1
|
Sasaki Y, Inouchi T, Nakatsuka R, Inoue A, Masutani M, Nozaki T. Activated NAD+ biosynthesis pathway induces olaparib resistance in BRCA1 knockout pancreatic cancer cells. PLoS One 2024; 19:e0302130. [PMID: 38625917 PMCID: PMC11020856 DOI: 10.1371/journal.pone.0302130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/28/2024] [Indexed: 04/18/2024] Open
Abstract
PARP inhibitors have been developed as anti-cancer agents based on synthetic lethality in homologous recombination deficient cancer cells. However, resistance to PARP inhibitors such as olaparib remains a problem in clinical use, and the mechanisms of resistance are not fully understood. To investigate mechanisms of PARP inhibitor resistance, we established a BRCA1 knockout clone derived from the pancreatic cancer MIA PaCa-2 cells, which we termed C1 cells, and subsequently isolated an olaparib-resistant C1/OLA cells. We then performed RNA-sequencing and pathway analysis on olaparib-treated C1 and C1/OLA cells. Our results revealed activation of cell signaling pathway related to NAD+ metabolism in the olaparib-resistant C1/OLA cells, with increased expression of genes encoding the NAD+ biosynthetic enzymes NAMPT and NMNAT2. Moreover, intracellular NAD+ levels were significantly higher in C1/OLA cells than in the non-olaparib-resistant C1 cells. Upregulation of intracellular NAD+ levels by the addition of nicotinamide also induced resistance to olaparib and talazoparib in C1 cells. Taken together, our findings suggest that upregulation of intracellular NAD+ is one of the factors underlying the acquisition of PARP inhibitor resistance.
Collapse
Affiliation(s)
- Yuka Sasaki
- Department of Pharmacology, Faculty of Dentistry, Osaka Dental University, Hirakata, Osaka, Japan
- Department of Molecular and Genomic Biomedicine, Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
| | - Takuma Inouchi
- Department of Pharmacology, Faculty of Dentistry, Osaka Dental University, Hirakata, Osaka, Japan
| | - Ryusuke Nakatsuka
- Department of Pharmacology, Faculty of Dentistry, Osaka Dental University, Hirakata, Osaka, Japan
| | - Amane Inoue
- Department of Pharmacology, Faculty of Dentistry, Osaka Dental University, Hirakata, Osaka, Japan
| | - Mitsuko Masutani
- Department of Molecular and Genomic Biomedicine, Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
| | - Tadashige Nozaki
- Department of Pharmacology, Faculty of Dentistry, Osaka Dental University, Hirakata, Osaka, Japan
| |
Collapse
|
2
|
Sasaki Y, Nakatsuka R, Inoue A, Inouchi T, Masutani M, Nozaki T. Dysfunction of poly (ADP-ribose) glycohydrolase suppresses osteoclast differentiation in RANKL-stimulated RAW264 cells. Biochem Biophys Res Commun 2024; 692:149309. [PMID: 38048727 DOI: 10.1016/j.bbrc.2023.149309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Poly (ADP-ribose) glycohydrolase (PARG) is an enzyme that mainly degrades poly (ADP-ribose) (PAR) synthesized by poly (ADP-ribose) polymerase (PARP) family proteins. Although PARG is involved in many biological phenomena, including DNA repair, cell differentiation, and cell death, little is known about the relationship between osteoclast differentiation and PARG. It has also not been clarified whether PARG is a valuable target for therapeutic agents in the excessive activity of osteoclast-related bone diseases such as osteoporosis. In the present study, we examined the effects of PARG inhibitor PDD00017273 on osteoclast differentiation in RANKL-induced RAW264 cells. PDD00017273 induced the accumulation of intracellular PAR and suppressed the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. PDD00017273 also downregulated osteoclast differentiation marker genes such as Trap, cathepsin K (Ctsk), and dendrocyte expressed seven transmembrane protein (Dcstamp) and protein expression of nuclear factor of activated T cells 1 (NFATc1), a master regulator of osteoclast differentiation. Taken together, our findings suggest that dysfunction of PARG suppresses osteoclast differentiation via the PAR accumulation and partial inactivation of the NFATc1.
Collapse
Affiliation(s)
- Yuka Sasaki
- Department of Pharmacology, Faculty of Dentistry, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata, Osaka, 573-1121, Japan; Department of Molecular and Genomic Biomedicine, Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan.
| | - Ryusuke Nakatsuka
- Department of Pharmacology, Faculty of Dentistry, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata, Osaka, 573-1121, Japan.
| | - Amane Inoue
- Department of Pharmacology, Faculty of Dentistry, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata, Osaka, 573-1121, Japan.
| | - Takuma Inouchi
- Department of Pharmacology, Faculty of Dentistry, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata, Osaka, 573-1121, Japan.
| | - Mitsuko Masutani
- Department of Molecular and Genomic Biomedicine, Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan.
| | - Tadashige Nozaki
- Department of Pharmacology, Faculty of Dentistry, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata, Osaka, 573-1121, Japan.
| |
Collapse
|
3
|
Parisi A, Rossi F, De Filippis C, Paoloni F, Felicetti C, Mammarella A, Pecci F, Lupi A, Berardi R. Current Evidence and Future Perspectives about the Role of PARP Inhibitors in the Treatment of Thoracic Cancers. Onco Targets Ther 2023; 16:585-613. [PMID: 37485307 PMCID: PMC10362869 DOI: 10.2147/ott.s272563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023] Open
Abstract
In recent years, poly (ADP-ribose) polymerase (PARP) inhibition has become a promising therapeutic option for several tumors, especially for those harboring a BRCA 1-2 mutation or a deficit in the homologous recombination repair (HRR) pathway. Nevertheless, to date, PARP inhibitors are still not largely used for thoracic malignancies neither as a single agent nor in combination with other treatments. Recently, a deeper understanding of HRR mechanisms, alongside the development of new targeted and immunotherapy agents, particularly against HRR-deficient tumors, traced the path to new treatment strategies for many tumor types including lung cancer and malignant pleural mesothelioma. The aim of this review is to sum up the current knowledge about cancer-DNA damage response pathways inhibition and to update the status of recent clinical trials investigating the use of PARP inhibitors, either as monotherapy or in combination with other agents for the treatment of thoracic malignancies. We will also briefly discuss available evidence on Poly(ADP-Ribose) Glycohydrolase (PARG) inhibitors, a novel promising therapeutic option in oncology.
Collapse
Affiliation(s)
- Alessandro Parisi
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Francesca Rossi
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Chiara De Filippis
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Francesco Paoloni
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Cristiano Felicetti
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Alex Mammarella
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Federica Pecci
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Alessio Lupi
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Rossana Berardi
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| |
Collapse
|
4
|
Sun Y, Shi Y, Liu H, Lv C, Zhang A. The role of poly (ADP-ribose) glycohydrolase in phosphatase and tensin homolog deficiency endometrial cancer. J Obstet Gynaecol Res 2023; 49:1244-1254. [PMID: 36759425 DOI: 10.1111/jog.15563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023]
Abstract
AIM To explore the relationship between poly(ADP-ribose) glycohydrolase (PARG) and the occurrence, development, and prognosis of endometrial carcinoma (EC), and investigate whether the PARG inhibitor PDD0017273 could increase the sensitivity of EC cells to cisplatin. METHODS The expression of PARG, phosphatase and tensin homolog (PTEN), and p53 in normal endometrial tissues (NE), endometrial hyperplasia without atypia (EH), atypical endometrial hyperplasia (AH), and EC was detected by immunohistochemistry. AN3CA EC cells with PTEN deficiency were treated with different cisplatin and PDD0017273, alone or in combination. Cell proliferation was detected by MTT method, apoptosis was detected by flow cytometry, and the expression of PARG in EC cells after treatment with different drugs was detected by western blot and immunohistochemistry. RESULTS Expression of PARG in NE, EH, AH, and EC increased gradually. In addition, compared with low PARG expression in PTEN-positive EC, patients who had high PARG expression in PTEN-negative EC had more advanced clinical stages (r = -0.399, p = 0.032) and shorter overall survival time (p = 0.037). A dose of 40 μM PDD0017273 effectively inhibited PARG expression, increased the sensitivity of AN3CA cells to cisplatin. CONCLUSIONS The findings suggest that PARG overexpression is a promising immunohistochemical marker to predict the occurrence and prognosis of EC. Moreover, PARG inhibition produced antitumor effects and increased the sensitivity of EC cells with PTEN deficiency to cisplatin.
Collapse
Affiliation(s)
- Yanyan Sun
- Department of Gynecology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Yi Shi
- Department of Gynecology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Hui Liu
- Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Chunmei Lv
- Department of Gynecology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Aihua Zhang
- Department of Gynecology, The Third Central Hospital of Tianjin, Tianjin, China
| |
Collapse
|
5
|
Abdelghany L, Kawabata T, Goto S, Jingu K, Li TS. Nicaraven induces programmed cell death by distinct mechanisms according to the expression levels of Bcl-2 and poly (ADP-ribose) glycohydrolase in cancer cells. Transl Oncol 2022; 26:101548. [PMID: 36206675 PMCID: PMC9535466 DOI: 10.1016/j.tranon.2022.101548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
The PARP-1 expression level and poly (ADP-ribosyl)ation activity in cancer markedly affect the therapeutic outcome. Nicaraven, a free radical scavenger has been found to inhibit PARP, but the effect on cancer cells is still unclear. In this study, we investigated the potential role and molecular mechanism of nicaraven on cancer cells. Using U937 lymphoma cells and HCT-8 colorectal cancer cells, we found that nicaraven moderately reduced the cell viability of both cells in a dose-dependent manner. Interestingly, nicaraven significantly induced apoptosis of U937 cells that are dominantly expressing Bcl-2 but induced PAR-dependent cell death (parthanatos) of HCT-8 cells that are highly expressing poly (ADP-ribose) glycohydrolase (PARG). Based on our data, nicaraven seems to induce programmed cell death through distinct mechanisms, according to the expression levels of Bcl-2 and PARG in cancer cells.
Collapse
Affiliation(s)
- Lina Abdelghany
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Tsuyoshi Kawabata
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| |
Collapse
|
6
|
Inhibition of Poly (ADP-Ribose) Glycohydrolase Accelerates Osteoblast Differentiation in Preosteoblastic MC3T3-E1 Cells. Int J Mol Sci 2022; 23:ijms23095041. [PMID: 35563432 PMCID: PMC9103302 DOI: 10.3390/ijms23095041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Poly ADP-ribosylation (PARylation) is a post-translational modification catalyzed by poly (ADP-ribose) polymerase (PARP) family proteins such as PARP1. Although PARylation regulates important biological phenomena such as DNA repair, chromatin regulation, and cell death, little is known about the relationship between osteoblast differentiation and the PARylation cycle involving PARP1 and the poly (ADP-ribose)-degrading enzyme poly (ADP-ribose) glycohydrolase (PARG). Here, we examined the effects of PARP inhibitor olaparib, an approved anti-cancer agent, and PARG inhibitor PDD00017273 on osteoblast differentiation. Olaparib decreased alkaline phosphatase (ALP) activity and suppressed mineralized nodule formation evaluated by Alizarin Red S staining in preosteoblastic MC3T3-E1 cells, while PDD00017273 promoted ALP activity and mineralization. Furthermore, PDD00017273 up-regulated the mRNA expression levels of osteocalcin and bone sialoprotein, as osteoblast differentiation markers, and osterix as transcription inducers for osteoblast differentiation, whereas olaparib down-regulated the expression of these genes. These findings suggest that PARG inhibition by PDD00017273 accelerates osteoblast differentiation in MC3T3-E1 cells. Thus, PARG inhibitor administration could provide therapeutic benefits for metabolic bone diseases such as osteoporosis.
Collapse
|
7
|
Gao W, Gao L, Yang F, Li Z. Circulating JNK pathway-associated phosphatase: A novel biomarker correlates with Th17 cells, acute exacerbation risk, and severity in chronic obstructive pulmonary disease patients. J Clin Lab Anal 2021; 36:e24153. [PMID: 34918391 PMCID: PMC8761399 DOI: 10.1002/jcla.24153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Background JNK pathway‐associated phosphatase (JKAP) involves in the regulation of inflammation, immunity, and lung injury. The current study aimed to investigate correlation of JKAP with Th1, Th17 cells, acute exacerbation risk, and disease severity in chronic obstructive pulmonary disease (COPD) patients. Methods Totally, 45 stable COPD (SCOPD) patients, 45 acute exacerbation COPD (AECOPD) patients, and 45 controls were enrolled. Serum was collected for JKAP, interferon‐gamma (IFN‐γ) (Th1 cytokine), and interleukin 17 (IL‐17) (Th17 cytokine) detection. Besides, peripheral blood mononuclear cell from COPD patients was collected for evaluating Th1 and Th17 cells. Results JKAP was highest in controls followed by SCOPD patients and lowest in AECOPD patients (median: 105.673 vs. 75.374 vs. 41.807 pg/ml, p < 0.001). Meanwhile, receiver operating characteristic (ROC) curves revealed that JKAP differentiated the AECOPD patients from the controls (area under curve (AUC): 0.910 (95% confidence interval (CI): 0.849–0.970)) and AECOPD patients from SCOPD patients (AUC: 0.726 (95% CI: 0.622–0.830)). Moreover, JKAP positively correlated with FEV1 (%predicted) in AECOPD patients (r = 0.347 p = 0.019). Additionally, JKAP was negatively correlated with the GOLD stage in AECOPD patients (r = −0.344, p = 0.021) and SCOPD patients (r = −0.357, p = 0.016). Whereas, JKAP was not associated with other clinical features (all p > 0.05). Besides, JKAP was negatively linked with Th17 cells (r = −0.378, p = 0.010), IFN‐γ (r = −0.358, p = 0.016), IL‐17 (r = −0.414, p = 0.005) in AECOPD patients and Th17 cells (r = −0.342, p = 0.022), IL‐17 (r = −0.299, p = 0.046) in SCOPD patients. Conclusion Downregulated JKAP correlates with Th17 cells, higher acute exacerbation risk, and severity in COPD patients, indicating its underlying potency as a biomarker for COPD.
Collapse
Affiliation(s)
- Wei Gao
- Department of Respiratory Medicine, Capital Medical University School of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Lianjun Gao
- Department of Respiratory Medicine, Capital Medical University School of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Feng Yang
- Department of Respiratory Medicine, Capital Medical University School of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Zongjun Li
- Department of Respiratory Medicine, Capital Medical University School of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| |
Collapse
|
8
|
Poltronieri P, Miwa M, Masutani M. ADP-Ribosylation as Post-Translational Modification of Proteins: Use of Inhibitors in Cancer Control. Int J Mol Sci 2021; 22:10829. [PMID: 34639169 PMCID: PMC8509805 DOI: 10.3390/ijms221910829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Among the post-translational modifications of proteins, ADP-ribosylation has been studied for over fifty years, and a large set of functions, including DNA repair, transcription, and cell signaling, have been assigned to this post-translational modification (PTM). This review presents an update on the function of a large set of enzyme writers, the readers that are recruited by the modified targets, and the erasers that reverse the modification to the original amino acid residue, removing the covalent bonds formed. In particular, the review provides details on the involvement of the enzymes performing monoADP-ribosylation/polyADP-ribosylation (MAR/PAR) cycling in cancers. Of note, there is potential for the application of the inhibitors developed for cancer also in the therapy of non-oncological diseases such as the protection against oxidative stress, the suppression of inflammatory responses, and the treatment of neurodegenerative diseases. This field of studies is not concluded, since novel enzymes are being discovered at a rapid pace.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- Institute of Sciences of Food Productions, National Research Council of Italy, CNR-ISPA, Via Monteroni, 73100 Lecce, Italy
| | - Masanao Miwa
- Nagahama Institute of Bio-Science and Technology, Nagahama 526-0829, Japan;
| | - Mitsuko Masutani
- Department of Molecular and Genomic Biomedicine, CBMM, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| |
Collapse
|
9
|
Harrision D, Gravells P, Thompson R, Bryant HE. Poly(ADP-Ribose) Glycohydrolase (PARG) vs. Poly(ADP-Ribose) Polymerase (PARP) - Function in Genome Maintenance and Relevance of Inhibitors for Anti-cancer Therapy. Front Mol Biosci 2020; 7:191. [PMID: 33005627 PMCID: PMC7485115 DOI: 10.3389/fmolb.2020.00191] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes that catalyze the addition of poly(ADP-ribose) (PAR) subunits onto themselves and other acceptor proteins. PARPs are known to function in a large range of cellular processes including DNA repair, DNA replication, transcription and modulation of chromatin structure. Inhibition of PARP holds great potential for therapy, especially in cancer. Several PARP1/2/3 inhibitors (PARPi) have had success in treating ovarian, breast and prostate tumors harboring defects in the homologous recombination (HR) DNA repair pathway, especially BRCA1/2 mutated tumors. However, treatment is limited to specific sub-groups of patients and resistance can occur, limiting the use of PARPi. Poly(ADP-ribose) glycohydrolase (PARG) reverses the action of PARP enzymes, hydrolysing the ribose-ribose bonds present in poly(ADP-ribose). Like PARPs, PARG is involved in DNA replication and repair and PARG depleted/inhibited cells show increased sensitivity to DNA damaging agents. They also display an accumulation of perturbed replication intermediates which can lead to synthetic lethality in certain contexts. In addition, PARG is thought to play an important role in preventing the accumulation of cytoplasmic PAR and therefore parthanatos, a caspase-independent PAR-mediated type of cell death. In contrast to PARP, the therapeutic potential of PARG has been largely ignored. However, several recent papers have demonstrated the exciting possibilities that inhibitors of this enzyme may have for cancer treatment, both as single agents and in combination with cytotoxic drugs and radiotherapy. This article discusses what is known about the functions of PARP and PARG and the potential future implications of pharmacological inhibition in anti-cancer therapy.
Collapse
Affiliation(s)
- Daniel Harrision
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Polly Gravells
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Ruth Thompson
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Helen E Bryant
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
10
|
Reduced Tumorigenicity of Mouse ES Cells and the Augmented Anti-Tumor Therapeutic Effects under Parg Deficiency. Cancers (Basel) 2020; 12:cancers12041056. [PMID: 32344695 PMCID: PMC7226256 DOI: 10.3390/cancers12041056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
PolyADP-ribosylation is a post-translational modification of proteins, and poly(ADP-ribose) (PAR) polymerase (PARP) family proteins synthesize PAR using NAD as a substrate. Poly(ADP-ribose) glycohydrolase (PARG) functions as the main enzyme for the degradation of PAR. In this study, we investigated the effects of Parg deficiency on tumorigenesis and therapeutic efficacy of DNA damaging agents, using mouse ES cell-derived tumor models. To examine the effects of Parg deficiency on tumorigenesis, Parg+/+ and Parg−/− ES cells were subcutaneously injected into nude mice. The results showed that Parg deficiency delays early onset of tumorigenesis from ES cells. All the tumors were phenotypically similar to teratocarcinoma and microscopic findings indicated that differentiation spectrum was similar between the Parg genotypes. The augmented anti-tumor therapeutic effects of X-irradiation were observed under Parg deficiency. These results suggest that Parg deficiency suppresses early stages of tumorigenesis and that Parg inhibition, in combination with DNA damaging agents, may efficiently control tumor growth in particular types of germ cell tumors.
Collapse
|
11
|
Chen L, Gunji A, Uemura A, Fujihara H, Nakamoto K, Onodera T, Sasaki Y, Imamichi S, Isumi M, Nozaki T, Kamada N, Jishage KI, Masutani M. Development of renal failure in PargParp-1 null and Timm23 hypomorphic mice. Biochem Pharmacol 2019; 167:116-124. [DOI: 10.1016/j.bcp.2019.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
|