the gene set enrichment analysis (GSEA) database. Least absolute shrinkage and selection operator (LASSO) Cox regression analysis was conducted to construct a risk score prognostic model. Kaplan-Meier survival analysis and receiver operation characteristic curves (ROC) were conducted to identify the efficiency of prognosis and diagnosis. ESTIMATE algorithm and immune-related single-sample gene set enrichment analysis (ssGSEA) was performed to uncover the level of immune infiltration. QRT-PCR was performed to verify gene expression in clinical samples of MM patients. The sensitivity to chemotherapy drugs was evaluated upon the database of the genomics of drug sensitivity in cancer (GDSC). RESULTS Fifty mitophagy-related genes were differently expressed in two independent cohorts. Ten out of these genes were identified to be related to MM overall survival (OS) rate. A prognostic risk signature model was built upon on these genes: VDAC1, PINK1, VPS13C, ATG13, and HUWE1, which predicted the survival of MM accurately and stably both in training and validation cohorts. MM patients suffered more adverse prognosis showed more higher risk core. In addition, the risk score was considered as an independent prognostic element for OS of MM patients by multivariate cox regression analysis. Functional pathway enrichment analysis of differentially expressed genes (DEGs) based on risk score showed terms of cell cycle, immune response, mTOR pathway, and MYC targets were obviously enriched. Furthermore, MM patients with higher risk score were observed lower immune scores and lower immune infiltration levels. The results of qRT-PCR verified VDAC1, PINK1, and HUWE1 were dysregulated in new diagnosed MM patients. Finally, further analysis indicated MM patients showed more susceptive to bortezomib, lenalidomide and rapamycin in high-risk group. CONCLUSION Our research provided a neoteric prognostic model of MM based on mitophagy genes. The immune infiltration level based on risk score paved a better understanding of the participation of mitophagy in MM.
Collapse
Affiliation(s)
- Yachun Jia
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Luyi Shi
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yuandong Feng
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Linlin Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Ni Guo
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Aili He
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Guangyao Kong
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
8
|
Jia Y, Yu X, Liu R, Shi L, Jin H, Yang D, Zhang X, Shen Y, Feng Y, Zhang P, Yang Y, Zhang L, Zhang P, Li Z, He A, Kong G. PRMT1 methylation of WTAP promotes multiple myeloma tumorigenesis by activating oxidative phosphorylation via m6A modification of NDUFS6. Cell Death Dis 2023; 14:512. [PMID: 37558663 PMCID: PMC10412649 DOI: 10.1038/s41419-023-06036-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Epigenetic modifications play important roles during the pathogenesis of multiple myeloma (MM). Herein, we found that protein arginine methyltransferase 1 (PRMT1) was highly expressed in MM patients, which was positively correlated with MM stages. High PRMT1 expression was correlated with adverse prognosis in MM patients. We further showed that silencing PRMT1 inhibited MM proliferation and tumorigenesis in vitro and in vivo. Mechanistically, we revealed that the knockdown of PRMT1 reduced the oxidative phosphorylation (OXPHOS) of MM cells through NDUFS6 downregulation. Meanwhile, we identified that WTAP, a key component of the m6A methyltransferase complex, was methylated by PRMT1, and NDUFS6 was identified as a bona fide m6A target of WTAP. Finally, we found that the combination of PRMT1 inhibitor and bortezomib synergistically inhibited MM progression. Collectively, our results demonstrate that PRMT1 plays a crucial role during MM tumorigenesis and suggeste that PRMT1 could be a potential therapeutic target in MM.
Collapse
Affiliation(s)
- Yachun Jia
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Xiao Yu
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Luyi Shi
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Hua Jin
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Dan Yang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Xiaofeng Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Ying Shen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yuandong Feng
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Peihua Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yi Yang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Linlin Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Pengyu Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Zongfang Li
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
| | - Aili He
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
| | - Guangyao Kong
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
| |
Collapse
|
9
|
Abegunde S, Grieve S, Alfarra H, Reiman T. MST1 DOWNREGULATES TAZ TUMOUR SUPPRESSOR PROTEIN IN MULTIPLE MYELOMA AND IS A POTENTIAL THERAPEUTIC TARGET. Exp Hematol 2023:S0301-472X(23)00170-4. [PMID: 37137439 DOI: 10.1016/j.exphem.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/29/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
We have previously reported that TAZ functions as a tumor suppressor in multiple myeloma. MST1 is a serine-threonine kinase upstream of the Hippo-signaling pathway that functions as a tumor suppressor in many non-haematological malignancies. However, its role in hematological malignancies, including MM is still poorly understood. In this paper, we provide evidence that MST1 expression is higher in MM, and negatively correlates with TAZ expression in both cell lines and patient samples. High MST1 expression was associated with poor clinical outcomes. Genetic or pharmacological inhibition of MST1 leads to increased TAZ expression and cell death. Importantly, MST1 inhibitors sensitizes myeloma cells to frontline antimyeloma agent-lenalidomide and dexamethasone. Taken together, our data reveals a key role for MST1 in MM pathogenesis and provide evidence to explore the therapeutic potential of using MST inhibitors to upregulate TAZ expression in MM to promote response to anticancer agents.
Collapse
Affiliation(s)
- S Abegunde
- Department of Biology, University of New Brunswick, Saint John, NB, Canada, E2L 4L5; Dalhousie Medicine NB, Saint John, NB, Canada, E2L 4L5.
| | | | - H Alfarra
- Department of Biology, University of New Brunswick, Saint John, NB, Canada, E2L 4L5
| | - T Reiman
- Department of Biology, University of New Brunswick, Saint John, NB, Canada, E2L 4L5; Dalhousie Medicine NB, Saint John, NB, Canada, E2L 4L5; Saint John Regional Hospital, NB, Canada, E2L 4L2.
| |
Collapse
|
10
|
Muylaert C, Van Hemelrijck LA, Maes A, De Veirman K, Menu E, Vanderkerken K, De Bruyne E. Aberrant DNA methylation in multiple myeloma: A major obstacle or an opportunity? Front Oncol 2022; 12:979569. [PMID: 36059621 PMCID: PMC9434119 DOI: 10.3389/fonc.2022.979569] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022] Open
Abstract
Drug resistance (DR) of cancer cells leading to relapse is a huge problem nowadays to achieve long-lasting cures for cancer patients. This also holds true for the incurable hematological malignancy multiple myeloma (MM), which is characterized by the accumulation of malignant plasma cells in the bone marrow (BM). Although new treatment approaches combining immunomodulatory drugs, corticosteroids, proteasome inhibitors, alkylating agents, and monoclonal antibodies have significantly improved median life expectancy, MM remains incurable due to the development of DR, with the underlying mechanisms remaining largely ill-defined. It is well-known that MM is a heterogeneous disease, encompassing both genetic and epigenetic aberrations. In normal circumstances, epigenetic modifications, including DNA methylation and posttranslational histone modifications, play an important role in proper chromatin structure and transcriptional regulation. However, in MM, numerous epigenetic defects or so-called ‘epimutations’ have been observed and this especially at the level of DNA methylation. These include genome-wide DNA hypomethylation, locus specific hypermethylation and somatic mutations, copy number variations and/or deregulated expression patterns in DNA methylation modifiers and regulators. The aberrant DNA methylation patterns lead to reduced gene expression of tumor suppressor genes, genomic instability, DR, disease progression, and high-risk disease. In addition, the frequency of somatic mutations in the DNA methylation modifiers seems increased in relapsed patients, again suggesting a role in DR and relapse. In this review, we discuss the recent advances in understanding the involvement of aberrant DNA methylation patterns and/or DNA methylation modifiers in MM development, progression, and relapse. In addition, we discuss their involvement in MM cell plasticity, driving myeloma cells to a cancer stem cell state characterized by a more immature and drug-resistant phenotype. Finally, we briefly touch upon the potential of DNA methyltransferase inhibitors to prevent relapse after treatment with the current standard of care agents and/or new, promising (immuno) therapies.
Collapse
|
11
|
Han Y, Zhang X, Guan M, Huo C, Yu C, Hu B, Cai J. RASSF4 inhibits cell proliferation and increases drug sensitivity in colorectal cancer through YAP/Bcl-2 pathway. J Cell Mol Med 2022; 26:3538-3547. [PMID: 35611809 PMCID: PMC9189339 DOI: 10.1111/jcmm.17395] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 12/02/2022] Open
Abstract
The RASSF family proteins have been implicated in the development of human cancers. To date, the expression pattern and biological significance of RASSF4 in colorectal cancers (CRC) have not been fully investigated. In the current study, we explored expression pattern of RASSF4 in 118 CRC specimens and 30 adjacent ‘normal’ colon tissues by immunohistochemistry. The results showed that RASSF4 was downregulated in CRC tissues compared with adjacent ‘normal’ tissues. RASSF4 downregulation significantly associated with advanced tumour‐node‐metastasis (TNM) stage, T status, positive node status and high Ki‐67 index. Analysis of TCGA dataset also supported RASSF4 downregulation in CRC tissues. Ectopically expressed RASSF4 in LoVo cells inhibited cell growth, colony formation, cell cycle progression and increased the sensitivity to 5‐FU treatment. Annexin V/PI apoptosis assay showed that RASSF4 overexpression increased 5‐FU‐induced apoptosis and downregulated the mitochondrial membrane potential. In addition, Western blot demonstrated that RASSF4 overexpression repressed YAP and Bcl‐2 while upregulating p21 expression. YAP knockdown abolished the role of RASSF4 on Bcl‐2. ChIP assay showed that TEAD4, a major YAP binding transcription factor, could bind to the promoter regions of Bcl‐2. In conclusion, our data showed that RASSF4 was downregulated in human CRC. RASSF4 regulated malignant behaviour through YAP/Bcl‐2 signalling in CRC cells.
Collapse
Affiliation(s)
- Yong Han
- Department of Surgical Oncology, The Sinopharm Tongmei General Hospital, Datong, China
| | - Xiaotang Zhang
- Department of General Surgery, The Sinopharm Tongmei General Hospital, Datong, China
| | - Minmin Guan
- Department of Surgical Oncology, The Sinopharm Tongmei General Hospital, Datong, China
| | - Cheng Huo
- Department of Pathology, The Sinopharm Tongmei General Hospital, Datong, China
| | - Chunlin Yu
- Department of General Surgery, The Sinopharm Tongmei General Hospital, Datong, China
| | - Bin Hu
- Department of General Surgery, The Sinopharm Tongmei General Hospital, Datong, China
| | - Jianjun Cai
- Department of Surgical Oncology, The Sinopharm Tongmei General Hospital, Datong, China
| |
Collapse
|
12
|
Farooqi AA, Kapanova G, Kussainov AZ, Datkhayeva Z, Raganina K, Sadykov BN. Regulation of RASSF by non-coding RNAs in different cancers. Noncoding RNA Res 2022; 7:123-131. [PMID: 35702574 PMCID: PMC9163590 DOI: 10.1016/j.ncrna.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/25/2022] Open
Abstract
Ras-association domain family (RASSF) proteins are tumor suppressors and have gained phenomenal limelight because of their mechanistic role in the prevention/inhibition of carcinogenesis and metastasis. Decades of research have demystified wide ranging activities of RASSF molecules in multiple stages of cancers. Although major fraction of RASSF molecules has tumor suppressive roles, yet there is parallel existence of proof-of-concept about moonlighting activities of RASSF proteins as oncogenes. RASSF proteins tactfully rewire signaling cascades for prevention of cancer and metastasis but circumstantial evidence also illuminates oncogenic role of different RASSF proteins in different cancers. In this review we have attempted to provide readers an overview of the complex interplay between non-coding RNAs and RASSF proteins and how these versatile regulators shape the landscape of carcinogenesis and metastasis.
Collapse
|
13
|
Chattopadhyaya S, Ghosal S. DNA methylation: a saga of genome maintenance in hematological perspective. Hum Cell 2022; 35:448-461. [DOI: 10.1007/s13577-022-00674-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/13/2022] [Indexed: 12/21/2022]
|
14
|
Liu A, Zhou K, Martínez MA, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Wang X, Anadón A, Ares I. A "Janus" face of the RASSF4 signal in cell fate. J Cell Physiol 2021; 237:466-479. [PMID: 34553373 DOI: 10.1002/jcp.30592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/19/2022]
Abstract
RASSF4 (Ras-association domain family 4) is a protein-coding gene, regarded as a tumor suppressor regulated by DNA methylation. However, RASSF4 acts as a "Janus" in cell fate: death and survival. This review article focuses on the regulatory mechanisms of RASSF4 on cell death and cell survival and puts forward a comprehensive analysis of the relevant signaling pathways. The participation of RASSF4 in the regulation of intracellular store-operated Ca2+ entry also affects cell survival. Moreover, the mechanism of inducing abnormal expression of RASSF4 was summarized. We highlight recent advances in our knowledge of RASSF4 function in the development of cancer and other clinical diseases, which may provide insight into the controversial functions of RASSF4 and its potential application in disease therapy.
Collapse
Affiliation(s)
- Aimei Liu
- Department of National Reference, Laboratory of Veterinary Drug Residues (HZAU) and MOA Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,Department of MOA, Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
| | - Kaixiang Zhou
- Department of National Reference, Laboratory of Veterinary Drug Residues (HZAU) and MOA Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,Department of MOA, Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
| | - María Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Xu Wang
- Department of National Reference, Laboratory of Veterinary Drug Residues (HZAU) and MOA Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,Department of MOA, Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| |
Collapse
|
15
|
Schütt J, Nägler T, Schenk T, Brioli A. Investigating the Interplay between Myeloma Cells and Bone Marrow Stromal Cells in the Development of Drug Resistance: Dissecting the Role of Epigenetic Modifications. Cancers (Basel) 2021; 13:cancers13164069. [PMID: 34439223 PMCID: PMC8392438 DOI: 10.3390/cancers13164069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Despite advances made in the last two decades, multiple myeloma (MM) is still an incurable disease. The genetic complexity of MM and the presence of intra-clonal heterogeneity are major contributors to disease relapse and the development of treatment resistance. Additionally, the bone marrow microenvironment is known to play a pivotal role in MM disease progression. Together with genetic modifications, epigenetic changes have been shown to influence MM development and progression. However, epigenetic treatments for MM are still lacking. This is mainly due to the high rate of adverse events of epigenetic drugs in clinical practice. In this review, we will focus on the role of epigenetic modifications in MM disease progression and the development of drug resistance, as well as their role in shaping the interplay between bone marrow stromal cells and MM cells. The current and future treatment strategies involving epigenetic drugs will also be addressed. Abstract Multiple Myeloma (MM) is a malignancy of plasma cells infiltrating the bone marrow (BM). Many studies have demonstrated the crucial involvement of bone marrow stromal cells in MM progression and drug resistance. Together with the BM microenvironment (BMME), epigenetics also plays a crucial role in MM development. A variety of epigenetic regulators, including histone acetyltransferases (HATs), histone methyltransferases (HMTs) and lysine demethylases (KDMs), are altered in MM, contributing to the disease progression and prognosis. In addition to histone modifications, DNA methylation also plays a crucial role. Among others, aberrant epigenetics involves processes associated with the BMME, like bone homeostasis, ECM remodeling or the development of treatment resistance. In this review, we will highlight the importance of the interplay of MM cells with the BMME in the development of treatment resistance. Additionally, we will focus on the epigenetic aberrations in MM and their role in disease evolution, interaction with the BMME, disease progression and development of drug resistance. We will also briefly touch on the epigenetic treatments currently available or currently under investigation to overcome BMME-driven treatment resistance.
Collapse
Affiliation(s)
- Jacqueline Schütt
- Clinic of Internal Medicine 2, Hematology and Oncology, Jena University Hospital, 07747 Jena, Germany
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine Jena (CMB), Jena University Hospital, 07747 Jena, Germany
- Clinic of Internal Medicine C, Hematology and Oncology, Stem Cell Transplantation and Palliative Care, Greifswald University Medicine, 17475 Greifswald, Germany
| | - Theresa Nägler
- Clinic of Internal Medicine 2, Hematology and Oncology, Jena University Hospital, 07747 Jena, Germany
| | - Tino Schenk
- Clinic of Internal Medicine 2, Hematology and Oncology, Jena University Hospital, 07747 Jena, Germany
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine Jena (CMB), Jena University Hospital, 07747 Jena, Germany
- Clinic of Internal Medicine C, Hematology and Oncology, Stem Cell Transplantation and Palliative Care, Greifswald University Medicine, 17475 Greifswald, Germany
| | - Annamaria Brioli
- Clinic of Internal Medicine 2, Hematology and Oncology, Jena University Hospital, 07747 Jena, Germany
- Clinic of Internal Medicine C, Hematology and Oncology, Stem Cell Transplantation and Palliative Care, Greifswald University Medicine, 17475 Greifswald, Germany
| |
Collapse
|
16
|
Cui SH, Hu XD, Yan Y. Wnt/β-catenin signaling pathway participates in the effect of miR-626 on oral squamous cell carcinoma by targeting RASSF4. J Oral Pathol Med 2021; 50:1005-1017. [PMID: 34121238 DOI: 10.1111/jop.13216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND The role of miR-626 in oral squamous cell carcinoma (OSCC) was investigated by targeting RASSF4. METHODS The miR-626 and RASSF4 expression was detected in normal oral mucosa or OSCC tissues and OSCC or normal cells. The methylation status of RASSF4 was analyzed using methylation-specific polymerase chain reaction (PCR). The cytoplasmic/nuclear ratios (C/N ratios) targeted by miR-626 were examined using microarray, followed by a dual-luciferase reporter assay. The subcellular localization of RASSF4 and miR-626 in OSCC cells was determined using RNA fluorescence in situ hybridization (FISH) and immunocytochemistry (ICC), respectively. Ca9-22 and HSC2 cells were divided into mock, inhibitor NC, miR-626 inhibitor, scramble, RASSF4 and miR-626 mimic + RASSF4 groups, and then CCK-8, Annexin V-FITC/PI, wound healing, Transwell, qRT-PCR and western blotting assays were performed. RESULTS OSCC tissues and cells had increased miR-626 expression and decreased RASSF4 expression. Patients with RASSF4 methylation had lower RASSF4 expression than those without methylation. In addition, a negative correlation between miR-626 and RASSF4 was found in OSCC tissues, both of which were correlated with the pathological grade, pathological stage, lymph node metastasis and patient prognosis. MiR-626 targeted RASSF4 in OSCC cells. Overexpressed RASSF4 inhibited the proliferation, invasion, migration and epithelial-mesenchymal transition (EMT) of OSCC cells, promoted cell apoptosis, and blocked the Wnt/β-Catenin pathway, which was reversed by miR-626 overexpression. CONCLUSIONS Inhibiting miR-626 can regulate the biological characteristics of OSCC cells, including proliferation, invasion, migration, EMT and apoptosis, by targeting RASSF4, which may be related to the Wnt/β-Catenin pathway.
Collapse
Affiliation(s)
- Sheng-Hai Cui
- Department of Oral and Maxillofacial Surgery, Yantai Stomatological Hospital, Yantai, China
| | - Xiao-Di Hu
- Department of Stomatology, Yantaishan Hospital, Yantai, China
| | - Yan Yan
- Department of Stomatology, Yantaishan Hospital, Yantai, China
| |
Collapse
|
17
|
Bellazzo A, Collavin L. Cutting the Brakes on Ras-Cytoplasmic GAPs as Targets of Inactivation in Cancer. Cancers (Basel) 2020; 12:cancers12103066. [PMID: 33096593 PMCID: PMC7588890 DOI: 10.3390/cancers12103066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary GTPase-Activating Proteins (RasGAPs) are a group of structurally related proteins with a fundamental role in controlling the activity of Ras in normal and cancer cells. In particular, loss of function of RasGAPs may contribute to aberrant Ras activation in cancer. Here we review the multiple molecular mechanisms and factors that are involved in downregulating RasGAPs expression and functions in cancer. Additionally, we discuss how extracellular stimuli from the tumor microenvironment can control RasGAPs expression and activity in cancer cells and stromal cells, indirectly affecting Ras activation, with implications for cancer development and progression. Abstract The Ras pathway is frequently deregulated in cancer, actively contributing to tumor development and progression. Oncogenic activation of the Ras pathway is commonly due to point mutation of one of the three Ras genes, which occurs in almost one third of human cancers. In the absence of Ras mutation, the pathway is frequently activated by alternative means, including the loss of function of Ras inhibitors. Among Ras inhibitors, the GTPase-Activating Proteins (RasGAPs) are major players, given their ability to modulate multiple cancer-related pathways. In fact, most RasGAPs also have a multi-domain structure that allows them to act as scaffold or adaptor proteins, affecting additional oncogenic cascades. In cancer cells, various mechanisms can cause the loss of function of Ras inhibitors; here, we review the available evidence of RasGAP inactivation in cancer, with a specific focus on the mechanisms. We also consider extracellular inputs that can affect RasGAP levels and functions, implicating that specific conditions in the tumor microenvironment can foster or counteract Ras signaling through negative or positive modulation of RasGAPs. A better understanding of these conditions might have relevant clinical repercussions, since treatments to restore or enhance the function of RasGAPs in cancer would help circumvent the intrinsic difficulty of directly targeting the Ras protein.
Collapse
|
18
|
Epigenetic Aberrations in Multiple Myeloma. Cancers (Basel) 2020; 12:cancers12102996. [PMID: 33076518 PMCID: PMC7602661 DOI: 10.3390/cancers12102996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Multiple Myeloma (MM) is a blood cancer characterized by an uncontrolled growth of cells named plasma cells, within the bone marrow. Patients with MM may present with anemia, bone lesions and kidney impairment. Several studies have been performed in order to provide an explanation to how this tumor may develop. Among them, the so called “epigenetic modifications” certainly represent important players that have been shown to support MM development and disease progression. The present article aims to summarize the current knowledge in the specific are of “epigenetics” in MM. Abstract Multiple myeloma (MM) is a plasma cell dyscrasia characterized by proliferation of clonal plasma cells within the bone marrow. Several advances in defining key processes responsible for MM pathogenesis and disease progression have been made; and dysregulation of epigenetics, including DNA methylation and histone modification, has emerged as a crucial regulator of MM pathogenesis. In the present review article, we will focus on the role of epigenetic modifications within the specific context of MM.
Collapse
|
19
|
Activating KRAS, NRAS, and BRAF mutants enhance proteasome capacity and reduce endoplasmic reticulum stress in multiple myeloma. Proc Natl Acad Sci U S A 2020; 117:20004-20014. [PMID: 32747568 DOI: 10.1073/pnas.2005052117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
KRAS, NRAS, and BRAF mutations which activate p44/42 mitogen-activated protein kinase (MAPK) signaling are found in half of myeloma patients and contribute to proteasome inhibitor (PI) resistance, but the underlying mechanisms are not fully understood. We established myeloma cell lines expressing wild-type (WT), constitutively active (CA) (G12V/G13D/Q61H), or dominant-negative (DN) (S17N)-KRAS and -NRAS, or BRAF-V600E. Cells expressing CA mutants showed increased proteasome maturation protein (POMP) and nuclear factor (erythroid-derived 2)-like 2 (NRF2) expression. This correlated with an increase in catalytically active proteasome subunit β (PSMB)-8, PSMB9, and PSMB10, which occurred in an ETS transcription factor-dependent manner. Proteasome chymotrypsin-like, trypsin-like, and caspase-like activities were increased, and this enhanced capacity reduced PI sensitivity, while DN-KRAS and DN-NRAS did the opposite. Pharmacologic RAF or MAPK kinase (MEK) inhibitors decreased proteasome activity, and sensitized myeloma cells to PIs. CA-KRAS, CA-NRAS, and CA-BRAF down-regulated expression of endoplasmic reticulum (ER) stress proteins, and reduced unfolded protein response activation, while DN mutations increased both. Finally, a bortezomib (BTZ)/MEK inhibitor combination showed enhanced activity in vivo specifically in CA-NRAS models. Taken together, the data support the hypothesis that activating MAPK pathway mutations enhance PI resistance by increasing proteasome capacity, and provide a rationale for targeting such patients with PI/RAF or PI/MEK inhibitor combinations. Moreover, they argue these mutations promote myeloma survival by reducing cellular stress, thereby distancing plasma cells from the apoptotic threshold, potentially explaining their high frequency in myeloma.
Collapse
|
20
|
Harrell Stewart DR, Clark GJ. Pumping the brakes on RAS - negative regulators and death effectors of RAS. J Cell Sci 2020; 133:133/3/jcs238865. [PMID: 32041893 DOI: 10.1242/jcs.238865] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mutations that activate the RAS oncoproteins are common in cancer. However, aberrant upregulation of RAS activity often occurs in the absence of activating mutations in the RAS genes due to defects in RAS regulators. It is now clear that loss of function of Ras GTPase-activating proteins (RasGAPs) is common in tumors, and germline mutations in certain RasGAP genes are responsible for some clinical syndromes. Although regulation of RAS is central to their activity, RasGAPs exhibit great diversity in their binding partners and therefore affect signaling by multiple mechanisms that are independent of RAS. The RASSF family of tumor suppressors are essential to RAS-induced apoptosis and senescence, and constitute a barrier to RAS-mediated transformation. Suppression of RASSF protein expression can also promote the development of excessive RAS signaling by uncoupling RAS from growth inhibitory pathways. Here, we will examine how these effectors of RAS contribute to tumor suppression, through both RAS-dependent and RAS-independent mechanisms.
Collapse
Affiliation(s)
- Desmond R Harrell Stewart
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY 40222, USA
| | - Geoffrey J Clark
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY 40222, USA
| |
Collapse
|
21
|
de la Cruz L, Traynor-Kaplan A, Vivas O, Hille B, Jensen JB. Plasma membrane processes are differentially regulated by type I phosphatidylinositol phosphate 5-kinases and RASSF4. J Cell Sci 2020; 133:jcs.233254. [PMID: 31831523 DOI: 10.1242/jcs.233254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphoinositide lipids regulate many cellular processes and are synthesized by lipid kinases. Type I phosphatidylinositol phosphate 5-kinases (PIP5KIs) generate phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P 2]. Several phosphoinositide-sensitive readouts revealed the nonequivalence of overexpressing PIP5KIβ, PIP5KIγ or Ras association domain family 4 (RASSF4), believed to activate PIP5KIs. Mass spectrometry showed that each of these three proteins increased total cellular phosphatidylinositol bisphosphates (PtdInsP 2) and trisphosphates (PtdInsP 3) at the expense of phosphatidylinositol phosphate (PtdInsP) without changing lipid acyl chains. Analysis of KCNQ2/3 channels and PH domains confirmed an increase in plasma membrane PtdIns(4,5)P 2 in response to PIP5KIβ or PIP5KIγ overexpression, but RASSF4 required coexpression with PIP5KIγ to increase plasma membrane PtdIns(4,5)P 2 Effects on the several steps of store-operated calcium entry (SOCE) were not explained by plasma membrane phosphoinositide increases alone. PIP5KIβ and RASSF4 increased STIM1 proximity to the plasma membrane, accelerated STIM1 mobilization and speeded onset of SOCE; however, PIP5KIγ reduced STIM1 recruitment but did not change induced Ca2+ entry. These differences imply actions through different segregated pools of phosphoinositides and specific protein-protein interactions and targeting.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Lizbeth de la Cruz
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA
| | - Alexis Traynor-Kaplan
- ATK Innovation, Analytics and Discovery, North Bend, WA 98045, USA.,Department of Medicine/Gastroenterology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA
| | - Bertil Hille
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA
| | - Jill B Jensen
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA
| |
Collapse
|
22
|
García-Gutiérrez L, McKenna S, Kolch W, Matallanas D. RASSF1A Tumour Suppressor: Target the Network for Effective Cancer Therapy. Cancers (Basel) 2020; 12:cancers12010229. [PMID: 31963420 PMCID: PMC7017281 DOI: 10.3390/cancers12010229] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
The RASSF1A tumour suppressor is a scaffold protein that is involved in cell signalling. Increasing evidence shows that this protein sits at the crossroad of a complex signalling network, which includes key regulators of cellular homeostasis, such as Ras, MST2/Hippo, p53, and death receptor pathways. The loss of expression of RASSF1A is one of the most common events in solid tumours and is usually caused by gene silencing through DNA methylation. Thus, re-expression of RASSF1A or therapeutic targeting of effector modules of its complex signalling network, is a promising avenue for treating several tumour types. Here, we review the main modules of the RASSF1A signalling network and the evidence for the effects of network deregulation in different cancer types. In particular, we summarise the epigenetic mechanism that mediates RASSF1A promoter methylation and the Hippo and RAF1 signalling modules. Finally, we discuss different strategies that are described for re-establishing RASSF1A function and how a multitargeting pathway approach selecting druggable nodes in this network could lead to new cancer treatments.
Collapse
Affiliation(s)
- Lucía García-Gutiérrez
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
| | - Stephanie McKenna
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Correspondence:
| |
Collapse
|
23
|
Jin Z, Zhou S, Ye H, Jiang S, Yu K, Ma Y. The mechanism of SP1/p300 complex promotes proliferation of multiple myeloma cells through regulating IQGAP1 transcription. Biomed Pharmacother 2019; 119:109434. [PMID: 31536933 DOI: 10.1016/j.biopha.2019.109434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 01/12/2023] Open
Abstract
Our previous research had firstly shown that MM cells overexpressed IQGAP1 gene and activated Ras/Raf/MEK/ERK pathway. But the mechanism of IQGAP1 overexpression and IQGAP1 gene transcription regulation remains uncertain. The mechanism of IQGAP1 overexpression and transcriptional regulation of IQGAP1 gene in myeloma cells was explored in the study. Through bioinformatics analysis and prediction we predicted and screened transcription factor Sp1 as a possible upstream regulator of IQGAP1.The proliferation, cell cycle and downstream ERK1/2 and p-ERK1/2 proteins were detected after siRNA-IQGAP1 was transfected to myeloma cells. The expression of Sp1, p300, IQGAP1, p-ERK1/2 and ERK1/2 were detected after Sp1 and p300 were inhibited or overexpressed respectively. The dual-luciferase reporter system was used to detect the activity of IQGAP1 gene promoter. CHIP was used to detect the binding of the Sp1 and IQGAP1 promoter regions.CO-IP was used to explore the interaction between Sp1 and p300.The mRNA expression levels of Sp1,p300 and IQGAP1 of the myeloma patients were detected, and the correlation analysis of their mRNA expression levels were carried out. The results showed IQGAP1-siRNA inhibits cell proliferation, cell cycle, IQGAP1 expression and phosphorylation of ERK1/2 protein. Inhibition of Sp1 or p300 down-regulated ERK1/2 and IQGAP1 expression; overexpression of Sp1 or p300 up-regulated ERK1/2 and IQGAP1 expression; Sp1 and p300 had a positive regulation effect on IQGAP1.Over expression of Sp1 or p300 significantly increased activity of IQGAP1 gene promoter. The transcription factor Sp1 plays a regulatory role in the IQGAP1 promoter region. There is an interaction between Sp1 and p300 in myeloma cells. The mRNA expression levels of Sp1, IQGAP1 and p300 in MM samples showed a positive correlation. In summary IQGAP1 is required for cell proliferation in MM cells, and the transcription of Sp1/p300 complex regulates expression of IQGAP1 gene.
Collapse
Affiliation(s)
- Zhouxiang Jin
- Department of General Surgery, Gastric Cancer Research Center, The Second Affiliated Hospital of Wenzhou Medical University, 109 Xue Yuan Western Road, Wenzhou, 325027, China
| | - Shujuan Zhou
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang, Wenzhou, 325000, China
| | - Haige Ye
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang, Wenzhou, 325000, China
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang, Wenzhou, 325000, China.
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang, Wenzhou, 325000, China.
| | - Yongyong Ma
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang, Wenzhou, 325000, China.
| |
Collapse
|
24
|
Zhu X, Wu L, Mo X, Xia W, Guo Y, Wang M, Zeng K, Wu J, Qiu Y, Lin X, Lu X, Deng F, Lei S. Identification of PBMC-expressed miRNAs for rheumatoid arthritis. Epigenetics 2019; 15:386-397. [PMID: 31588838 DOI: 10.1080/15592294.2019.1676613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Post-transcriptional regulation by miRNAs plays an important role in the pathogenesis of rheumatoid arthritis (RA), however, the roles of specific miRNAs in RA pathogenesis remain largely unclear. This study performed dual-omics (miRNA and mRNA) integration analysis and in-depth cellular and molecular functional exploration to identify novel RA-associated miRNAs and to understand their underlying pathogenic mechanism. Based on the miRNA and mRNA expression profiles in peripheral blood mononuclear cells (PBMCs) from a discovery sample set (25 RA cases and 18 healthy controls), 18 differentially expressed miRNAs (DEMIRs) (|Fold-change|>2 and P < 0.05) were identified and corresponding interaction networks of DEMIRs and mRNA were constructed. After the expression validation of the DEMIRs in a validation sample set (35 RA cases and 35 healthy controls), miR-99b-5p was highlighted. The over-expression of newly discovered miR-99b-5p is able to suppress T cell apoptosis, promote cell proliferation and activation, increase expression of proinflammatory cytokines (IL-2, IL-6, TNF-α, and IFN-γ), and inhibit expression of its target genes mTOR and RASSF4. This study comprehensively identified PBMC-expressed miRNAs along with corresponding regulatory networks significant for RA and discovered miR-99b-5p as a novel post-transcriptional mediator involved in RA pathogenesis. The findings improved our understanding of RA pathogenesis and provided novel insights into the molecular mechanisms underlying RA pathogenesis.
Collapse
Affiliation(s)
- Xiaowei Zhu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China.,Zhangjiagang Center for Disease Prevention and Control, Suzhou, Jiangsu, P. R. China
| | - Longfei Wu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Xingbo Mo
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Wei Xia
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Yufan Guo
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Mingjun Wang
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Keqin Zeng
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Jian Wu
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Yinghua Qiu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Xiang Lin
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Xin Lu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Feiyan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Shufeng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China
| |
Collapse
|
25
|
Nguyen P, Chakrabarti J, Li Y, Kalim KW, Zhang M, Zhang L, Zheng Y, Guo F. Rational Targeting of Cdc42 Overcomes Drug Resistance of Multiple Myeloma. Front Oncol 2019; 9:958. [PMID: 31632904 PMCID: PMC6779689 DOI: 10.3389/fonc.2019.00958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/10/2019] [Indexed: 12/03/2022] Open
Abstract
Multiple myeloma (MM) drug resistance highlights a need for alternative therapeutic strategies. In this study, we show that CASIN, a selective inhibitor of cell division cycle 42 (Cdc42) GTPase, inhibited proliferation and survival of melphalan/bortezomib-resistant MM cells more profoundly than that of the sensitive cells. Furthermore, CASIN was more potent than melphalan/bortezomib in inhibiting melphalan/bortezomib-resistant cells. In addition, CASIN sensitized melphalan/bortezomib-resistant cells to this drug combination. Mechanistically, Cdc42 activity was higher in melphalan/bortezomib-resistant cells than that in the sensitive cells. CASIN inhibited mono-ubiquitination of Fanconi anemia (FA) complementation group D2 (FANCD2) of the FA DNA damage repair pathway in melphalan-resistant but not melphalan-sensitive cells, thereby sensitizing melphalan-resistant cells to DNA damage. CASIN suppressed epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), and extracellular signal-regulated kinase (ERK) activities to a larger extent in bortezomib-resistant than in melphalan-sensitive cells. Reconstitution of ERK activity partially protected CASIN-treated bortezomib-resistant cells from death, suggesting that CASIN-induced killing is attributable to suppression of ERK. Importantly, CASIN extended the lifespan of mouse xenografts of bortezomib-resistant cells and caused apoptosis of myeloma cells from bortezomib-resistant MM patients. Finally, CASIN had negligible side effects on peripheral blood mononuclear cells (PBMC) from healthy human subjects and normal B cells. Our data provide a proof of concept demonstration that rational targeting of Cdc42 represents a promising approach to overcome MM drug resistance.
Collapse
Affiliation(s)
- Phuong Nguyen
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jayati Chakrabarti
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Yuan Li
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Khalid W Kalim
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Mengnan Zhang
- Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Zhang
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
26
|
Liu A, Xu X, Hou R, Badawy S, Tao Y, Chen D, Ihsan A, Wang X, Wu Q, Yuan Z. DNA methylation and RASSF4 expression are involved in T-2 toxin-induced hepatotoxicity. Toxicology 2019; 425:152246. [PMID: 31369815 DOI: 10.1016/j.tox.2019.152246] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 11/25/2022]
Abstract
T-2 toxin is a secondary metabolite produced by Fusarium species and commonly contaminates food and animal feed. T-2 toxin can induce hepatotoxicity through apoptosis and oxidative stress; however, the underlying mechanism is not clear. Recent studies indicated that RASSF4, a member of the RASSF family, participates in cell apoptosis and some cancers due to its inactivation via DNA hypermethylation. However, its role in T-2 toxin-induced liver toxicity is poorly understood. Therefore, in this study, female Wistar rats were given a single dose of T-2 toxin at 2 mg/kg b.w. and were sacrificed at 1, 3 and 7 days post-exposure. A normal rat liver cell line (BRL) was exposed to different concentrations of T-2 toxin (10, 20, 40 nM) for 4, 8, 12 h, respectively. Histopathological analysis revealed with apoptosis in some liver cells and clear proliferation under T-2 toxin exposure. Expression analysis by immunohistochemical assays, quantitative real-time PCR (qPCR) and western blot demonstrated that T-2 toxin activated PI3K-Akt/Caspase/NF-κB signaling pathways. Additionally, DNA methylation assays revealed that the expression of RASSF4 was silenced by promoter hypermethylation after exposure to T-2 toxin for 1 and 3 days as compared to the control group. Moreover, joint treatment of 5-Aza-2'-deoxycytidine (DAC) (5 μM) and T-2 toxin (40 nM) increased expression of RASSF4 and PI3K-Akt/caspase/NF-κB signaling pathways-related genes, inducing cell apoptosis. These findings for the first time demonstrated that DNA methylation regulated the RASSF4 expression under T-2 toxin, along with the activation of its downstream pathways, resulting in apoptosis.
Collapse
Affiliation(s)
- Aimei Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaoqing Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ren Hou
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China
| | - Sara Badawy
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanfei Tao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China
| | - Dongmei Chen
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal campus, Pakistan
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China.
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic.
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China
| |
Collapse
|
27
|
Liu A, Sun Y, Wang X, Ihsan A, Tao Y, Chen D, Peng D, Wu Q, Wang X, Yuan Z. DNA methylation is involved in pro-inflammatory cytokines expression in T-2 toxin-induced liver injury. Food Chem Toxicol 2019; 132:110661. [PMID: 31279042 DOI: 10.1016/j.fct.2019.110661] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/22/2019] [Accepted: 07/02/2019] [Indexed: 12/28/2022]
Abstract
Currently, T-2 toxin has been reported to cause liver toxicity with the effects of oxidative stress and inflammation; however, the underlying mechanism of T-2 toxin-induced liver injury is not fully understood. Increasing lines of evidence show that DNA methylation affects the expression of inflammatory cytokine, and plays a crucial role in autoimmune diseases. Nevertheless, the potential role of DNA methylation in the hepatotoxicity of T-2 toxin has not been explored. In this study, female Wistar rats were given a single dose of T-2 toxin at 2 mg/kg b.w. and were sacrificed at 1, 3 and 7 days post-exposure. In vitro, a normal rat liver cell line (BRL) was exposed to different concentrations of T-2 toxin. Histopathological analysis was used to investigate damage to the liver, which was detected at the molecular level by RT-PCR, Western blot and immunohistochemical assays, methylation-specific PCR (MSP), bisulfite sequencing (BSP), and flow cytometry. The results showed that T-2 toxin significantly increased the levels of DNA methyltransferases (DNMT1, DNMT3A), which were mainly concentrated at the site of liver injury. The 5-methylcytosine (5-mC) level of genomic DNA was also raised in T-2 toxin-treated rat livers. The expression of inflammatory cytokines (IL-6, IL-1β, IL-11, IL-1α, and TNF-α) increased both in vivo and in vitro under T-2 toxin treatment. Notably, DNA demethylation directly increased the expression of cytokines IL-11, IL-6, IL-α, and TNF-α under T-2 toxin exposure. DNA methylation inhibitors combined with T-2 toxin directly or indirectly induced the production of inflammatory cytokines and aggravate cell apoptosis. Our study uncovered for the first time that DNA methylation is related to the expression of inflammatory cytokines in T-2 toxin-induced liver injury. These findings suggested that DNA methylation is a potential mechanism of T-2 toxin-induced hepatotoxicity.
Collapse
Affiliation(s)
- Aimei Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yaqi Sun
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiaojing Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Pakistan
| | - Yanfei Tao
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Dongmei Chen
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei, 430070, China
| | - Dapeng Peng
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Qinghua Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic.
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei, 430070, China.
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei, 430070, China; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| |
Collapse
|
28
|
Imai Y, Hirano M, Kobayashi M, Futami M, Tojo A. HDAC Inhibitors Exert Anti-Myeloma Effects through Multiple Modes of Action. Cancers (Basel) 2019; 11:cancers11040475. [PMID: 30987296 PMCID: PMC6520917 DOI: 10.3390/cancers11040475] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 11/29/2022] Open
Abstract
HDACs are critical regulators of gene expression that function through histone modification. Non-histone proteins and histones are targeted by these proteins and the inhibition of HDACs results in various biological effects. Moreover, the aberrant expression and function of these proteins is thought to be related to the pathogenesis of multiple myeloma (MM) and several inhibitors have been introduced or clinically tested. Panobinostat, a pan-HDAC inhibitor, in combination with a proteasome inhibitor and dexamethasone has improved survival in relapsing/refractory MM patients. We revealed that panobinostat inhibits MM cell growth by degrading the protein PPP3CA, a catalytic subunit of calcineurin. This degradation was suggested to be mediated by suppression of the chaperone function of HSP90 due to HDAC6 inhibition. Cytotoxicity due to the epigenetic regulation of tumor-associated genes by HDAC inhibitors has also been reported. In addition, HDAC6 inhibition enhances tumor immunity and has been suggested to strengthen the cytotoxic effects of therapeutic antibodies against myeloma. Furthermore, therapeutic strategies to enhance the anti-myeloma effects of HDAC inhibitors through the addition of other agents has been intensely evaluated. Thus, the treatment of patients with MM using HDAC inhibitors is promising as these drugs exert their effects through multiple modes of action.
Collapse
Affiliation(s)
- Yoichi Imai
- Department of Hematology/Oncology, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Mitsuhito Hirano
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Masayuki Kobayashi
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Muneyoshi Futami
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Arinobu Tojo
- Department of Hematology/Oncology, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
29
|
De Smedt E, Lui H, Maes K, De Veirman K, Menu E, Vanderkerken K, De Bruyne E. The Epigenome in Multiple Myeloma: Impact on Tumor Cell Plasticity and Drug Response. Front Oncol 2018; 8:566. [PMID: 30619733 PMCID: PMC6297718 DOI: 10.3389/fonc.2018.00566] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/13/2018] [Indexed: 01/19/2023] Open
Abstract
Multiple myeloma (MM) is a clonal plasma cell malignancy that develops primarily in the bone marrow (BM), where reciprocal interactions with the BM niche foster MM cell survival, growth, and drug resistance. MM cells furthermore reshape the BM to their own needs by affecting the different BM stromal cell types resulting in angiogenesis, bone destruction, and immune suppression. Despite recent advances in treatment modalities, MM remains most often incurable due to the development of drug resistance to all standard of care agents. This underscores the unmet need for these heavily treated relapsed/refractory patients. Disruptions in epigenetic regulation are a well-known hallmark of cancer cells, contributing to both cancer onset and progression. In MM, sequencing and gene expression profiling studies have also identified numerous epigenetic defects, including locus-specific DNA hypermethylation of cancer-related and B cell specific genes, genome-wide DNA hypomethylation and genetic defects, copy number variations and/or abnormal expression patterns of various chromatin modifying enzymes. Importantly, these so-called epimutations contribute to genomic instability, disease progression, and a worse outcome. Moreover, the frequency of mutations observed in genes encoding for histone methyltransferases and DNA methylation modifiers increases following treatment, indicating a role in the emergence of drug resistance. In support of this, accumulating evidence also suggest a role for the epigenetic machinery in MM cell plasticity, driving the differentiation of the malignant cells to a less mature and drug resistant state. This review discusses the current state of knowledge on the role of epigenetics in MM, with a focus on deregulated histone methylation modifiers and the impact on MM cell plasticity and drug resistance. We also provide insight into the potential of epigenetic modulating agents to enhance clinical drug responses and avoid disease relapse.
Collapse
Affiliation(s)
- Eva De Smedt
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hui Lui
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ken Maes
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
30
|
Iwasa H, Hossain S, Hata Y. Tumor suppressor C-RASSF proteins. Cell Mol Life Sci 2018; 75:1773-1787. [PMID: 29353317 PMCID: PMC11105443 DOI: 10.1007/s00018-018-2756-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/05/2018] [Accepted: 01/17/2018] [Indexed: 12/13/2022]
Abstract
Human genome has ten genes that are collectedly called Ras association domain family (RASSF). RASSF is composed of two subclasses, C-RASSF and N-RASSF. Both N-RASSF and C-RASSF encode Ras association domain-containing proteins and are frequently suppressed by DNA hypermethylation in human cancers. However, C-RASSF and N-RASSF are quite different. Six C-RASSF proteins (RASSF1-6) are characterized by a C-terminal coiled-coil motif named Salvador/RASSF/Hippo domain, while four N-RASSF proteins (RASSF7-10) lack it. C-RASSF proteins interact with mammalian Ste20-like kinases-the core kinases of the tumor suppressor Hippo pathway-and cross-talk with this pathway. Some of them share the same interacting molecules such as MDM2 and exert the tumor suppressor role in similar manners. Nevertheless, each C-RASSF protein has distinct characters. In this review, we summarize our current knowledge of how C-RASSF proteins play tumor suppressor roles and discuss the similarities and differences among C-RASSF proteins.
Collapse
Affiliation(s)
- Hiroaki Iwasa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Shakhawoat Hossain
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan.
| |
Collapse
|