1
|
de Castro Sampaio SS, Ramalho MCC, de Souza CS, de Almeida Rodrigues B, de Mendonça GRS, Lazarini M. RHO subfamily of small GTPases in the development and function of hematopoietic cells. J Cell Physiol 2025; 240:e31469. [PMID: 39434451 DOI: 10.1002/jcp.31469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
RHOA, RHOB, and RHOC comprise a subfamily of RHO GTPase proteins famed for controlling cytoskeletal dynamics. RHO proteins operate downstream of multiple signals emerging from the microenvironment, leading to diverse cell responses, such as proliferation, adhesion, and migration. Therefore, RHO signaling has been centrally placed in the regulation of blood cells. Despite their high homology, unique roles of RHOA, RHOB, and RHOC have been described in hematopoietic cells. In this article, we overview the contribution of RHO proteins in the development and function of each blood cell lineage. Additionally, we highlight the aberrations of the RHO signaling pathways found in hematological malignancies, providing clues for the identification of new therapeutic targets.
Collapse
Affiliation(s)
| | | | - Caroline Santos de Souza
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Mariana Lazarini
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Li T, Zhang G, Zhang X, Lin H, Liu Q. The 8p11 myeloproliferative syndrome: Genotypic and phenotypic classification and targeted therapy. Front Oncol 2022; 12:1015792. [PMID: 36408177 PMCID: PMC9669583 DOI: 10.3389/fonc.2022.1015792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/10/2022] [Indexed: 10/05/2023] Open
Abstract
EMS(8p11 myeloproliferative syndrome, EMS) is an aggressive hematological neoplasm with/without eosinophilia caused by a rearrangement of the FGFR1 gene at 8p11-12. It was found that all cases carry chromosome abnormalities at the molecular level, not only the previously reported chromosome translocation and insertion but also a chromosome inversion. These abnormalities produced 17 FGFR1 fusion genes, of which the most common partner genes are ZNF198 on 13q11-12 and BCR of 22q11.2. The clinical manifestations can develop into AML (acute myeloid leukemia), T-LBL (T-cell lymphoblastic lymphoma), CML (chronic myeloid leukemia), CMML (chronic monomyelocytic leukemia), or mixed phenotype acute leukemia (MPAL). Most patients are resistant to traditional chemotherapy, and a minority of patients achieve long-term clinical remission after stem cell transplantation. Recently, the therapeutic effect of targeted tyrosine kinase inhibitors (such as pemigatinib and infigratinib) in 8p11 has been confirmed in vitro and clinical trials. The TKIs may become an 8p11 treatment option as an alternative to hematopoietic stem cell transplantation, which is worthy of further study.
Collapse
Affiliation(s)
- Taotao Li
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Gaoling Zhang
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Hai Lin
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Qiuju Liu
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Cai B, Liu Y, Chong Y, Mori SF, Matsunaga A, Zhang H, Fang X, Chang CS, Cowell JK, Hu T. A truncated derivative of FGFR1 kinase cooperates with FLT3 and KIT to transform hematopoietic stem cells in syndromic and de novo AML. Mol Cancer 2022; 21:156. [PMID: 35906694 PMCID: PMC9336057 DOI: 10.1186/s12943-022-01628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/23/2022] [Indexed: 11/21/2022] Open
Abstract
Background Myeloid and lymphoid malignancies associated with chimeric FGFR1 kinases are the hallmark of stem cell leukemia and lymphoma syndrome (SCLL). In all cases, FGFR1 kinase is constitutively phosphoactivated as a result of chromosome translocations, which lead to acquisition of dimerization motifs in the chimeric proteins. Recently, we demonstrated that these chimeric kinases could be cleaved by granzyme B to generate a truncated derivative, tnFGFR1, which localized exclusively into the nucleus and was not phosphorylated. Methods Stem cell transduction and transplantation in syngeneic mice was used to assess the transforming ability of tnFGFR1 in bone marrow stem cells, and RPPA and RNA-Seq was used to examine the related signaling pathways and regulated target genes. Results For the first time, we show that this non-classical truncated form of FGFR1 can independently lead to oncogenic transformation of hematopoietic stem cells in an animal model in vivo. These leukemia cells show a mixed immunophenotype with a B-cell B220 + Igm- profile in the majority of cells and Kit+ in virtually all cells, suggesting a stem cell disease. tnFGFR1, however, does not activate classic FGFR1 downstream signaling pathways but induces a distinct profile of altered gene expression with significant upregulation of transmembrane signaling receptors including FLT3 and KIT. We further show that de novo human AML also express tnFGFR1 which correlates with upregulation of FLT3 and KIT as in mouse leukemia cells. ChIP analysis demonstrates tnFGFR1 occupancy at the Flt3 and Kit promoters, suggesting a direct transcriptional regulation. Cells transformed with tnFGFR1 are insensitive to FGFR1 inhibitors but treatment of these cells with the Quizartinib (AC220) FLT3 inhibitor, suppresses in vitro growth and development of leukemia in vivo. Combined treatment with FGFR1 and FLT3 inhibitors provides increased survival compared to FGFR1 inhibition alone. Conclusions This study demonstrates a novel model for transformation of hematopoietic stem cells by chimeric FGFR1 kinases with the combined effects of direct protein activation by the full-length kinases and transcriptional regulation by the truncated nuclear tnFGFR1 derivative, which is associated with GZMB expression levels. Genes significantly upregulated by tnFGFR1 include Flt3 and Kit which promote a leukemia stem cell phenotype. In human AML, tnFGFR1 activation leads to increased FLT3 and KIT expression, and higher FLT3 and GZMB expression levels are associated with an inferior prognosis. These observations provide insights into the relative therapeutic value of targeting FGFR1 and FLT3 in treating AML with this characteristic gene expression profile. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01628-3.
Collapse
Affiliation(s)
- Baohuan Cai
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA.,Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Liu
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA.,Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yating Chong
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Stephanie Fay Mori
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Atsuko Matsunaga
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Hualei Zhang
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA.,Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xuexiu Fang
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Chang-Sheng Chang
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - John K Cowell
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Tianxiang Hu
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA.
| |
Collapse
|
4
|
Zhang H, Cai B, Liu Y, Chong Y, Matsunaga A, Mori SF, Fang X, Kitamura E, Chang CS, Wang P, Cowell JK, Hu T. RHOA-regulated IGFBP2 promotes invasion and drives progression of BCR-ABL1 chronic myeloid leukemia. Haematologica 2022; 108:122-134. [PMID: 35833297 PMCID: PMC9827165 DOI: 10.3324/haematol.2022.280757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 02/05/2023] Open
Abstract
The Philadelphia 9;22 chromosome translocation has two common isoforms that are preferentially associated with distinct subtypes of leukemia. The p210 variant is the hallmark of chronic myeloid leukemia (CML) whereas p190 is frequently associated with B-cell acute lymphoblastic leukemia. The only sequence difference between the two isoforms is the guanidine exchange factor domain. This guanidine exchange factor is reported to activate RHO family GTPases in response to diverse extracellular stimuli. It is not clear whether and, if so, how RHOA contributes to progression of p210 CML. Here we show that knockout of RHOA in the K562 and KU812, p210-expressing cell lines leads to suppression of leukemogenesis in animal models in vivo. RNA-sequencing analysis of the mock control and null cells demonstrated a distinct change in the gene expression profile as a result of RHOA deletion, with significant downregulation of genes involved in cell activation and cell adhesion. Cellular analysis revealed that RHOA knockout leads to impaired cell adhesion and migration and, most importantly, the homing ability of leukemia cells to the bone marrow, which may be responsible for the attenuated leukemia progression. We also identified IGFBP2 as an important downstream target of RHOA. Further mechanistic investigation showed that RHOA activation leads to relocation of the serum response factor (SRF) into the nucleus, where it directly activates IGFBP2. Knockout of IGFBP2 in CML cells suppressed cell adhesion/invasion, as well as leukemogenesis in vivo. This elevated IGFBP2 expression was confirmed in primary CML samples. Thus, we demonstrate one mechanism whereby the RHOA-SRF-IGFBP2 signaling axis contributes to the development of leukemia in cells expressing the p210 BCR-ABL1 fusion kinase.
Collapse
Affiliation(s)
- Hualei Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Baohuan Cai
- Georgia Cancer Center, Augusta University, Augusta, GA, USA,Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Liu
- Georgia Cancer Center, Augusta University, Augusta, GA, USA,Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yating Chong
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | | | | | - Xuexiu Fang
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Eiko Kitamura
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | | | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - John K. Cowell
- Georgia Cancer Center, Augusta University, Augusta, GA, USA,J. K. Cowell
| | - Tianxiang Hu
- Georgia Cancer Center, Augusta University, Augusta, GA, USA,T. Hu
| |
Collapse
|
5
|
IRAK1-regulated IFN-γ signaling induces MDSC to facilitate immune evasion in FGFR1-driven hematological malignancies. Mol Cancer 2021; 20:165. [PMID: 34906138 PMCID: PMC8670266 DOI: 10.1186/s12943-021-01460-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/16/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Stem Cell leukemia/lymphoma syndrome (SCLL) presents as a myeloproliferative disease which can progress to acute myeloid leukemia and is associated with the coincident development of B-cell and T-cell lymphomas. SCLL is driven by the constitutive activation of fibroblast growth factor receptor-1 (FGFR1) as a result of chromosome translocations with poor outcome. Mouse models have been developed which faithfully recapitulate the human disease and have been used to characterize the molecular genetic events that are associated with development and progression of the disease. METHODS CRISPR/Cas9 approaches were used to generate SCLL cells null for Interleukin receptor associated kinase 1 (IRAK1) and interferon gamma (IFNG) which were introduced into syngeneic hosts through tail vein injection. Development of the disease and changes in immune cell composition and activity were monitored using flow cytometry. Bead-based immunoassays were used to compare the cytokine and chemokine profiles of control and knock out (KO) cells. Antibody mediated, targeted depletion of T cell and MDSCs were performed to evaluate their role in antitumor immune responses. RESULTS In SCLL, FGFR1 activation silences miR-146b-5p through DNMT1-mediated promoter methylation, which derepresses the downstream target IRAK1. IRAK1 KO SCLL cells were xenografted into immunocompetent syngeneic mice where the typical rapid progression of disease was lost and the mice remained disease free. IRAK1 in this system has no effect on cell cycle progression or apoptosis and robust growth of the KO cells in immunodeficient mice suggested an effect on immune surveillance. Depletion of T-cells in immunocompetent mice restored leukemogenesis of the KO cells, and tumor killing assays confirmed the role of T cells in tumor clearance. Analysis of the immune cell profile in mice transplanted with the IRAK1 expressing mock control (MC) cells shows that there is an increase in levels of myeloid-derived suppressor cells (MDSCs) with a concomitant decrease in CD4+/CD8+ T-cell levels. MDSC suppression assays and depletion experiments showed that these MDSCs were responsible for suppression of the T cell mediated leukemia cell elimination. Immuno-profiling of a panel of secreted cytokines and chemokines showed that activation of IFN-γ is specifically impaired in the KO cells. In vitro and in vivo expression assays and engraftment with interferon gamma receptor-1 (IFNGR1) null mice and IFNG KO SCLL cells, showed the leukemia cells produced IFN-γ directly participating in the induction of MDSCs to establish immune evasion. Inhibition of IRAK1 using pacritinib suppresses leukemogenesis with impaired induction of MDSCs and attenuated suppression of CD4+/CD8+ T-cells. CONCLUSIONS IRAK1 orchestrates a previously unknown FGFR1-directed immune escape mechanism in SCLL, through induction of MDSCs via regulation of IFN-γ signaling from leukemia cells, and targeting IRAK1 may provide a means of suppressing tumor growth in this syndrome by restoring immune surveillance.
Collapse
|
6
|
Cowell JK, Hu T. Mechanisms of resistance to FGFR1 inhibitors in FGFR1-driven leukemias and lymphomas: implications for optimized treatment. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:607-619. [PMID: 34734169 PMCID: PMC8562765 DOI: 10.20517/cdr.2021.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Myeloid and lymphoid neoplasms with eosinophilia and FGFR1 rearrangements (MLN-eo FGFR1) disease is derived from a pluripotent hematopoietic stem cell and has a complex presentation with a myeloproliferative disorder with or without eosinophilia and frequently presents with mixed lineage T- or B-lymphomas. The myeloproliferative disease frequently progresses to AML and lymphoid neoplasms can develop into acute lymphomas. No matter the cell type involved, or clinical presentation, chromosome translocations involving the FGFR1 kinase and various partner genes, which leads to constitutive activation of downstream oncogenic signaling cascades. These patients are not responsive to treatment regimens developed for other acute leukemias and survival is poor. Recent development of specific FGFR1 inhibitors has suggested an alternative therapeutic approach but resistance is likely to evolve over time. Mouse models of this disease syndrome have been developed and are being used for preclinical evaluation of FGFR1 inhibitors. Cell lines from these models have now been developed and have been used to investigate the mechanisms of resistance that might be expected in clinical cases. So far, a V561M mutation in the kinases domain and deletion of PTEN have been recognized as leading to resistance and both operate through the PI3K/AKT signaling axis. One of the important consequences is the suppression of PUMA, a potent enforcer of apoptosis, which operates through BCL2. Targeting BCL2 in the resistant cells leads to suppression of leukemia development in mouse models, which potentially provides an opportunity to treat patients that become resistant to FGFR1 inhibitors. In addition, elucidation of molecular mechanisms underlying FGFR1-driven leukemias and lymphomas also provides new targets for combined treatment as another option to bypass the FGFR1 inhibitor resistance and improve patient outcome.
Collapse
Affiliation(s)
- John K Cowell
- Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Tianxiang Hu
- Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA 30912, USA
| |
Collapse
|
7
|
Chong Y, Liu Y, Lu S, Cai B, Qin H, Chang CS, Ren M, Cowell JK, Hu T. Critical individual roles of the BCR and FGFR1 kinase domains in BCR-FGFR1-driven stem cell leukemia/lymphoma syndrome. Int J Cancer 2019; 146:2243-2254. [PMID: 31525277 DOI: 10.1002/ijc.32665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/14/2019] [Accepted: 08/29/2019] [Indexed: 01/09/2023]
Abstract
Constitutive activation of FGFR1, as a result of diverse chromosome translocations, is the hallmark of stem cell leukemia/lymphoma syndrome. The BCR-FGFR1 variant is unique in that the BCR component contributes a serine-threonine kinase (STK) to the N-terminal end of the chimeric FGFR1 kinase. We have deleted the STK domain and mutated the critical Y177 residue and demonstrate that the transforming activity of these mutated genes is reduced compared to the BCR-FGFR1 parental kinase. In addition, we demonstrate that deletion of the FGFR1 tyrosine kinase domain abrogates transforming ability, which is not compensated for by BCR STK activity. Unbiased screening for proteins that are inactivated as a result of loss of the BCR STK identified activated S6 kinase and SHP2 kinase. Genetic and pharmacological inhibition of SHP2 function in SCLL cells expressing BCR-FGFR1 in vitro leads to reduced viability and increased apoptosis. In vivo treatment of SCLL in mice with SHP099 leads to suppression of leukemogenesis, supporting an important role for SHP2 in FGFR1-driven leukemogenesis. In combination with the BGJ398 FGFR1 inhibitor, cell viability in vitro is further suppressed and acts synergistically with SHP099 in vivo suggesting a potential combined targeted therapy option in this subtype of SCLL disease.
Collapse
Affiliation(s)
| | - Yun Liu
- Georgia Cancer Center, Augusta, GA.,Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Sumin Lu
- Georgia Cancer Center, Augusta, GA
| | - Baohuan Cai
- Georgia Cancer Center, Augusta, GA.,Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | | | | | | | | | | |
Collapse
|
8
|
Peiris MN, Meyer AN, Nelson KN, Bisom-Rapp EW, Donoghue DJ. Oncogenic fusion protein BCR-FGFR1 requires the breakpoint cluster region-mediated oligomerization and chaperonin Hsp90 for activation. Haematologica 2019; 105:1262-1273. [PMID: 31439673 PMCID: PMC7193502 DOI: 10.3324/haematol.2019.220871] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/14/2019] [Indexed: 01/07/2023] Open
Abstract
Mutation and translocation of fibroblast growth factor receptors often lead to aberrant signaling and cancer. This work focuses on the t(8;22)(p11;q11) chromosomal translocation which creates the breakpoint cluster region (BCR) fibroblast growth factor receptor1 (FGFR1) (BCR-FGFR1) fusion protein. This fusion occurs in stem cell leukemia/lymphoma, which can progress to atypical chronic myeloid leukemia, acute myeloid leukemia, or B-cell lymphoma. This work focuses on the biochemical characterization of BCR-FGFR1 and identification of novel therapeutic targets. The tyrosine kinase activity of FGFR1 is required for biological activity as shown using transformation assays, interleukin-3 independent cell proliferation, and liquid chromatography/mass spectroscopy analyses. Furthermore, BCR contributes a coiled-coil oligomerization domain, also essential for oncogenic transformation by BCR-FGFR1. The importance of salt bridge formation within the coiled-coil domain is demonstrated, as disruption of three salt bridges abrogates cellular transforming ability. Lastly, BCR-FGFR1 acts as a client of the chaperonin heat shock protein 90 (Hsp90), suggesting that BCR-FGFR1 relies on Hsp90 complex to evade proteasomal degradation. Transformed cells expressing BCR-FGFR1 are sensitive to the Hsp90 inhibitor Ganetespib, and also respond to combined treatment with Ganetespib plus the FGFR inhibitor BGJ398. Collectively, these data suggest novel therapeutic approaches for future stem cell leukemia/lymphoma treatment: inhibition of BCR oligomerization by disruption of required salt bridges; and inhibition of the chaperonin Hsp90 complex.
Collapse
Affiliation(s)
- Malalage N Peiris
- Department of Chemistry and Biochemistry, University of California San Diego
| | - April N Meyer
- Department of Chemistry and Biochemistry, University of California San Diego
| | - Katelyn N Nelson
- Department of Chemistry and Biochemistry, University of California San Diego
| | - Ezra W Bisom-Rapp
- Department of Chemistry and Biochemistry, University of California San Diego
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego .,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
BCR: a promiscuous fusion partner in hematopoietic disorders. Oncotarget 2019; 10:2738-2754. [PMID: 31105873 PMCID: PMC6505627 DOI: 10.18632/oncotarget.26837] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/23/2019] [Indexed: 12/23/2022] Open
Abstract
Considerable advances have been made in our understanding of the molecular basis of hematopoietic cancers. The discovery of the BCR-ABL fusion protein over 50 years ago has brought about a new era of therapeutic progress and overall improvement in patient care, mainly due to the development and use of personalized medicine and tyrosine kinase inhibitors (TKIs). However, since the detection of BCR-ABL, BCR has been identified as a commonly occurring fusion partner in hematopoietic disorders. BCR has been discovered fused to additional tyrosine kinases, including: Fibroblast Growth Factor Receptor 1 (FGFR1), Platelet-derived Growth Factor Receptor Alpha (PDGFRA), Ret Proto-Oncogene (RET), and Janus Kinase 2 (JAK2). While BCR translocations are infrequent in hematopoietic malignancies, clinical evidence suggests that patients who harbor these mutations benefit from TKIs and additional personalized therapies. The improvement of further methodologies for characterization of these fusions is crucial to determine a patient’s treatment regimen, and optimal outcome. However, potential relapse and drug resistance among patients’ highlights the need for additional treatment options and further understanding of these oncogenic fusion proteins. This review explores the mechanisms behind cancer progression of these BCR oncogenic fusion proteins, comparing their similarities and differences, examining the significance of BCR as a partner gene, and discussing current treatment options for these translocation-induced hematopoietic malignancies.
Collapse
|