1
|
Shao N, Cai K, Hong Y, Wu L, Luo Q. USP9X suppresses ferroptosis in diabetic kidney disease by deubiquitinating Nrf2 in vitro. Ren Fail 2025; 47:2458761. [PMID: 39967230 PMCID: PMC11841168 DOI: 10.1080/0886022x.2025.2458761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/22/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates many critical genes associated with iron storage and transportation, the activity of which is influenced by E3 ligase-mediated ubiquitination. We wondered whether there is a deubiquitinase that mediates the deubiquitination of Nrf2 to stabilize Nrf2 expression and further prevent diabetic kidney disease (DKD). High glucose (HG) was applied to induce an in vitro model of DKD. The effects of HG on HK-2 cell viability, apoptosis, Fe2+ level, Nrf2, and ubiquitin-specific protease 9X (USP9X) were assessed by cell counting kit-8 (CCK-8) assay, flow cytometry, iron assay, and Western blot. The direct interaction between Nrf2 and USP9X was analyzed using co-immunoprecipitation and ubiquitination assay. After transfection and ferrostatin-1 (Fer-1) intervention, Nrf2 and USP9X levels, cell viability, apoptosis, and Fe2+ level were tested again. Reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH) contents, and ferroptosis-related markers were assessed by ROS assay kit, ELISA, and Western blot. HG reduced cell viability and levels of USP9X and Nrf2, while elevating apoptosis and Fe2+ level. An interaction between USP9X and Nrf2 has been verified and USP9X deubiquitinated Nrf2. Nrf2 up-regulation augmented the viability, GSH content, and ferroptosis-related protein expressions, while suppressing the apoptosis, Fe2+ level, MDA, and ROS content in HG-mediated HK-2 cells, which was reversed by USP9X silencing. Fer-1 offset the combined modulation of Nrf2 and siUSP9X on HG-induced HK-2 cells. USP9X mediates Nrf2 deubiquitinase to hamper the ferroptosis in DKD in vitro.
Collapse
Affiliation(s)
- Ningjun Shao
- Department of Nephrology, Ningbo No.2 Hospital, Ningbo, China
| | - Kedan Cai
- Department of Nephrology, Ningbo No.2 Hospital, Ningbo, China
| | - Yue Hong
- Department of Nephrology, Ningbo No.2 Hospital, Ningbo, China
| | - Lingping Wu
- Department of Nephrology, Ningbo No.2 Hospital, Ningbo, China
| | - Qun Luo
- Department of Nephrology, Ningbo No.2 Hospital, Ningbo, China
| |
Collapse
|
2
|
Rabinowicz R, Izraeli S. ERG: the good, the bad, and the ugly. Blood 2024; 144:1755-1756. [PMID: 39446373 DOI: 10.1182/blood.2024025898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
|
3
|
Meng Y, Hong C, Yang S, Qin Z, Yang L, Huang Y. Roles of USP9X in cellular functions and tumorigenesis (Review). Oncol Lett 2023; 26:506. [PMID: 37920433 PMCID: PMC10618932 DOI: 10.3892/ol.2023.14093] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/12/2023] [Indexed: 11/04/2023] Open
Abstract
Ubiquitin-specific peptidase 9X (USP9X) is involved in certain human diseases, including malignancies, atherosclerosis and certain diseases of the nervous system. USP9X promotes the deubiquitination and stabilization of diverse substrates, thereby exerting a versatile range of effects on pathological and physiological processes. USP9X serves vital roles in the processes of cell survival, invasion and migration in various types of cancer. The present review aims to highlight the current knowledge of USP9X in terms of its structure and the possible mediatory mechanisms involved in certain types of cancer, providing a thorough introduction to its biological functions in carcinogenesis and further outlining its oncogenic or suppressive properties in a diverse range of cancer types. Finally, several perspectives regarding USP9X-targeted pharmacological therapeutics in cancer development are discussed.
Collapse
Affiliation(s)
- Yimei Meng
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Chaojin Hong
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Sifu Yang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Zhiquan Qin
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Liu Yang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yumei Huang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
4
|
Kugler E, Madiwale S, Yong D, Thoms JAI, Birger Y, Sykes DB, Schmoellerl J, Drakul A, Priebe V, Yassin M, Aqaqe N, Rein A, Fishman H, Geron I, Chen CW, Raught B, Liu Q, Ogana H, Liedke E, Bourquin JP, Zuber J, Milyavsky M, Pimanda J, Privé GG, Izraeli S. The NCOR-HDAC3 co-repressive complex modulates the leukemogenic potential of the transcription factor ERG. Nat Commun 2023; 14:5871. [PMID: 37735473 PMCID: PMC10514085 DOI: 10.1038/s41467-023-41067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
The ERG (ETS-related gene) transcription factor is linked to various types of cancer, including leukemia. However, the specific ERG domains and co-factors contributing to leukemogenesis are poorly understood. Drug targeting a transcription factor such as ERG is challenging. Our study reveals the critical role of a conserved amino acid, proline, at position 199, located at the 3' end of the PNT (pointed) domain, in ERG's ability to induce leukemia. P199 is necessary for ERG to promote self-renewal, prevent myeloid differentiation in hematopoietic progenitor cells, and initiate leukemia in mouse models. Here we show that P199 facilitates ERG's interaction with the NCoR-HDAC3 co-repressor complex. Inhibiting HDAC3 reduces the growth of ERG-dependent leukemic and prostate cancer cells, indicating that the interaction between ERG and the NCoR-HDAC3 co-repressor complex is crucial for its oncogenic activity. Thus, targeting this interaction may offer a potential therapeutic intervention.
Collapse
Affiliation(s)
- Eitan Kugler
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Shreyas Madiwale
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Darren Yong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Julie A I Thoms
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Yehudit Birger
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA & Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Johannes Schmoellerl
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Aneta Drakul
- Division of Pediatric Oncology, and Children Research Center, University Children's Hospital, Zurich, Switzerland
| | - Valdemar Priebe
- Division of Pediatric Oncology, and Children Research Center, University Children's Hospital, Zurich, Switzerland
| | - Muhammad Yassin
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nasma Aqaqe
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avigail Rein
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Hila Fishman
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Ifat Geron
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Qiao Liu
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Heather Ogana
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Elisabeth Liedke
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Jean-Pierre Bourquin
- Division of Pediatric Oncology, and Children Research Center, University Children's Hospital, Zurich, Switzerland
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - John Pimanda
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Gilbert G Privé
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| | - Shai Izraeli
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
| |
Collapse
|
5
|
Bowling GC, Rands MG, Dobi A, Eldhose B. Emerging Developments in ETS-Positive Prostate Cancer Therapy. Mol Cancer Ther 2023; 22:168-178. [PMID: 36511830 DOI: 10.1158/1535-7163.mct-22-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/26/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Prostate cancer is a global health concern, which has a low survival rate in its advanced stages. Even though second-generation androgen receptor-axis inhibitors serve as the mainstay treatment options, utmost of the metastatic cases progress into castration-resistant prostate cancer after their initial treatment response with poor prognostic outcomes. Hence, there is a dire need to develop effective inhibitors that aim the causal oncogenes tangled in the prostate cancer initiation and progression. Molecular-targeted therapy against E-26 transformation-specific (ETS) transcription factors, particularly ETS-related gene, has gained wide attention as a potential treatment strategy. ETS rearrangements with the male hormone responsive transmembrane protease serine 2 promoter defines a significant number of prostate cancer cases and is responsible for cancer initiation and progression. Notably, inhibition of ETS activity has shown to reduce tumorigenesis, thus highlighting its potential as a clinical therapeutic target. In this review, we recapitulate the various targeted drug approaches, including small molecules, peptidomimetics, nucleic acids, and many others, aimed to suppress ETS activity. Several inhibitors have demonstrated ERG antagonist activity in prostate cancer, but further investigations into their molecular mechanisms and impacts on nontumor ETS-containing tissues is warranted.
Collapse
Affiliation(s)
- Gartrell C Bowling
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Mitchell G Rands
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Binil Eldhose
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| |
Collapse
|
6
|
Boila LD, Ghosh S, Bandyopadhyay SK, Jin L, Murison A, Zeng AGX, Shaikh W, Bhowmik S, Muddineni SSNA, Biswas M, Sinha S, Chatterjee SS, Mbong N, Gan OI, Bose A, Chakraborty S, Arruda A, Kennedy JA, Mitchell A, Lechman ER, Banerjee D, Milyavsky M, Minden MD, Dick JE, Sengupta A. KDM6 demethylases integrate DNA repair gene regulation and loss of KDM6A sensitizes human acute myeloid leukemia to PARP and BCL2 inhibition. Leukemia 2023; 37:751-764. [PMID: 36720973 DOI: 10.1038/s41375-023-01833-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous, aggressive malignancy with dismal prognosis and with limited availability of targeted therapies. Epigenetic deregulation contributes to AML pathogenesis. KDM6 proteins are histone-3-lysine-27-demethylases that play context-dependent roles in AML. We inform that KDM6-demethylase function critically regulates DNA-damage-repair-(DDR) gene expression in AML. Mechanistically, KDM6 expression is regulated by genotoxic stress, with deficiency of KDM6A-(UTX) and KDM6B-(JMJD3) impairing DDR transcriptional activation and compromising repair potential. Acquired KDM6A loss-of-function mutations are implicated in chemoresistance, although a significant percentage of relapsed-AML has upregulated KDM6A. Olaparib treatment reduced engraftment of KDM6A-mutant-AML-patient-derived xenografts, highlighting synthetic lethality using Poly-(ADP-ribose)-polymerase-(PARP)-inhibition. Crucially, a higher KDM6A expression is correlated with venetoclax tolerance. Loss of KDM6A increased mitochondrial activity, BCL2 expression, and sensitized AML cells to venetoclax. Additionally, BCL2A1 associates with venetoclax resistance, and KDM6A loss was accompanied with a downregulated BCL2A1. Corroborating these results, dual targeting of PARP and BCL2 was superior to PARP or BCL2 inhibitor monotherapy in inducing AML apoptosis, and primary AML cells carrying KDM6A-domain mutations were even more sensitive to the combination. Together, our study illustrates a mechanistic rationale in support of a novel combination therapy for AML based on subtype-heterogeneity, and establishes KDM6A as a molecular regulator for determining therapeutic efficacy.
Collapse
Affiliation(s)
- Liberalis Debraj Boila
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Subhadeep Ghosh
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Subham K Bandyopadhyay
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Liqing Jin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Andy G X Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Wasim Shaikh
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Satyaki Bhowmik
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | | | - Mayukh Biswas
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Sayantani Sinha
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Shankha Subhra Chatterjee
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Nathan Mbong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Olga I Gan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Anwesha Bose
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Sayan Chakraborty
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - James A Kennedy
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.,Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, M5G 2C4, Canada.,Department of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Amanda Mitchell
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Eric R Lechman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Debasis Banerjee
- Park Clinic, Gorky Terrace and Ramakrishna Mission Seva Pratisthan, Kolkata, 700017, West Bengal, India
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.,Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, M5G 2C4, Canada.,Department of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Amitava Sengupta
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India. .,Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India. .,CSIR-IICB-Cancer Biology & Inflammatory Disorder Division, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India.
| |
Collapse
|
7
|
Yang L, Wang S, Pan Z, Du X, Li Q. TGFBR2 is a novel substrate and indirect transcription target of deubiquitylase USP9X in granulosa cells. J Cell Physiol 2022; 237:2969-2979. [PMID: 35578792 DOI: 10.1002/jcp.30776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 11/11/2022]
Abstract
The ubiquitin-specific peptidase 9 X-linked (USP9X) is one of the highly conserved members belonging to the ubiquitin-specific proteases (USPs) family, which has been reported to control substrates-mediated biological functions through deubiquitinating and stabilizing substrates. Here, we have found that TGFBR2, the type II receptor of the transforming growth factor beta (TGF-β) signaling pathway, is a novel substrate and indirect transcription target of deubiquitylase USP9X in granulosa cells (GCs). Mechanically, USP9X positively influences the expression of TGFBR2 at different levels through two independent ways: (i) directly targets and deubiquitinates TGFBR2, which maintains the protein stability of TGFBR2 through avoiding degradation mediated by ubiquitin-proteasome system; (ii) indirectly maintains TGFBR2 messenger RNA (mRNA) expression via SMAD4/miR-143 axis. Specifically, SMAD4, another substrate of USP9X, acts as a transcription factor and suppresses miR-143 which inhibits the mRNA level of TGFBR2 by directly binding to its 3'-untranslated region. Functionally, the maintenance of TGFBR2 by USP9X activates the TGF-β signaling pathway, which further represses GC apoptosis. Our study highlights a functional micro-regulatory network composed of deubiquitinase (USP9X), small noncoding RNA (miR-143) and the TGF-β signaling pathway, which plays a crucial role in the regulation of GC apoptosis and female fertility.
Collapse
Affiliation(s)
- Liu Yang
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Siqi Wang
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zengxiang Pan
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xing Du
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qifa Li
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Thoms JAI, Truong P, Subramanian S, Knezevic K, Harvey G, Huang Y, Seneviratne JA, Carter DR, Joshi S, Skhinas J, Chacon D, Shah A, de Jong I, Beck D, Göttgens B, Larsson J, Wong JWH, Zanini F, Pimanda JE. Disruption of a GATA2-TAL1-ERG regulatory circuit promotes erythroid transition in healthy and leukemic stem cells. Blood 2021; 138:1441-1455. [PMID: 34075404 DOI: 10.1182/blood.2020009707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/03/2021] [Indexed: 10/21/2022] Open
Abstract
Changes in gene regulation and expression govern orderly transitions from hematopoietic stem cells to terminally differentiated blood cell types. These transitions are disrupted during leukemic transformation, but knowledge of the gene regulatory changes underpinning this process is elusive. We hypothesized that identifying core gene regulatory networks in healthy hematopoietic and leukemic cells could provide insights into network alterations that perturb cell state transitions. A heptad of transcription factors (LYL1, TAL1, LMO2, FLI1, ERG, GATA2, and RUNX1) bind key hematopoietic genes in human CD34+ hematopoietic stem and progenitor cells (HSPCs) and have prognostic significance in acute myeloid leukemia (AML). These factors also form a densely interconnected circuit by binding combinatorially at their own, and each other's, regulatory elements. However, their mutual regulation during normal hematopoiesis and in AML cells, and how perturbation of their expression levels influences cell fate decisions remains unclear. In this study, we integrated bulk and single-cell data and found that the fully connected heptad circuit identified in healthy HSPCs persists, with only minor alterations in AML, and that chromatin accessibility at key heptad regulatory elements was predictive of cell identity in both healthy progenitors and leukemic cells. The heptad factors GATA2, TAL1, and ERG formed an integrated subcircuit that regulates stem cell-to-erythroid transition in both healthy and leukemic cells. Components of this triad could be manipulated to facilitate erythroid transition providing a proof of concept that such regulatory circuits can be harnessed to promote specific cell-type transitions and overcome dysregulated hematopoiesis.
Collapse
Affiliation(s)
| | - Peter Truong
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Shruthi Subramanian
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Kathy Knezevic
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Gregory Harvey
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Yizhou Huang
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Janith A Seneviratne
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Daniel R Carter
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Swapna Joshi
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Joanna Skhinas
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Diego Chacon
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Anushi Shah
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Ineke de Jong
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Dominik Beck
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Berthold Göttgens
- Wellcome and Medical Research Council (MRC) Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Jonas Larsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Jason W H Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Fabio Zanini
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia; and
| | - John E Pimanda
- School of Medical Sciences
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- Department of Haematology, Prince of Wales Hospital, Randwick, NSW, Australia
| |
Collapse
|
9
|
Trib1 promotes acute myeloid leukemia progression by modulating the transcriptional programs of Hoxa9. Blood 2021; 137:75-88. [PMID: 32730594 DOI: 10.1182/blood.2019004586] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
The pseudokinase Trib1 functions as a myeloid oncogene that recruits the E3 ubiquitin ligase COP1 to C/EBPα and interacts with MEK1 to enhance extracellular signal-regulated kinase (ERK) phosphorylation. A close genetic effect of Trib1 on Hoxa9 has been observed in myeloid leukemogenesis, where Trib1 overexpression significantly accelerates Hoxa9-induced leukemia onset. However, the mechanism underlying how Trib1 functionally modulates Hoxa9 transcription activity is unclear. Herein, we provide evidence that Trib1 modulates Hoxa9-associated super-enhancers. Chromatin immunoprecipitation sequencing analysis identified increased histone H3K27Ac signals at super-enhancers of the Erg, Spns2, Rgl1, and Pik3cd loci, as well as increased messenger RNA expression of these genes. Modification of super-enhancer activity was mostly achieved via the degradation of C/EBPα p42 by Trib1, with a slight contribution from the MEK/ERK pathway. Silencing of Erg abrogated the growth advantage acquired by Trib1 overexpression, indicating that Erg is a critical downstream target of the Trib1/Hoxa9 axis. Moreover, treatment of acute myeloid leukemia (AML) cells with the BRD4 inhibitor JQ1 showed growth inhibition in a Trib1/Erg-dependent manner both in vitro and in vivo. Upregulation of ERG by TRIB1 was also observed in human AML cell lines, suggesting that Trib1 is a potential therapeutic target of Hoxa9-associated AML. Taken together, our study demonstrates a novel mechanism by which Trib1 modulates chromatin and Hoxa9-driven transcription in myeloid leukemogenesis.
Collapse
|