1
|
Jiang Y, Wang Y, Su F, Hou Y, Liao W, Li B, Mao W. Insights into NEK2 inhibitors as antitumor agents: From mechanisms to potential therapeutics. Eur J Med Chem 2025; 286:117287. [PMID: 39832390 DOI: 10.1016/j.ejmech.2025.117287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
NEK2, a serine/threonine protein kinase, is integral to mitotic events such as centrosome duplication and separation, microtubule stabilization, spindle assembly checkpoint, and kinetochore attachment. However, NEK2 overexpression leads to centrosome amplification and chromosomal instability, which are significantly associated with various malignancies, including liver, breast, and non-small cell lung cancer. This overexpression could facilitate tumor development and confer resistance to therapy by promoting aberrant cell division and centrosome amplification. Consequently, inhibiting NEK2 is considered as a promising strategy for oncological therapy. To date, no small molecule NEK2-specific inhibitors have advanced into clinical trials, highlighting the necessity for optimized design and the deployment of innovative technologies. In this review, we will provide a comprehensive summary of the chemical structure, biological functions, and disease associations of NEK2, focusing on the existing NEK2 small molecule inhibitors, especially their structure-activity relationships, limitations, and research strategies. Our objective is to provide valuable insights for the future development of NEK2 inhibitors and analysis of challenges faced in translating these findings into clinical applications.
Collapse
Affiliation(s)
- Yizhen Jiang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yutong Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Feijing Su
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yaqin Hou
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Baichuan Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Haiye J, Xiangzhu W, Yunfei Z, Shumin G, Chang N, Yaohui J, Heng Y, Xinmin N. Overexpressed NEK2 contributes to progression and cisplatin resistance through activating the Wnt/β-catenin signaling pathway in cervical cancer. Cancer Cell Int 2025; 25:45. [PMID: 39953509 PMCID: PMC11829479 DOI: 10.1186/s12935-025-03644-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/09/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Cervical cancer ranks as the fourth most common cancer among women, with cisplatin resistance posing a significant challenge to the long-term survival of patients. METHODS The roles of NEK2 in cervical cancer were examined through bioinformatics analysis. Transfection efficiency and molecular mechanisms were assessed using real-time quantitative polymerase chain reaction (qRT-PCR) and western blotting (WB). To evaluate cell functions, a series of assays, including cell counting kit-8 (CCK-8), wound healing, transwell, colony formation, and flow cytometry (FCM), were performed on HeLa, SiHa, and HeLa/DDP (cisplatin-resistant) cell lines. RESULTS We found that NEK2 is upregulated in cervical cancer tissues compared to normal tissues and is further elevated in cisplatin-resistant cervical cancer compared to cisplatin-sensitive cases. The overexpression of NEK2 is associated with enhanced cancer progression, poorer prognosis, and increased cisplatin resistance in cervical cancer patients. Notably, in the presence of cisplatin, the knockdown of NEK2 inhibited cell viability, proliferation, migration, invasion, and G2/M phase arrest in cervical cancer cells, while also enhancing the sensitivity of cisplatin-resistant cervical cancer cells through the inactivation of the Wnt/β-catenin signaling pathway. CONCLUSIONS NEK2 is upregulated in cervical squamous cell carcinoma (CESC) compared to normal tissues and exhibits higher levels in cisplatin-resistant CESC than in sensitive counterparts, correlating with disease progression and poor prognosis. Thus, NEK2 is implicated in the cisplatin resistance of CESC via the activation of the Wnt/β-catenin signaling pathway, suggesting its potential as a prognostic marker and a novel target for the diagnosis and treatment of cisplatin-resistant CESC.
Collapse
Affiliation(s)
- Jiang Haiye
- School of Medicine, Hunan Normal University, Changsha, 410013, China
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Wang Xiangzhu
- Department of Conservative and Endodontic Dentistry, Xiangya School and Hospital of Stomatology, Hunan Key Laboratory of Oral Health Research, Central South University, Changsha, 410008, China
| | - Zhang Yunfei
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Gui Shumin
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Ni Chang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jiang Yaohui
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yin Heng
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Nie Xinmin
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
3
|
Bobbitt JR, Cuellar-Vite L, Weber-Bonk KL, Yancey MR, Majmudar PR, Keri RA. Targeting the mitotic kinase NEK2 enhances CDK4/6 inhibitor efficacy by potentiating genome instability. J Biol Chem 2025; 301:108196. [PMID: 39826695 PMCID: PMC11849632 DOI: 10.1016/j.jbc.2025.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Selective inhibitors that target cyclin-dependent kinases 4 and 6 (CDK4/6i) are approved by the U.S. Food and Drug Administration (FDA) for treatment of a subset of breast cancers and are being evaluated in numerous clinical trials for other cancers. Despite this advance, a subset of tumors are intrinsically resistant to these drugs and acquired resistance is nearly inevitable. Recent mechanistic evidence suggests that in addition to stalling the cell cycle, the antitumor effects of CDK4/6i involve the induction of chromosomal instability (CIN). Here, we exploit this mechanism by combining CDK4/6i with other instability-promoting agents to induce maladaptive CIN and irreversible cell fates. Specifically, dual targeting of CDK4/6 and the mitotic kinase NEK2 in vitro drives centrosome amplification and the accumulation of CIN that induces catastrophic mitoses, cell cycle exit, and cell death. Dual targeting also induces CIN in vivo and significantly decreases mouse tumor volume to a greater extent than either drug alone, without inducing overt toxicity. Importantly, we provide evidence that breast cancer cells are selectively dependent on NEK2, but nontransformed cells are not, in contrast with other mitotic kinases that are commonly essential in all cell types. These findings implicate NEK2 as a potential therapeutic target for breast cancer that could circumvent the dose-limiting toxicities that are commonly observed when blocking other mitotic kinases. Moreover, these data suggest that NEK2 inhibitors could be used to sensitize tumors to FDA-approved CDK4/6i for the treatment of breast cancers, improving their efficacy and providing a foundation for expanding the patient population that could benefit from CDK4/6i.
Collapse
Affiliation(s)
- Jessica R Bobbitt
- Department of Pathology School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Leslie Cuellar-Vite
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kristen L Weber-Bonk
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Marlee R Yancey
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Parth R Majmudar
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ruth A Keri
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
4
|
Xia J, Zhao H, Edmondson JL, Koss B, Zhan F. Role of NEK2 in tumorigenesis and tumor progression. Trends Mol Med 2025; 31:79-93. [PMID: 39181803 PMCID: PMC11717647 DOI: 10.1016/j.molmed.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
Never in mitosis A (NIMA)-related kinase 2 (NEK2) is a serine/threonine kinase found in the nucleus and cytoplasm throughout the cell cycle. NEK2 is overexpressed in many cancers and is a biomarker of poor prognosis. Factors contributing to NEK2 elevation in cancer cells include oncogenic transcription factors, decreased ubiquitination, DNA methylation, and the circular RNA (circRNA)/long noncoding RNA (lncRNA)-miRNA axis. NEK2 overexpression produces chromosomal instability and aneuploidy, thereby enhancing cancer progression and suppressing antitumor immunity, which highlights the prominence of NEK2 in tumorigenesis and tumor progression. Small-molecule inhibitors targeting NEK2 have demonstrated promising therapeutic potential in vitro and in vivo across various cancer types. This review outlines the regulatory mechanisms of NEK2 expression, emphasizes its functional roles in cancer initiation and progression, and highlights the anticancer properties of NEK2 inhibitors.
Collapse
Affiliation(s)
- Jiliang Xia
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28, Hengyang, 421001, Hunan, China.
| | - Hongyan Zhao
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28, Hengyang, 421001, Hunan, China
| | - Jacob L Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brian Koss
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Fenghuang Zhan
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
5
|
Piemonte KM, Ingles NN, Weber-Bonk KL, Valentine MJ, Majmudar PR, Singh S, Keri RA. Targeting YES1 Disrupts Mitotic Fidelity and Potentiates the Response to Taxanes in Triple-Negative Breast Cancer. Cancer Res 2024; 84:3556-3573. [PMID: 39037997 PMCID: PMC11534525 DOI: 10.1158/0008-5472.can-23-2558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/23/2023] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Clinical trials examining broad-spectrum Src family kinase (SFK) inhibitors revealed significant dose-limiting toxicities, preventing advancement for solid tumors. SFKs are functionally heterogeneous, thus targeting individual members is a potential strategy to elicit antitumor efficacy while avoiding toxicity. Here, we identified that YES1 is the most highly overexpressed SFK in triple-negative breast cancer (TNBC) and is associated with poor patient outcomes. Disrupting YES1, genetically or pharmacologically, induced aberrant mitosis, centrosome amplification, multipolar spindles, and chromosomal instability. Mechanistically, YES1 sustained FOXM1 protein levels and elevated expression of FOXM1 target genes that control centrosome function and are essential for effective and accurate mitotic progression. In both in vitro and in vivo TNBC models, YES1 suppression potentiated the efficacy of taxanes, cornerstone drugs for TNBC that require elevated chromosomal instability for efficacy. Clinically, elevated expression of YES1 was associated with worse overall survival of patients with TNBC treated with taxane and anthracycline combination regimens. Together, this study demonstrates that YES1 is an essential regulator of genome stability in TNBC that can be leveraged to improve taxane efficacy. Significance: YES1 is a sentinel regulator of genomic maintenance that controls centrosome homeostasis and chromosome stability through FOXM1, revealing this pathway as a therapeutic vulnerability for enhancing taxane efficacy in triple-negative breast cancer.
Collapse
Affiliation(s)
- Katrina M. Piemonte
- Department of Pharmacology, Case Western Reserve University School of Medicine, 2109 Adelbert Road, Cleveland OH 44106, United States
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Natasha N. Ingles
- Department of Pathology, Case Western Reserve University School of Medicine, 2109 Adelbert Road, Cleveland OH 44106, United States
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Kristen L. Weber-Bonk
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Mitchell J. Valentine
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Parth R. Majmudar
- Department of Pharmacology, Case Western Reserve University School of Medicine, 2109 Adelbert Road, Cleveland OH 44106, United States
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Salendra Singh
- Center for Immunotherapy and Precision Immuno-oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Ruth A. Keri
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, 2109 Adelbert Road, Cleveland OH 44106, United States
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 2109 Adelbert Road, Cleveland OH 44106, United States
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
- Center for Immunotherapy and Precision Immuno-oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| |
Collapse
|
6
|
Yan H, Ou Q, Chang Y, Liu J, Chen L, Guo D, Zhang S. 5-Fluorouracil resistance-based immune-related gene signature for COAD prognosis. Heliyon 2024; 10:e34535. [PMID: 39130472 PMCID: PMC11315090 DOI: 10.1016/j.heliyon.2024.e34535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
Background Drug resistance is the primary obstacle to advanced tumor therapy and the key risk factor for tumor recurrence and death. 5-Fluorouracil (5-FU) chemotherapy is the most common chemotherapy for individuals with colorectal cancer, despite numerous options. Methods The Gene Expression Omnibus database was utilized to extract expression profile data of HCT-8 human colorectal cancer wild-type cells and their 5-FU-induced drug resistance cell line. These data were used to identify 5-FU resistance-related differentially expressed genes (5FRRDEGs), which intersected with the colorectal adenocarcinoma (COAD) transcriptome data provided by the Cancer Genome Atlas Program database. A prognostic signature containing five 5FRRDEGs (GOLGA8A, KLC3, TIGD1, NBPF1, and SERPINE1) was established after conducting a Cox regression analysis. We conducted nomogram development, drug sensitivity analysis, tumor immune microenvironment analysis, and mutation analysis to assess the therapeutic value of the prognostic qualities. Results We identified 166 5FRRDEGs in patients with COAD. Subsequently, we created a prognostic model consisting of five 5FRRDEGs using Cox regression analysis. The patients with COAD were divided into different risk groups by risk score; the high-risk group demonstrated a worse prognosis than the low-risk group. Conclusion In summary, the 5FRRDEG-based prognostic model is an effective tool for targeted therapy and chemotherapy in patients with COAD. It can accurately predict the survival prognosis of these patients as well as to provide the direction for exploring the resistance mechanism underlying COAD.
Collapse
Affiliation(s)
- Haixia Yan
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qinling Ou
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yonglong Chang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jinhui Liu
- College of Integrated Traditional Chinese & Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, 410208, China
| | - Linzi Chen
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Duanyang Guo
- College of Integrated Traditional Chinese & Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, 410208, China
| | - Sifang Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
7
|
Aquino-Acevedo AN, Orengo-Orengo JA, Cruz-Robles ME, Saavedra HI. Mitotic kinases are emerging therapeutic targets against metastatic breast cancer. Cell Div 2024; 19:21. [PMID: 38886738 PMCID: PMC11184769 DOI: 10.1186/s13008-024-00125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
This review aims to outline mitotic kinase inhibitors' roles as potential therapeutic targets and assess their suitability as a stand-alone clinical therapy or in combination with standard treatments for advanced-stage solid tumors, including triple-negative breast cancer (TNBC). Breast cancer poses a significant global health risk, with TNBC standing out as the most aggressive subtype. Comprehending the role of mitosis is crucial for understanding how TNBC advances from a solid tumor to metastasis. Chemotherapy is the primary treatment used to treat TNBC. Some types of chemotherapeutic agents target cells in mitosis, thus highlighting the need to comprehend the molecular mechanisms governing mitosis in cancer. This understanding is essential for devising targeted therapies to disrupt these mitotic processes, prevent or treat metastasis, and improve patient outcomes. Mitotic kinases like Aurora kinase A, Aurora Kinase B, never in mitosis gene A-related kinase 2, Threonine-Tyrosine kinase, and Polo-kinase 1 significantly impact cell cycle progression by contributing to chromosome separation and centrosome homeostasis. When these kinases go awry, they can trigger chromosome instability, increase cell proliferation, and activate different molecular pathways that culminate in a transition from epithelial to mesenchymal cells. Ongoing clinical trials investigate various mitotic kinase inhibitors as potential biological treatments against advanced solid tumors. While clinical trials against mitotic kinases have shown some promise in the clinic, more investigation is necessary, since they induce severe adverse effects, particularly affecting the hematopoietic system.
Collapse
Affiliation(s)
- Alexandra N Aquino-Acevedo
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA
| | - Joel A Orengo-Orengo
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA
| | - Melanie E Cruz-Robles
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA
| | - Harold I Saavedra
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA.
| |
Collapse
|
8
|
Díaz de Cerio M, Oliván S, Ochoa I, García-Sanmartín J, Martínez A. Cold-shock proteins accumulate in centrosomes and their expression and primary cilium morphology are regulated by hypothermia and shear stress. Histol Histopathol 2024; 39:447-462. [PMID: 37694837 DOI: 10.14670/hh-18-656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Primary cilia act as cellular sensors for multiple extracellular stimuli and regulate many intracellular signaling pathways in response. Here we investigate whether the cold-shock proteins (CSPs), CIRP and RBM3, are present in the primary cilia and the physiological consequences of such a relationship. R28, an immortalized retinal precursor cell line, was stained with antibodies against CIRP, RBM3, and ciliary markers. Both CSPs were found in intimate contact with the basal body of the cilium during all stages of the cell cycle, including migrating with the centrosome during mitosis. In addition, the morphological and physiological manifestations of exposing the cells to hypothermia and shear stress were investigated. Exposure to moderately cold (32°C) temperatures, the hypothermia mimetic small molecule zr17-2, or to shear stress resulted in a significant reduction in the number and length of primary cilia. In addition, shear stress induced expression of CIRP and RBM3 in a complex pattern depending on the specific protein, flow intensity, and type of flow (laminar versus oscillatory). Flow-mediated CSP overexpression was detected by qRT-PCR and confirmed by Western blot, at least for CIRP. Furthermore, analysis of public RNA Seq databases on flow experiments confirmed an increase of CIRP and RBM3 expression following exposure to shear stress in renal cell lines. In conclusion, we found that CSPs are integral components of the centrosome and that they participate in cold and shear stress sensing.
Collapse
Affiliation(s)
- María Díaz de Cerio
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Sara Oliván
- Tissue Microenvironment Lab (TMELab), University of Zaragoza, Aragón Institute of Engineering Research (I3A), Institute for Health Research Aragon (IIS Aragón), Zaragoza, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment Lab (TMELab), University of Zaragoza, Aragón Institute of Engineering Research (I3A), Institute for Health Research Aragon (IIS Aragón), Zaragoza, Spain
- Centro de Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Institute for Health Research Aragon (IIS Aragón), Zaragoza, Spain
| | - Josune García-Sanmartín
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Alfredo Martínez
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain.
| |
Collapse
|
9
|
Jessen M, Gertzmann D, Liss F, Zenk F, Bähner L, Schöffler V, Schulte C, Maric HM, Ade CP, von Eyss B, Gaubatz S. Inhibition of the YAP-MMB interaction and targeting NEK2 as potential therapeutic strategies for YAP-driven cancers. Oncogene 2024; 43:578-593. [PMID: 38182898 PMCID: PMC10873197 DOI: 10.1038/s41388-023-02926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024]
Abstract
YAP activation in cancer is linked to poor outcomes, making it an attractive therapeutic target. Previous research focused on blocking the interaction of YAP with TEAD transcription factors. Here, we took a different approach by disrupting YAP's binding to the transcription factor B-MYB using MY-COMP, a fragment of B-MYB containing the YAP binding domain fused to a nuclear localization signal. MY-COMP induced cell cycle defects, nuclear abnormalities, and polyploidization. In an AKT and YAP-driven liver cancer model, MY-COMP significantly reduced liver tumorigenesis, highlighting the importance of the YAP-B-MYB interaction in tumor development. MY-COMP also perturbed the cell cycle progression of YAP-dependent uveal melanoma cells but not of YAP-independent cutaneous melanoma cell lines. It counteracted YAP-dependent expression of MMB-regulated cell cycle genes, explaining the observed effects. We also identified NIMA-related kinase (NEK2) as a downstream target of YAP and B-MYB, promoting YAP-driven transformation by facilitating centrosome clustering and inhibiting multipolar mitosis.
Collapse
Affiliation(s)
- Marco Jessen
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, 97074, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Jena, 07745, Germany
| | - Dörthe Gertzmann
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, 97074, Germany
| | - Franziska Liss
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, 97074, Germany
| | - Franziska Zenk
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, 97074, Germany
| | - Laura Bähner
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, 97074, Germany
| | - Victoria Schöffler
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, 97074, Germany
| | - Clemens Schulte
- Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, 97080, Wuerzburg, Germany
| | - Hans Michael Maric
- Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, 97080, Wuerzburg, Germany
| | - Carsten P Ade
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, 97074, Germany
| | - Björn von Eyss
- Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Jena, 07745, Germany.
| | - Stefan Gaubatz
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, 97074, Germany.
| |
Collapse
|
10
|
Hsieh MC, Lai CY, Cho WL, Lin LT, Yeh CM, Yang PS, Cheng JK, Wang HH, Lin KH, Nie ST, Lin TB, Peng HY. Phosphate NIMA-Related Kinase 2-Dependent Epigenetic Pathways in Dorsal Root Ganglion Neurons Mediates Paclitaxel-Induced Neuropathic Pain. Anesth Analg 2023; 137:1289-1301. [PMID: 36753440 DOI: 10.1213/ane.0000000000006397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND The microtubule-stabilizing drug paclitaxel (PTX) is an important chemotherapeutic agent for cancer treatment and causes peripheral neuropathy as a common side effect that substantially impacts the functional status and quality of life of patients. The mechanistic role for NIMA-related kinase 2 (NEK2) in the progression of PTX-induced neuropathic pain has not been established. METHODS Adult male Sprague-Dawley rats intraperitoneally received PTX to induce neuropathic pain. The protein expression levels in the dorsal root ganglion (DRG) of animals were measured by biochemical analyses. Nociceptive behaviors were evaluated by von Frey tests and hot plate tests. RESULTS PTX increased phosphorylation of the important microtubule dynamics regulator NEK2 in DRG neurons and induced profound neuropathic allodynia. PTX-activated phosphorylated NEK2 (pNEK2) increased jumonji domain-containing 3 (JMJD3) protein, a histone demethylase protein, to specifically catalyze the demethylation of the repressive histone mark H3 lysine 27 trimethylation (H3K27me3) at the Trpv1 gene, thereby enhancing transient receptor potential vanilloid subtype-1 (TRPV1) expression in DRG neurons. Moreover, the pNEK2-dependent PTX response program is regulated by enhancing p90 ribosomal S6 kinase 2 (RSK2) phosphorylation. Conversely, intrathecal injections of kaempferol (a selective RSK2 activation antagonist), NCL 00017509 (a selective NEK2 inhibitor), NEK2-targeted siRNA, GSK-J4 (a selective JMJD3 inhibitor), or capsazepine (an antagonist of TRPV1 receptor) into PTX-treated rats reversed neuropathic allodynia and restored silencing of the Trpv1 gene, suggesting the hierarchy and interaction among phosphorylated RSK2 (pRSK2), pNEK2, JMJD3, H3K27me3, and TRPV1 in the DRG neurons in PTX-induced neuropathic pain. CONCLUSIONS pRSK2/JMJD3/H3K27me3/TRPV1 signaling in the DRG neurons plays as a key regulator for PTX therapeutic approaches.
Collapse
Affiliation(s)
- Ming-Chun Hsieh
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Cheng-Yuan Lai
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Wen-Long Cho
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Li-Ting Lin
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Chou-Ming Yeh
- Division of Thoracic Surgery, Department of Health, Taichung Hospital, Executive Yuan, Taichung, Taiwan
- Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Po-Sheng Yang
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Departments of Surgery
| | - Jen-Kun Cheng
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsueh-Hsiao Wang
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Siao-Tong Nie
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
- Institute of New Drug Development, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hsien-Yu Peng
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
11
|
Masci D, Naro C, Puxeddu M, Urbani A, Sette C, La Regina G, Silvestri R. Recent Advances in Drug Discovery for Triple-Negative Breast Cancer Treatment. Molecules 2023; 28:7513. [PMID: 38005235 PMCID: PMC10672974 DOI: 10.3390/molecules28227513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most heterogeneous and aggressive breast cancer subtypes with a high risk of death on recurrence. To date, TNBC is very difficult to treat due to the lack of an effective targeted therapy. However, recent advances in the molecular characterization of TNBC are encouraging the development of novel drugs and therapeutic combinations for its therapeutic management. In the present review, we will provide an overview of the currently available standard therapies and new emerging therapeutic strategies against TNBC, highlighting the promises that newly developed small molecules, repositioned drugs, and combination therapies have of improving treatment efficacy against these tumors.
Collapse
Affiliation(s)
- Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (D.M.); (A.U.)
| | - Chiara Naro
- Department of Neurosciences, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (C.N.); (C.S.)
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Michela Puxeddu
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (G.L.R.)
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (D.M.); (A.U.)
| | - Claudio Sette
- Department of Neurosciences, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (C.N.); (C.S.)
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (G.L.R.)
| | - Romano Silvestri
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (G.L.R.)
| |
Collapse
|
12
|
Martinez MJ, Lyles RD, Peinetti N, Grunfeld AM, Burnstein KL. Inhibition of the serine/threonine kinase BUB1 reverses taxane resistance in prostate cancer. iScience 2023; 26:107681. [PMID: 37705955 PMCID: PMC10495664 DOI: 10.1016/j.isci.2023.107681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Men with incurable castration resistant prostate cancer (CRPC) are typically treated with taxanes; however, drug resistance rapidly develops. We previously identified a clinically relevant seven gene network in aggressive CRPC, which includes the spindle assembly checkpoint (SAC) kinase BUB1. Since SAC is deregulated in taxane resistant PC, we evaluated BUB1 and found that it was over-expressed in advanced PC patient datasets and taxane resistant PC cells. Treatment with a specific BUB1 kinase inhibitor re-sensitized resistant CRPC cells, including cells expressing constitutively active androgen receptor (AR) variants, to clinically used taxanes. Consistent with a role of AR variants in taxane resistance, ectopically expressed AR-V7 increased BUB1 levels and reduced sensitivity to taxanes. This work shows that disruption of BUB1 kinase activity reverted resistance to taxanes, which is essential to advancing BUB1 as a potential therapeutic target for intractable chemotherapy resistant CRPC including AR variant driven CRPC, which lacks durable treatment options.
Collapse
Affiliation(s)
- Maria J. Martinez
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Rolando D.Z. Lyles
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
- Sheila and David Fuente Graduate Program in Cancer Biology, Miami, FL 33136, USA
| | - Nahuel Peinetti
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Alex M. Grunfeld
- Sheila and David Fuente Graduate Program in Cancer Biology, Miami, FL 33136, USA
| | - Kerry L. Burnstein
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| |
Collapse
|
13
|
Rivera-Rivera Y, Vargas G, Jaiswal N, Núñez-Marrero A, Li J, Chen DT, Eschrich S, Rosa M, Johnson JO, Dutil J, Chellappan SP, Saavedra HI. Ethnic and racial-specific differences in levels of centrosome-associated mitotic kinases, proliferative and epithelial-to-mesenchymal markers in breast cancers. Cell Div 2022; 17:6. [PMID: 36494865 PMCID: PMC9733043 DOI: 10.1186/s13008-022-00082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Molecular epidemiology evidence indicates racial and ethnic differences in the aggressiveness and survival of breast cancer. Hispanics/Latinas (H/Ls) and non-Hispanic Black women (NHB) are at higher risk of breast cancer (BC)-related death relative to non-Hispanic white (NHW) women in part because they are diagnosed with hormone receptor-negative (HR) subtype and at higher stages. Since the cell cycle is one of the most commonly deregulated cellular processes in cancer, we propose that the mitotic kinases TTK (or Mps1), TBK1, and Nek2 could be novel targets to prevent breast cancer progression among NHBs and H/Ls. In this study, we calculated levels of TTK, p-TBK1, epithelial (E-cadherin), mesenchymal (Vimentin), and proliferation (Ki67) markers through immunohistochemical (IHC) staining of breast cancer tissue microarrays (TMAs) that includes samples from 6 regions in the Southeast of the United States and Puerto Rico -regions enriched with NHB and H/L breast cancer patients. IHC analysis showed that TTK, Ki67, and Vimentin were significantly expressed in triple-negative (TNBC) tumors relative to other subtypes, while E-cadherin showed decreased expression. TTK correlated with all of the clinical variables but p-TBK1 did not correlate with any of them. TCGA analysis revealed that the mRNA levels of multiple mitotic kinases, including TTK, Nek2, Plk1, Bub1, and Aurora kinases A and B, and transcription factors that are known to control the expression of these kinases (e.g. FoxM1 and E2F1-3) were upregulated in NHBs versus NHWs and correlated with higher aneuploidy indexes in NHB, suggesting that these mitotic kinases may be future novel targets for breast cancer treatment in NHB women.
Collapse
Affiliation(s)
- Yainyrette Rivera-Rivera
- Pharmacology and Cancer Biology Division, Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, 7004, Ponce, PR, 00716-2347, USA
| | - Geraldine Vargas
- Pharmacology and Cancer Biology Division, Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, 7004, Ponce, PR, 00716-2347, USA
| | - Neha Jaiswal
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Angel Núñez-Marrero
- Biochemistry and Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Jiannong Li
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Dung-Tsa Chen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Steven Eschrich
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Marilin Rosa
- Departments of Anatomic Pathology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Julie Dutil
- Biochemistry and Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Srikumar P Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Harold I Saavedra
- Pharmacology and Cancer Biology Division, Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, 7004, Ponce, PR, 00716-2347, USA.
| |
Collapse
|
14
|
Mehlich D, Marusiak AA. Kinase inhibitors for precision therapy of triple-negative breast cancer: Progress, challenges, and new perspectives on targeting this heterogeneous disease. Cancer Lett 2022; 547:215775. [DOI: 10.1016/j.canlet.2022.215775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 12/21/2022]
|
15
|
Naro C, Barbagallo F, Caggiano C, De Musso M, Panzeri V, Di Agostino S, Paronetto MP, Sette C. Functional Interaction Between the Oncogenic Kinase NEK2 and Sam68 Promotes a Splicing Program Involved in Migration and Invasion in Triple-Negative Breast Cancer. Front Oncol 2022; 12:880654. [PMID: 35530315 PMCID: PMC9068942 DOI: 10.3389/fonc.2022.880654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/16/2022] [Indexed: 12/01/2022] Open
Abstract
Triple-negative breast cancer (TNBC) represents the most aggressive breast cancer subtype. Poor prognosis in TNBC is partly due to lack of efficacious targeted therapy and high propensity to metastasize. Dysregulation of alternative splicing has recently emerged as a trait of TNBC, suggesting that unveiling the molecular mechanisms underlying its regulation could uncover new druggable cancer vulnerabilities. The oncogenic kinase NEK2 is significantly upregulated in TNBC and contributes to shaping their unique splicing profile. Herein, we found that NEK2 interacts with the RNA binding protein Sam68 in TNBC cells and that NEK2-mediated phosphorylation of Sam68 enhances its splicing activity. Genome-wide transcriptome analyses identified the splicing targets of Sam68 in TNBC cells and revealed a common set of exons that are co-regulated by NEK2. Functional annotation of splicing-regulated genes highlighted cell migration and spreading as biological processes regulated by Sam68. Accordingly, Sam68 depletion reduces TNBC cell migration and invasion, and these effects are potentiated by the concomitant inhibition of NEK2 activity. Our findings indicate that Sam68 and NEK2 functionally cooperate in the regulation of a splicing program that sustains the pro-metastatic features of TNBC cells.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, University of the Sacred Hearth, Rome, Italy.,Gemelli SCIENCE and TECHNOLOGY PARK (GSTeP)-Organoids Research Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Federica Barbagallo
- Department of Experimental Medicine, University of Rome Sapienza, Rome, Italy
| | - Cinzia Caggiano
- Department of Neuroscience, Section of Human Anatomy, University of the Sacred Hearth, Rome, Italy.,Gemelli SCIENCE and TECHNOLOGY PARK (GSTeP)-Organoids Research Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Monica De Musso
- Department of Neuroscience, Section of Human Anatomy, University of the Sacred Hearth, Rome, Italy
| | - Valentina Panzeri
- Department of Neuroscience, Section of Human Anatomy, University of the Sacred Hearth, Rome, Italy.,Gemelli SCIENCE and TECHNOLOGY PARK (GSTeP)-Organoids Research Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Silvia Di Agostino
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy.,Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, University of the Sacred Hearth, Rome, Italy.,Gemelli SCIENCE and TECHNOLOGY PARK (GSTeP)-Organoids Research Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
16
|
Müller GA, Asthana A, Rubin SM. Structure and function of MuvB complexes. Oncogene 2022; 41:2909-2919. [PMID: 35468940 PMCID: PMC9201786 DOI: 10.1038/s41388-022-02321-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/08/2022]
Abstract
Proper progression through the cell-division cycle is critical to normal development and homeostasis and is necessarily misregulated in cancer. The key to cell-cycle regulation is the control of two waves of transcription that occur at the onset of DNA replication (S phase) and mitosis (M phase). MuvB complexes play a central role in the regulation of these genes. When cells are not actively dividing, the MuvB complex DREAM represses G1/S and G2/M genes. Remarkably, MuvB also forms activator complexes together with the oncogenic transcription factors B-MYB and FOXM1 that are required for the expression of the mitotic genes in G2/M. Despite this essential role in the control of cell division and the relationship to cancer, it has been unclear how MuvB complexes inhibit and stimulate gene expression. Here we review recent discoveries of MuvB structure and molecular interactions, including with nucleosomes and other chromatin-binding proteins, which have led to the first mechanistic models for the biochemical function of MuvB complexes.
Collapse
Affiliation(s)
- Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| | - Anushweta Asthana
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
17
|
Huang X, Zhang G, Tang T, Gao X, Liang T. One shoot, three birds: Targeting NEK2 orchestrates chemoradiotherapy, targeted therapy, and immunotherapy in cancer treatment. Biochim Biophys Acta Rev Cancer 2022; 1877:188696. [PMID: 35157980 DOI: 10.1016/j.bbcan.2022.188696] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022]
Abstract
Combinational therapy has improved the cancer therapeutic landscape but is associated with a concomitant increase in adverse side reactions. Emerging evidence proposes that targeting one core target with multiple critical roles in tumors can achieve combined anti-tumor effects. This review focuses on NEK2, a member of serine/threonine kinases, with broad sequence identity to the mitotic regulator NIMA of the filamentous fungus Aspergillus nidulans. Elevated expression of NEK2 was initially found to promote tumorigeneses through abnormal regulation of the cell cycle. Subsequent studies report that NEK2 is overexpressed in a broad spectrum of tumor types and is associated with tumor progression and therapeutic resistance. Intriguingly, NEK2 has recently been revealed to mediate tumor immune escape by stabilizing the expression of PD-L1. Targeting NEK2 is thus becoming a promising approach for cancer treatment by orchestrating chemoradiotherapy, targeted therapy, and immunotherapy. It represents a novel strategy for inducing combined anti-cancer effects using a mono-agent.
Collapse
Affiliation(s)
- Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiang Gao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
18
|
Naro C, De Musso M, Delle Monache F, Panzeri V, de la Grange P, Sette C. The oncogenic kinase NEK2 regulates an RBFOX2-dependent pro-mesenchymal splicing program in triple-negative breast cancer cells. J Exp Clin Cancer Res 2021; 40:397. [PMID: 34930366 PMCID: PMC8686545 DOI: 10.1186/s13046-021-02210-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/06/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most heterogeneous and malignant subtype of breast cancer (BC). TNBC is defined by the absence of expression of estrogen, progesterone and HER2 receptors and lacks efficacious targeted therapies. NEK2 is an oncogenic kinase that is significantly upregulated in TNBC, thereby representing a promising therapeutic target. NEK2 localizes in the nucleus and promotes oncogenic splice variants in different cancer cells. Notably, alternative splicing (AS) dysregulation has recently emerged as a featuring trait of TNBC that contributes to its aggressive phenotype. METHODS To investigate whether NEK2 modulates TNBC transcriptome we performed RNA-sequencing analyses in a representative TNBC cell line (MDA-MB-231) and results were validated in multiple TNBC cell lines. Bioinformatics and functional analyses were carried out to elucidate the mechanism of splicing regulation by NEK2. Data from The Cancer Genome Atlas were mined to evaluate the potential of NEK2-sensitive exons as markers to identify the TNBC subtype and to assess their prognostic value. RESULTS Transcriptome analysis revealed a widespread impact of NEK2 on the transcriptome of TNBC cells, with 1830 AS events that are susceptible to its expression. NEK2 regulates the inclusion of cassette exons in splice variants that discriminate TNBC from other BC and that correlate with poor prognosis, suggesting that this kinase contributes to the TNBC-specific splicing program. NEK2 elicits its effects by modulating the expression of the splicing factor RBFOX2, a well-known regulator of epithelial to mesenchymal transition (EMT). Accordingly, NEK2 splicing-regulated genes are enriched in functional terms related to cell adhesion and contractile cytoskeleton and NEK2 depletion in mesenchymal TNBC cells induces phenotypic and molecular traits typical of epithelial cells. Remarkably, depletion of select NEK2-sensitive splice-variants that are prognostic in TNBC patients is sufficient to interfere with TNBC cell morphology and motility, suggesting that NEK2 orchestrates a pro-mesenchymal splicing program that modulates migratory and invasive properties of TNBC cells. CONCLUSIONS Our study uncovers an extensive splicing program modulated by NEK2 involving splice variants that confer an invasive phenotype to TNBCs and that might represent, together with NEK2 itself, valuable therapeutic targets for this disease.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.
| | - Monica De Musso
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Francesca Delle Monache
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Valentina Panzeri
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | | | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy.
- Fondazione Santa Lucia, IRCCS, Rome, Italy.
| |
Collapse
|
19
|
Piemonte KM, Anstine LJ, Keri RA. Centrosome Aberrations as Drivers of Chromosomal Instability in Breast Cancer. Endocrinology 2021; 162:6381103. [PMID: 34606589 PMCID: PMC8557634 DOI: 10.1210/endocr/bqab208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 12/12/2022]
Abstract
Chromosomal instability (CIN), or the dynamic change in chromosome number and composition, has been observed in cancer for decades. Recently, this phenomenon has been implicated as facilitating the acquisition of cancer hallmarks and enabling the formation of aggressive disease. Hence, CIN has the potential to serve as a therapeutic target for a wide range of cancers. CIN in cancer often occurs as a result of disrupting key regulators of mitotic fidelity and faithful chromosome segregation. As a consequence of their essential roles in mitosis, dysfunctional centrosomes can induce and maintain CIN. Centrosome defects are common in breast cancer, a heterogeneous disease characterized by high CIN. These defects include amplification, structural defects, and loss of primary cilium nucleation. Recent studies have begun to illuminate the ability of centrosome aberrations to instigate genomic flux in breast cancer cells and the tumor evolution associated with aggressive disease and poor patient outcomes. Here, we review the role of CIN in breast cancer, the processes by which centrosome defects contribute to CIN in this disease, and the emerging therapeutic approaches that are being developed to capitalize upon such aberrations.
Collapse
Affiliation(s)
- Katrina M Piemonte
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Lindsey J Anstine
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ruth A Keri
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Correspondence: Ruth A. Keri, PhD, Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
20
|
Abstract
Perfectly orchestrated periodic gene expression during cell cycle progression is essential for maintaining genome integrity and ensuring that cell proliferation can be stopped by environmental signals. Genetic and proteomic studies during the past two decades revealed remarkable evolutionary conservation of the key mechanisms that control cell cycle-regulated gene expression, including multisubunit DNA-binding DREAM complexes. DREAM complexes containing a retinoblastoma family member, an E2F transcription factor and its dimerization partner, and five proteins related to products of Caenorhabditis elegans multivulva (Muv) class B genes lin-9, lin-37, lin-52, lin-53, and lin-54 (comprising the MuvB core) have been described in diverse organisms, from worms to humans. This review summarizes the current knowledge of the structure, function, and regulation of DREAM complexes in different organisms, as well as the role of DREAM in human disease. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Hayley Walston
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298, USA;
| | - Audra N Iness
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Larisa Litovchick
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298, USA; .,Division of Hematology, Oncology and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA.,Massey Cancer Center, Richmond, Virginia 23298, USA
| |
Collapse
|
21
|
Kaleem M, Perwaiz M, Nur SM, Abdulrahman AO, Ahmad W, Al-Abbasi FA, Kumar V, Kamal MA, Anwar F. Epigenetics of Triple-negative breast cancer via natural compounds. Curr Med Chem 2021; 29:1436-1458. [PMID: 34238140 DOI: 10.2174/0929867328666210707165530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023]
Abstract
Triple-negative breast cancer (TNBC) is a highly resistant, lethal, and metastatic sub-division of breast carcinoma, characterized by the deficiency of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). In women, TNBC shows a higher aggressive behavior with poor patient prognosis and a higher recurrence rate during reproductive age. TNBC is defined by the presence of epithelial-to-mesenchymal-transition (EMT), which shows a significant role in cancer progression. At the epigenetic level, TNBC is characterized by epigenetic signatures, such as DNA methylation, histone remodeling, and a host of miRNA, MiR-193, LncRNA, HIF-2α, eEF2K, LIN9/NEK2, IMP3, LISCH7/TGF-β1, GD3s and KLK12 mediated regulation. These modifications either are silenced or activate the necessary genes that are prevalent in TNBC. The review is based on epigenetic mediated mechanistic changes in TNBC. Furthermore, Thymoquinone (TQ), Regorafenib, Fangjihuangqi decoction, Saikosaponin A, and Huaier, etc., are potent antitumor natural compounds extensively reported in the literature. Further, the review emphasizes the role of these natural compounds in TNBC and their possible epigenetic targets, which can be utilized as a potential therapeutic strategy in treatment of TNBC.
Collapse
Affiliation(s)
- Mohammed Kaleem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Maryam Perwaiz
- Department of Sciences, University of Toronto. Mississauga. Canada
| | - Suza Mohammad Nur
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | | | - Wasim Ahmad
- Department of Kuliyate Tib, National Institute of Unani Medicine, Kottigepalya, Bengaluru, India
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Vikas Kumar
- Natural Product Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences. SHUATS, Naini, Prayagraj, India
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
22
|
Li S, Wu H, Huang X, Jian Y, Kong L, Xu H, Ouyang Y, Chen X, Wu G, Yu L, Wang X. BOP1 confers chemoresistance of triple-negative breast cancer by promoting CBP-mediated β-catenin acetylation. J Pathol 2021; 254:265-278. [PMID: 33797754 DOI: 10.1002/path.5676] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/03/2021] [Accepted: 03/30/2021] [Indexed: 12/26/2022]
Abstract
Chemoresistance is a major obstacle to the treatment of triple-negative breast cancer (TNBC), which has a poor prognosis. Increasing evidence has demonstrated the essential role of cancer stem cells (CSCs) in the process of TNBC chemoresistance. However, the underlying mechanism remains unclear. In the present study, we report that block of proliferation 1 (BOP1) serves as a key regulator of chemoresistance in TNBC. BOP1 expression was significantly upregulated in chemoresistant TNBC tissues, and high expression of BOP1 correlated with shorter overall survival and relapse-free survival in patients with TNBC. BOP1 overexpression promoted, while BOP1 downregulation inhibited the drug resistance and CSC-like phenotype of TNBC cells in vitro and in vivo. Moreover, BOP1 activated Wnt/β-catenin signaling by increasing the recruitment of cyclic AMP response element-binding protein (CBP) to β-catenin, enhancing CBP-mediated acetylation of β-catenin, and increasing the transcription of downstream stemness-related genes CD133 and ALDH1A1. Notably, treating with the β-catenin/CBP inhibitor PRI-724 induced an enhancement of chemotherapeutic response of paclitaxel in BOP1-overexpressing TNBC cells. These findings indicate that BOP1 is involved in chemoresistance development and might serve as a prognostic marker and therapeutic target in TNBC. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Siqi Li
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Haoming Wu
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | | | - Yunting Jian
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Lingzhi Kong
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Hongyi Xu
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China.,Department of Breast Surgery, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Ying Ouyang
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Xiangfu Chen
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Geyan Wu
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
| | - Liang Yu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Xi Wang
- Department of Breast Surgery, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| |
Collapse
|
23
|
Seachrist DD, Anstine LJ, Keri RA. Up to your NEK2 in CIN. Oncotarget 2021; 12:723-725. [PMID: 33889296 PMCID: PMC8057269 DOI: 10.18632/oncotarget.27918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
| | | | - Ruth A. Keri
- Correspondence to:Ruth A. Keri, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44106, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA email
| |
Collapse
|
24
|
Li Y, Qi D, Zhu B, Ye X. Analysis of m6A RNA Methylation-Related Genes in Liver Hepatocellular Carcinoma and Their Correlation with Survival. Int J Mol Sci 2021; 22:ijms22031474. [PMID: 33540684 PMCID: PMC7867233 DOI: 10.3390/ijms22031474] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
N6-methyladenosine (m6A) modification on RNA plays an important role in tumorigenesis and metastasis, which could change gene expression and even function at multiple levels such as RNA splicing, stability, translocation, and translation. In this study, we aim to conduct a comprehensive analysis on m6A RNA methylation-related genes, including m6A RNA methylation regulators and m6A RNA methylation-modified genes, in liver hepatocellular carcinoma, and their relationship with survival and clinical features. Data, which consist of the expression of widely reported m6A RNA methylation-related genes in liver hepatocellular carcinoma from The Cancer Genome Atlas (TCGA), were analyzed by one-way ANOVA, Univariate Cox regression, a protein–protein interaction network, gene enrichment analysis, feature screening, a risk prognostic model, correlation analysis, and consensus clustering analysis. In total, 405 of the m6A RNA methylation-related genes were found based on one-way ANOVA. Among them, DNA topoisomerase 2-alpha (TOP2A), exodeoxyribonuclease 1 (EXO1), ser-ine/threonine-protein kinase Nek2 (NEK2), baculoviral IAP repeat-containing protein 5 (BIRC5), hyaluronan mediated motility receptor (HMMR), structural maintenance of chromosomes protein 4 (SMC4), bloom syndrome protein (BLM), ca-sein kinase I isoform epsilon (CSNK1E), cytoskeleton-associated protein 5 (CKAP5), and inner centromere protein (INCENP), which were m6A RNA methylation-modified genes, were recognized as the hub genes based on the protein–protein interaction analysis. The risk prognostic model showed that gender, AJCC stage, grade, T, and N were significantly different between the subgroup with the high and low risk groups. The AUC, the evaluation parameter of the prediction model which was built by RandomForest, was 0.7. Furthermore, two subgroups were divided by consensus clustering analysis, in which stage, grade, and T differed. We identified the important genes expressed significantly among two clusters, including uridine-cytidine kinase 2 (UCK2), filensin (BFSP1), tubulin-specific chaperone D (TBCD), histone-lysine N-methyltransferase PRDM16 (PRDM16), phosphorylase b ki-nase regulatory subunit alpha (PHKA2), serine/threonine-protein kinase BRSK2 (BRSK2), Arf-GAP with coiled-coil (ACAP3), general transcription factor 3C polypep-tide 2 (GTF3C2), and guanine nucleotide exchange factor MSS4 (RABIF). In our study, the m6A RNA methylation-related genes in liver hepatocellular carcinoma were analyzed systematically, including the expression, interaction, function, and prognostic values, which provided an important theoretical basis for m6A RNA methylation in liver cancer. The nine important m6A-related genes could be prognostic markers in the survival time of patients.
Collapse
Affiliation(s)
- Yong Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Y.L.); (B.Z.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Dandan Qi
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Baoli Zhu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Y.L.); (B.Z.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Xin Ye
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Y.L.); (B.Z.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China;
- Correspondence: ; Tel.: +86-010-6480-7513
| |
Collapse
|
25
|
Noureen N, Wu S, Lv Y, Yang J, Alfred Yung WK, Gelfond J, Wang X, Koul D, Ludlow A, Zheng S. Integrated analysis of telomerase enzymatic activity unravels an association with cancer stemness and proliferation. Nat Commun 2021; 12:139. [PMID: 33420056 PMCID: PMC7794223 DOI: 10.1038/s41467-020-20474-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Active telomerase is essential for stem cells and most cancers to maintain telomeres. The enzymatic activity of telomerase is related but not equivalent to the expression of TERT, the catalytic subunit of the complex. Here we show that telomerase enzymatic activity can be robustly estimated from the expression of a 13-gene signature. We demonstrate the validity of the expression-based approach, named EXTEND, using cell lines, cancer samples, and non-neoplastic samples. When applied to over 9,000 tumors and single cells, we find a strong correlation between telomerase activity and cancer stemness. This correlation is largely driven by a small population of proliferating cancer cells that exhibits both high telomerase activity and cancer stemness. This study establishes a computational framework for quantifying telomerase enzymatic activity and provides new insights into the relationships among telomerase, cancer proliferation, and stemness.
Collapse
Affiliation(s)
- Nighat Noureen
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA
| | - Shaofang Wu
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Yingli Lv
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, USA
| | - Juechen Yang
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, USA
| | - W K Alfred Yung
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan Gelfond
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA
| | - Xiaojing Wang
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA
| | - Dimpy Koul
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Ludlow
- Department of Movement Science, University of Michigan, Ann Arbor, MI, USA
| | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, USA.
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
26
|
Maloney SM, Hoover CA, Morejon-Lasso LV, Prosperi JR. Mechanisms of Taxane Resistance. Cancers (Basel) 2020; 12:E3323. [PMID: 33182737 PMCID: PMC7697134 DOI: 10.3390/cancers12113323] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
The taxane family of chemotherapy drugs has been used to treat a variety of mostly epithelial-derived tumors and remain the first-line treatment for some cancers. Despite the improved survival time and reduction of tumor size observed in some patients, many have no response to the drugs or develop resistance over time. Taxane resistance is multi-faceted and involves multiple pathways in proliferation, apoptosis, metabolism, and the transport of foreign substances. In this review, we dive deeper into hypothesized resistance mechanisms from research during the last decade, with a focus on the cancer types that use taxanes as first-line treatment but frequently develop resistance to them. Furthermore, we will discuss current clinical inhibitors and those yet to be approved that target key pathways or proteins and aim to reverse resistance in combination with taxanes or individually. Lastly, we will highlight taxane response biomarkers, specific genes with monitored expression and correlated with response to taxanes, mentioning those currently being used and those that should be adopted. The future directions of taxanes involve more personalized approaches to treatment by tailoring drug-inhibitor combinations or alternatives depending on levels of resistance biomarkers. We hope that this review will identify gaps in knowledge surrounding taxane resistance that future research or clinical trials can overcome.
Collapse
Affiliation(s)
- Sara M. Maloney
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Camden A. Hoover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Lorena V. Morejon-Lasso
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Jenifer R. Prosperi
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| |
Collapse
|
27
|
Rodrigues-Ferreira S, Moindjie H, Haykal MM, Nahmias C. Predicting and Overcoming Taxane Chemoresistance. Trends Mol Med 2020; 27:138-151. [PMID: 33046406 DOI: 10.1016/j.molmed.2020.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 01/01/2023]
Abstract
Taxanes are microtubule-targeting drugs used as cytotoxic chemotherapy to treat most solid tumors. The development of resistance to taxanes is a major cause of therapeutic failure and overcoming chemoresistance remains an important challenge to improve patient's outcome. Extensive efforts have been made recently to identify predictive biomarkers to select populations of patients who will benefit from taxane-based chemotherapy and avoid inefficient treatment of patients with innate resistance. This, together with the discovery of new mechanisms of resistance that include metabolic reprogramming and dialogue between tumor and its microenvironment, pave the way to a new era of personalized medicine. In this review, we recapitulate recent insights into taxane resistance and present promising emerging strategies to overcome chemoresistance in the future.
Collapse
Affiliation(s)
- Sylvie Rodrigues-Ferreira
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, 94800, Villejuif, France; LabEx LERMIT, Université Paris Saclay, 92296 Châtenay-Malabry, France; Inovarion, 75005 Paris, France.
| | - Hadia Moindjie
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, 94800, Villejuif, France; LabEx LERMIT, Université Paris Saclay, 92296 Châtenay-Malabry, France
| | - Maria M Haykal
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, 94800, Villejuif, France; LabEx LERMIT, Université Paris Saclay, 92296 Châtenay-Malabry, France
| | - Clara Nahmias
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, 94800, Villejuif, France; LabEx LERMIT, Université Paris Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|