1
|
Stajer M, Horacek JM, Kupsa T, Zak P. The role of chemokines and interleukins in acute lymphoblastic leukemia: a systematic review. J Appl Biomed 2024; 22:165-184. [PMID: 40033805 DOI: 10.32725/jab.2024.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/15/2024] [Indexed: 03/05/2025] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood hematological malignancy, but it also affects adult patients with worse prognosis and outcomes. Leukemic cells benefit from protective mechanisms, which are mediated by intercellular signaling molecules - cytokines. Through these signals, cytokines modulate the biology of leukemic cells and their surroundings, enhancing the proliferation, survival, and chemoresistance of the disease. This ultimately leads to disease progression, refractoriness, and relapse, decreasing the chances of curability and overall survival of the patients. Targeting and modulating these pathological processes without affecting the healthy physiology is desirable, offering more possibilities for the treatment of ALL patients, which still remains unsatisfactory in certain cases. In this review, we comprehensively analyze the existing literature and ongoing trials regarding the role of chemokines and interleukins in the biology of ALL. Focusing on the functional pathways, genetic background, and critical checkpoints, we constructed a summary of molecules that are promising for prognostic stratification and mainly therapeutic use. Targeted therapy, including chemokine and interleukin pathways, is a new and promising approach to the treatment of cancer. With the expansion of our knowledge, we are able to uncover a spectrum of new potential checkpoints in order to modulate the disease biology. Several cytokine-related targets are advancing toward clinical application, offering the hope of higher disease response rates to treatment.
Collapse
Affiliation(s)
- Martin Stajer
- University of Defence, Military Faculty of Medicine, Department of Military Internal Medicine and Military Hygiene, Hradec Kralove, Czech Republic
- University Hospital Hradec Kralove and Charles University, Faculty of Medicine in Hradec Kralove, Department of Internal Medicine IV - Hematology, Hradec Kralove, Czech Republic
| | - Jan M Horacek
- University of Defence, Military Faculty of Medicine, Department of Military Internal Medicine and Military Hygiene, Hradec Kralove, Czech Republic
- University Hospital Hradec Kralove and Charles University, Faculty of Medicine in Hradec Kralove, Department of Internal Medicine IV - Hematology, Hradec Kralove, Czech Republic
| | - Tomas Kupsa
- University of Defence, Military Faculty of Medicine, Department of Military Internal Medicine and Military Hygiene, Hradec Kralove, Czech Republic
- University Hospital Hradec Kralove and Charles University, Faculty of Medicine in Hradec Kralove, Department of Internal Medicine IV - Hematology, Hradec Kralove, Czech Republic
| | - Pavel Zak
- University Hospital Hradec Kralove and Charles University, Faculty of Medicine in Hradec Kralove, Department of Internal Medicine IV - Hematology, Hradec Kralove, Czech Republic
| |
Collapse
|
2
|
Poveda-Garavito N, Orozco Castaño CA, Torres-Llanos Y, Cruz-Rodriguez N, Parra-Medina R, Quijano S, Zabaleta J, Combita AL. ID1 and ID3 functions in the modulation of the tumour immune microenvironment in adult patients with B-cell acute lymphoblastic leukaemia. Front Immunol 2024; 15:1473909. [PMID: 39676870 PMCID: PMC11638060 DOI: 10.3389/fimmu.2024.1473909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/07/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction B-cell acute lymphoblastic leukemia (B-ALL) in adults often presents a poor prognosis. ID1 and ID3 genes have been identified as predictors of poor response in Colombian adult B-ALL patients, contributing to cancer development. In various cancer models, these genes have been associated with immune regulatory populations within the tumor immune microenvironment (TIME). B-ALL progression alters immune cell composition and the bone marrow (BM) microenvironment, impacting disease progression and therapy response. This study investigates the relationship between ID1 and ID3 expression, TIME dynamics, and immune evasion mechanisms in adult B-ALL patients. Methods This exploratory study analysed BM samples from 10 B-ALL adult patients diagnosed at the National Cancer Institute of Colombia. First, RT-qPCR was used to assess ID1 and ID3 expression in BM tumour cells. Flow cytometry characterised immune populations in the TIME. RNA-seq evaluated immune genes associatedwith B-ALL immune response, while xCell and CytoSig analysed TIME cell profiles and cytokines. Pathway analysis, gene ontology, and differential gene expression (DEGs) were examined, with functional enrichment analysis performed using KEGG ontology. Results Patients were divided into two groups based on ID1 and ID3 expression, namely basal and overexpression. A total of 94 differentially expressed genes were identified between these groups, with top overexpressed genes associated with neutrophil pathways. Gene set enrichment analysis revealed increased expression of genes associated with neutrophil degranulation, immune response-related neutrophil activation, and neutrophil-mediated immunity. These findings correlated with xCell data. Overexpression group showed significant differences in neutrophils, monocytes and CD4+ naive T cells compared to basal group patients. Microenvironment and immune scores were also significantly different, consistent with the flow cytometry results. Elevated cytokine levels associated with neutrophil activation supported these findings. Validation was performed using the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) TCGA B-ALL cohorts. Discussion These findings highlight significant differences in ID1 and ID3 expression levels and their impact on TIME populations, particularly neutrophil-related pathways. The results suggest a potential role for ID1 and ID3 in immune evasion in adult B-ALL, mediated through neutrophil activation and immune regulation.
Collapse
Affiliation(s)
- Nathaly Poveda-Garavito
- Grupo de Investigación en Biología del Cáncer - Instituto Nacional de Cancerología, Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología - Instituto Nacional de Cancerología, Bogotá, Colombia
- Maestría en Inmunología, Departamento de Microbiología - Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos A Orozco Castaño
- Grupo de Investigación en Biología del Cáncer - Instituto Nacional de Cancerología, Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología - Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Yulieth Torres-Llanos
- Grupo de Investigación en Biología del Cáncer - Instituto Nacional de Cancerología, Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología - Instituto Nacional de Cancerología, Bogotá, Colombia
- Laboratorio clínico, Hospital Universitario San Ignacio, Bogotá, Colombia
| | | | - Rafael Parra-Medina
- Departamento de Patología, Instituto Nacional de Cancerología, Bogotá, Colombia
- Research Institute, Fundación Universitaria de Ciencias de la Salud - FUCS, Bogotá, Colombia
| | - Sandra Quijano
- Grupo de Inmunobiología y Biología Celular, Departamento de Microbiología, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jovanny Zabaleta
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Alba Lucia Combita
- Grupo de Investigación en Biología del Cáncer - Instituto Nacional de Cancerología, Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología - Instituto Nacional de Cancerología, Bogotá, Colombia
- Maestría en Inmunología, Departamento de Microbiología - Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
3
|
Gu M, Jin Y, Gao X, Xia W, Xu T, Pan S. Novel insights into IL-37: an anti-inflammatory cytokine with emerging roles in anti-cancer process. Front Immunol 2023; 14:1278521. [PMID: 37928545 PMCID: PMC10623001 DOI: 10.3389/fimmu.2023.1278521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Interleukin-37 (IL-37) is a newly discovered member of IL-1 family. The cytokine was proved to have extensive protective effects in infectious diseases, allergic diseases, metabolic diseases, autoimmune diseases and tumors since its discovery. IL-37 was mainly produced by immune and some non-immune cells in response to inflammatory stimulus. The IL-37 precursors can convert into the mature forms after caspase-1 cleavage and activation intracellularly, and then bind to Smad-3 and transfer to the nucleus to inhibit the production and functions of proinflammatory cytokines; extracellularly, IL-37 binds to cell surface receptors to form IL-37/IL-18Rα/IL-1R8 complex to exert immunosuppressive function via inhibiting/activating multiple signal pathways. In addition, IL-37 can attenuate the pro-inflammatory effect of IL-18 through directly or forming an IL-37/IL-18BP/IL-18Rβ complex. Therefore, IL-37 has the ability to suppress innate and acquired immunity of the host, and effectively control inflammatory stimulation, which was considered as a new hallmark of cancer. Specifically, it is concluded that IL-37 can inhibit the growth and migration of tumor cells, prohibit angiogenesis and mediate the immunoregulation in tumor microenvironment, so as to exert effective anti-tumor effects. Importantly, latest studies also showed that IL-37 may be a novel therapeutic target for cancer monitoring. In this review, we summarize the immunoregulation roles and mechanisms of IL-37 in anti-tumor process, and discuss its progress so far and potential as tumor immunotherapy.
Collapse
Affiliation(s)
- Min Gu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Yuexinzi Jin
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Xun Gao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wenying Xia
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Ting Xu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Shiyang Pan
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| |
Collapse
|
4
|
Pillsbury CE, Dougan J, Rabe JL, Fonseca JA, Zhou C, Evans AN, Abukharma H, Ichoku O, Gonzalez-Flamenco G, Park SI, Aljudi A, DeRyckere D, Castellino SM, Rafiq S, Langermann S, Liu LN, Henry CJ, Porter CC. Siglec-15 Promotes Evasion of Adaptive Immunity in B-cell Acute Lymphoblastic Leukemia. CANCER RESEARCH COMMUNICATIONS 2023; 3:1248-1259. [PMID: 37465593 PMCID: PMC10351425 DOI: 10.1158/2767-9764.crc-23-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/28/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023]
Abstract
Siglec-15 (Sig15) has been implicated as an immune checkpoint expressed in solid tumor-infiltrating macrophages and is being targeted in clinical trials with mAbs to normalize the tumor immune microenvironment and stimulate antitumor immunity. However, the role of Sig15 in hematologic malignancies remains undefined. Sig15 mRNA and protein expression levels in hematologic malignancies were determined from publicly available databases, cell lines, and primary patient samples. Human B-cell acute lymphoblastic leukemia (B-ALL) cell lines were used to identify signaling pathways involved in the regulation of Sig15 expression. Secreted/soluble Sig15 and cytokine levels were measured from the plasma of children with leukemia and healthy controls. Knockdown and knockout of Siglec15 in a murine model of B-ALL was used to evaluate the effect of leukemia-derived Sig15 on the immune response to leukemia. We observed pathologic overexpression of Sig15 in a variety of hematologic malignancies, including primary B-ALL samples. This overexpression was driven by NFκB activation, which also increased the surface localization of Sig15. Secreted/soluble Sig15 was found to circulate at elevated levels in the plasma of children with B-ALL and correlated with an immune-suppressive cytokine milieu. Genetic inhibition of Sig15 in murine B-ALL promoted clearance of the leukemia by the immune system and a marked reversal of the immune-privileged leukemia bone marrow niche, including expanded early effector CD8+ T cells and reduction of immunosuppressive cytokines. Thus, Sig15 is a novel, potent immunosuppressive molecule active in leukemia that may be targeted therapeutically to activate T lymphocytes against leukemia cells. Significance We demonstrate that Sig15 is overexpressed in hematologic malignancies driven by NFκB, is required for immune evasion in a mouse model of leukemia, and, for the first time, that it circulates at high levels in the plasma of children with leukemia.
Collapse
Affiliation(s)
- Claire E. Pillsbury
- Cancer Biology Program, Laney Graduate School, Emory University, Atlanta, Georgia
| | - Jodi Dougan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Jennifer L. Rabe
- Molecular Biology Program, University of Colorado Denver, Aurora, Colorado
| | - Jairo A. Fonseca
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Chengjing Zhou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Alyssa N. Evans
- Winship Cancer Institute, Emory University, Atlanta, Georgia
| | | | | | | | - Sunita I. Park
- Clinical Laboratory, Children's Healthcare of Atlanta, Atlanta, Georgia
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Ahmed Aljudi
- Clinical Laboratory, Children's Healthcare of Atlanta, Atlanta, Georgia
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Deborah DeRyckere
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Sharon M. Castellino
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Sarwish Rafiq
- Winship Cancer Institute, Emory University, Atlanta, Georgia
| | | | | | - Curtis J. Henry
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Christopher C. Porter
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia
| |
Collapse
|
5
|
B-cell acute lymphoblastic leukemia promotes an immune suppressive microenvironment that can be overcome by IL-12. Sci Rep 2022; 12:11870. [PMID: 35831470 PMCID: PMC9279427 DOI: 10.1038/s41598-022-16152-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/05/2022] [Indexed: 12/14/2022] Open
Abstract
Immunotherapies have revolutionized the treatment of B-cell acute lymphoblastic leukemia (B-ALL), but the duration of responses is still sub-optimal. We sought to identify mechanisms of immune suppression in B-ALL and strategies to overcome them. Plasma collected from children with B-ALL with measurable residual disease after induction chemotherapy showed differential cytokine expression, particularly IL-7, while single-cell RNA-sequencing revealed the expression of genes associated with immune exhaustion in immune cell subsets. We also found that the supernatant of leukemia cells suppressed T-cell function ex vivo. Modeling B-ALL in mice, we observed an altered tumor immune microenvironment, including compromised activation of T-cells and dendritic cells (DC). However, recombinant IL-12 (rIL-12) treatment of mice with B-ALL restored the levels of several pro-inflammatory cytokines and chemokines in the bone marrow and increased the number of splenic and bone marrow resident T-cells and DCs. RNA-sequencing of T-cells isolated from vehicle and rIL-12 treated mice with B-ALL revealed that the leukemia-induced increase in genes associated with exhaustion, including Lag3, Tigit, and Il10, was abrogated with rIL-12 treatment. In addition, the cytolytic capacity of T-cells co-cultured with B-ALL cells was enhanced when IL-12 and blinatumomab treatments were combined. Overall, these results demonstrate that the leukemia immune suppressive microenvironment can be restored with rIL-12 treatment which has direct therapeutic implications.
Collapse
|
6
|
Hamilton JAG, Lee MY, Hunter R, Ank RS, Story JY, Talekar G, Sisroe T, Ballak DB, Fedanov A, Porter CC, Eisenmesser EZ, Dinarello CA, Raikar SS, DeGregori J, Henry CJ. Interleukin-37 improves T-cell-mediated immunity and chimeric antigen receptor T-cell therapy in aged backgrounds. Aging Cell 2021; 20:e13309. [PMID: 33480151 PMCID: PMC7884049 DOI: 10.1111/acel.13309] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/17/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022] Open
Abstract
Aging‐associated declines in innate and adaptive immune responses are well documented and pose a risk for the growing aging population, which is predicted to comprise greater than 40 percent of the world's population by 2050. Efforts have been made to improve immunity in aged populations; however, safe and effective protocols to accomplish this goal have not been universally established. Aging‐associated chronic inflammation is postulated to compromise immunity in aged mice and humans. Interleukin‐37 (IL‐37) is a potent anti‐inflammatory cytokine, and we present data demonstrating that IL‐37 gene expression levels in human monocytes significantly decline with age. Furthermore, we demonstrate that transgenic expression of interleukin‐37 (IL‐37) in aged mice reduces or prevents aging‐associated chronic inflammation, splenomegaly, and accumulation of myeloid cells (macrophages and dendritic cells) in the bone marrow and spleen. Additionally, we show that IL‐37 expression decreases the surface expression of programmed cell death protein 1 (PD‐1) and augments cytokine production from aged T‐cells. Improved T‐cell function coincided with a youthful restoration of Pdcd1, Lat, and Stat4 gene expression levels in CD4+ T‐cells and Lat in CD8+ T‐cells when aged mice were treated with recombinant IL‐37 (rIL‐37) but not control immunoglobin (Control Ig). Importantly, IL‐37‐mediated rejuvenation of aged endogenous T‐cells was also observed in aged chimeric antigen receptor (CAR) T‐cells, where improved function significantly extended the survival of mice transplanted with leukemia cells. Collectively, these data demonstrate the potency of IL‐37 in boosting the function of aged T‐cells and highlight its therapeutic potential to overcome aging‐associated immunosenescence.
Collapse
Affiliation(s)
- Jamie A. G. Hamilton
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - Miyoung Y. Lee
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - Rae Hunter
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - Raira S. Ank
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - Jamie Y. Story
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
- Molecular and Systems Pharmacology Graduate Program Graduate Division of Biological and Biomedical Sciences Laney Graduate School Emory University School of Medicine Atlanta GA USA
| | - Ganesh Talekar
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | | | - Dov B. Ballak
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora CO USA
- Department of Medicine Radboud University Medical Center Nijmegen The Netherlands
| | - Andrew Fedanov
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - Christopher C. Porter
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - Elan Z. Eisenmesser
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Charles A. Dinarello
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora CO USA
- Department of Medicine Radboud University Medical Center Nijmegen The Netherlands
| | - Sunil S. Raikar
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora CO USA
- Department of Medicine University of Colorado Anschutz Medical Campus Aurora CO USA
- Department of Immunology and Microbiology University of Colorado Anschutz Medical Campus Aurora CO USA
- Department of Pediatrics University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Curtis J. Henry
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| |
Collapse
|
7
|
Do P, Perdue LA, Chyong A, Hunter R, Dougan J, Henry CJ, Porter CC, Dreaden EC. Rapid Assembly and Screening of Multivalent Immune Cell-Redirecting Therapies for Leukemia. ACS COMBINATORIAL SCIENCE 2020; 22:533-541. [PMID: 32786324 PMCID: PMC8496977 DOI: 10.1021/acscombsci.0c00081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Therapies that bind with immune cells and redirect their cytotoxic activity toward diseased cells represent a promising and versatile approach to immunotherapy with applications in cancer, lupus, and other diseases; traditional methods for discovering these therapies, however, are often time-intensive and lack the throughput of related target-based discovery approaches. Inspired by the observation that the cytokine, IL-12, can enhance antileukemic activity of the clinically approved T cell redirecting therapy, blinatumomab, here we describe the structure and assembly of a chimeric immune cell-redirecting agent which redirects the lytic activity of primary human T cells toward leukemic B cells and simultaneously cotargets the delivery of T cell-stimulating IL-12. We further describe a novel method for the parallel assembly of compositionally diverse libraries of these bispecific T cell engaging cytokines (BiTEokines) and their high-throughput phenotypic screening, requiring just days for hit identification and the analysis of composition-function relationships. Using this approach, we identified CD19 × CD3 × IL12 compounds that exhibit ex vivo lytic activity comparable to current FDA-approved therapies for leukemia and correlated drug treatment with specific cell–cell contact, cytokine delivery, and leukemia cell lysis. Given the modular nature of these multivalent compounds and their rapid assembly/screening, we anticipate facile extension of this therapeutic approach to a wide range of immune cells, diseased cells, and soluble protein combinations in the future.
Collapse
Affiliation(s)
- Priscilla Do
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Lacey A Perdue
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Andrew Chyong
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Rae Hunter
- Department of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322, United States
- Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, United States
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Emory School of Medicine, Atlanta, Georgia 30322, United States
| | - Jodi Dougan
- Department of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322, United States
- Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, United States
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Emory School of Medicine, Atlanta, Georgia 30322, United States
| | - Curtis J Henry
- Department of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322, United States
- Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, United States
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Emory School of Medicine, Atlanta, Georgia 30322, United States
| | - Christopher C Porter
- Department of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322, United States
- Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, United States
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Emory School of Medicine, Atlanta, Georgia 30322, United States
| | - Erik C Dreaden
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
- Department of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322, United States
- Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, United States
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Emory School of Medicine, Atlanta, Georgia 30322, United States
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|