1
|
Holm LL, Doktor TK, Flugt KK, Petersen US, Petersen R, Andresen B. All exons are not created equal-exon vulnerability determines the effect of exonic mutations on splicing. Nucleic Acids Res 2024; 52:4588-4603. [PMID: 38324470 PMCID: PMC11077056 DOI: 10.1093/nar/gkae077] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/05/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
It is now widely accepted that aberrant splicing of constitutive exons is often caused by mutations affecting cis-acting splicing regulatory elements (SREs), but there is a misconception that all exons have an equal dependency on SREs and thus a similar vulnerability to aberrant splicing. We demonstrate that some exons are more likely to be affected by exonic splicing mutations (ESMs) due to an inherent vulnerability, which is context dependent and influenced by the strength of exon definition. We have developed VulExMap, a tool which is based on empirical data that can designate whether a constitutive exon is vulnerable. Using VulExMap, we find that only 25% of all exons can be categorized as vulnerable, whereas two-thirds of 359 previously reported ESMs in 75 disease genes are located in vulnerable exons. Because VulExMap analysis is based on empirical data on splicing of exons in their endogenous context, it includes all features important in determining the vulnerability. We believe that VulExMap will be an important tool when assessing the effect of exonic mutations by pinpointing whether they are located in exons vulnerable to ESMs.
Collapse
Affiliation(s)
- Lise L Holm
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
- Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Thomas K Doktor
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
- Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Katharina K Flugt
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
- Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Ulrika S S Petersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
- Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Rikke Petersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
- Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
- Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
2
|
Privat M, Ponelle-Chachuat F, Viala S, Uhrhammer N, Lepage M, Cayre A, Bidet Y, Bignon YJ, Gay-Bellile M, Cavaillé M. RNA Panel Sequencing Is an Effective Tool to Help Classify Splice Variants for Clinical Oncogenetic Diagnosis. Hum Mutat 2024; 2024:4830045. [PMID: 40225916 PMCID: PMC11918821 DOI: 10.1155/2024/4830045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 04/15/2025]
Abstract
Routine gene panel analysis identifies pathogenic variants in clinically relevant genes. However, variants of unknown significance (VUSs) are commonly observed, many of which potentially have an impact on mRNA transcription and splicing. Several software programs attempt to predict the impact of variants on splicing and thus make it possible to select the variants for which it is important to study the effect on the transcripts. Transcript analysis is also necessary to show the tandem character of large duplications, and it can be useful for the search for deep intronic variants that are difficult to identify in a DNA panel. We analyzed 53 variants of unknown significance by targeted sequencing of 48 genes using RNA extracted from patient blood samples. RT-PCR and Sanger sequencing of patient mRNA or minigene monoallelic analysis was also carried out when necessary. For the 53 VUSs, 21 could be classified as likely neutral and 10 as pathogenic or likely pathogenic. Data are comprehensively presented for four variants: PTEN c.206+6T>G, MLH1 c.791-489_791-20del, BRCA2 c.68-8_68-7delinsAA, and MSH2 c.(1076+1_1077-1)_(1276+1_1277-1)dup. These four examples illustrate the usefulness of blood RNA panel sequencing in clinical oncogenetics to help classify VUSs with predicted splice effects. It could also be useful for characterizing large duplications and for detecting deep intronic variants with an impact on expressed transcripts.
Collapse
Affiliation(s)
- Maud Privat
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| | - Flora Ponelle-Chachuat
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| | - Sandrine Viala
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| | - Nancy Uhrhammer
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| | - Mathis Lepage
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| | - Anne Cayre
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
- Département de Pathologie, Centre Jean Perrin, Clermont-Ferrand, France
| | - Yannick Bidet
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| | - Mathilde Gay-Bellile
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| | - Mathias Cavaillé
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| |
Collapse
|
3
|
Sanoguera-Miralles L, Llinares-Burguet I, Bueno-Martínez E, Ramadane-Morchadi L, Stuani C, Valenzuela-Palomo A, García-Álvarez A, Pérez-Segura P, Buratti E, de la Hoya M, Velasco-Sampedro EA. Comprehensive splicing analysis of the alternatively spliced CHEK2 exons 8 and 10 reveals three enhancer/silencer-rich regions and 38 spliceogenic variants. J Pathol 2024; 262:395-409. [PMID: 38332730 DOI: 10.1002/path.6243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 11/28/2023] [Indexed: 02/10/2024]
Abstract
Splicing is controlled by a large set of regulatory elements (SREs) including splicing enhancers and silencers, which are involved in exon recognition. Variants at these motifs may dysregulate splicing and trigger loss-of-function transcripts associated with disease. Our goal here was to study the alternatively spliced exons 8 and 10 of the breast cancer susceptibility gene CHEK2. For this purpose, we used a previously published minigene with exons 6-10 that produced the expected minigene full-length transcript and replicated the naturally occurring events of exon 8 [Δ(E8)] and exon 10 [Δ(E10)] skipping. We then introduced 12 internal microdeletions of exons 8 and 10 by mutagenesis in order to map SRE-rich intervals by splicing assays in MCF-7 cells. We identified three minimal (10-, 11-, 15-nt) regions essential for exon recognition: c.863_877del [ex8, Δ(E8): 75%] and c.1073_1083del and c.1083_1092del [ex10, Δ(E10): 97% and 62%, respectively]. Then 87 variants found within these intervals were introduced into the wild-type minigene and tested functionally. Thirty-eight of them (44%) impaired splicing, four of which (c.883G>A, c.883G>T, c.884A>T, and c.1080G>T) induced negligible amounts (<5%) of the minigene full-length transcript. Another six variants (c.886G>A, c.886G>T, c.1075G>A, c.1075G>T, c.1076A>T, and c.1078G>T) showed significantly strong impacts (20-50% of the minigene full-length transcript). Thirty-three of the 38 spliceogenic variants were annotated as missense, three as nonsense, and two as synonymous, underlying the fact that any exonic change is capable of disrupting splicing. Moreover, c.883G>A, c.883G>T, and c.884A>T were classified as pathogenic/likely pathogenic variants according to ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based criteria. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Inés Llinares-Burguet
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Lobna Ramadane-Morchadi
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Cristiana Stuani
- Molecular Pathology Lab. International Centre of Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Alicia García-Álvarez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Emanuele Buratti
- Molecular Pathology Lab. International Centre of Genetic Engineering and Biotechnology, Trieste, Italy
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Eladio A Velasco-Sampedro
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| |
Collapse
|
4
|
Terkelsen T, Mikkelsen NS, Bak EN, Vad-Nielsen J, Blechingberg J, Weiss S, Drue SO, Andersen H, Andresen BS, Bak RO, Jensen UB. CRISPR activation to characterize splice-altering variants in easily accessible cells. Am J Hum Genet 2024; 111:309-322. [PMID: 38272032 PMCID: PMC10870130 DOI: 10.1016/j.ajhg.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Genetic variants that affect mRNA splicing are a major cause of hereditary disorders, but the spliceogenicity of variants is challenging to predict. RNA diagnostics of clinically accessible tissues enable rapid functional characterization of splice-altering variants within their natural genetic context. However, this analysis cannot be offered to all individuals as one in five human disease genes are not expressed in easily accessible cell types. To overcome this problem, we have used CRISPR activation (CRISPRa) based on a dCas9-VPR mRNA-based delivery platform to induce expression of the gene of interest in skin fibroblasts from individuals with suspected monogenic disorders. Using this ex vivo splicing assay, we characterized the splicing patterns associated with germline variants in the myelin protein zero gene (MPZ), which is exclusively expressed in Schwann cells of the peripheral nerves, and the spastin gene (SPAST), which is predominantly expressed in the central nervous system. After overnight incubation, CRISPRa strongly upregulated MPZ and SPAST transcription in skin fibroblasts, which enabled splice variant profiling using reverse transcription polymerase chain reaction, next-generation sequencing, and long-read sequencing. Our investigations show proof of principle of a promising genetic diagnostic tool that involves CRISPRa to activate gene expression in easily accessible cells to study the functional impact of genetic variants. The procedure is easy to perform in a diagnostic laboratory with equipment and reagents all readily available.
Collapse
Affiliation(s)
- Thorkild Terkelsen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | | | - Ebbe Norskov Bak
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Johan Vad-Nielsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jenny Blechingberg
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Simone Weiss
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Simon Opstrup Drue
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Henning Andersen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Brage Storstein Andresen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Uffe Birk Jensen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
5
|
Tse V, Chacaltana G, Gutierrez M, Forino N, Jimenez A, Tao H, Do P, Oh C, Chary P, Quesada I, Hamrick A, Lee S, Stone M, Sanford J. An intronic RNA element modulates Factor VIII exon-16 splicing. Nucleic Acids Res 2024; 52:300-315. [PMID: 37962303 PMCID: PMC10783525 DOI: 10.1093/nar/gkad1034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Pathogenic variants in the human Factor VIII (F8) gene cause Hemophilia A (HA). Here, we investigated the impact of 97 HA-causing single-nucleotide variants on the splicing of 11 exons from F8. For the majority of F8 exons, splicing was insensitive to the presence of HA-causing variants. However, splicing of several exons, including exon-16, was impacted by variants predicted to alter exonic splicing regulatory sequences. Using exon-16 as a model, we investigated the structure-function relationship of HA-causing variants on splicing. Intriguingly, RNA chemical probing analyses revealed a three-way junction structure at the 3'-end of intron-15 (TWJ-3-15) capable of sequestering the polypyrimidine tract. We discovered antisense oligonucleotides (ASOs) targeting TWJ-3-15 partially rescue splicing-deficient exon-16 variants by increasing accessibility of the polypyrimidine tract. The apical stem loop region of TWJ-3-15 also contains two hnRNPA1-dependent intronic splicing silencers (ISSs). ASOs blocking these ISSs also partially rescued splicing. When used in combination, ASOs targeting both the ISSs and the region sequestering the polypyrimidine tract, fully rescue pre-mRNA splicing of multiple HA-linked variants of exon-16. Together, our data reveal a putative RNA structure that sensitizes F8 exon-16 to aberrant splicing.
Collapse
Affiliation(s)
- Victor Tse
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Guillermo Chacaltana
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Martin Gutierrez
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Nicholas M Forino
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Arcelia G Jimenez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Hanzhang Tao
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Phong H Do
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Catherine Oh
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Priyanka Chary
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Isabel Quesada
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Antonia Hamrick
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Sophie Lee
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Jeremy R Sanford
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| |
Collapse
|
6
|
Biswas K, Mitrophanov AY, Sahu S, Sullivan T, Southon E, Nousome D, Reid S, Narula S, Smolen J, Sengupta T, Riedel-Topper M, Kapoor M, Babbar A, Stauffer S, Cleveland L, Tandon M, Malys T, Sharan SK. Sequencing-based functional assays for classification of BRCA2 variants in mouse ESCs. CELL REPORTS METHODS 2023; 3:100628. [PMID: 37922907 PMCID: PMC10694496 DOI: 10.1016/j.crmeth.2023.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Sequencing of genes, such as BRCA1 and BRCA2, is recommended for individuals with a personal or family history of early onset and/or bilateral breast and/or ovarian cancer or a history of male breast cancer. Such sequencing efforts have resulted in the identification of more than 17,000 BRCA2 variants. The functional significance of most variants remains unknown; consequently, they are called variants of uncertain clinical significance (VUSs). We have previously developed mouse embryonic stem cell (mESC)-based assays for functional classification of BRCA2 variants. We now developed a next-generation sequencing (NGS)-based approach for functional evaluation of BRCA2 variants using pools of mESCs expressing 10-25 BRCA2 variants from a given exon. We use this approach for functional evaluation of 223 variants listed in ClinVar. Our functional classification of BRCA2 variants is concordant with the classification reported in ClinVar or those reported by other orthogonal assays.
Collapse
Affiliation(s)
- Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Alexander Y Mitrophanov
- Statistical Consulting and Scientific Programming, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; Leidos Biomed Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Darryl Nousome
- Biomedical Informatics and Data Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Sakshi Narula
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Julia Smolen
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Trisha Sengupta
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Maximilian Riedel-Topper
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Medha Kapoor
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Anav Babbar
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Stacey Stauffer
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Linda Cleveland
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Mayank Tandon
- Biomedical Informatics and Data Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Tyler Malys
- Statistical Consulting and Scientific Programming, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
7
|
Li Y, Chen Z, Peng J, Yuan C, Yan S, Yang N, Li P, Kong B. The splicing factor SNRPB promotes ovarian cancer progression through regulating aberrant exon skipping of POLA1 and BRCA2. Oncogene 2023:10.1038/s41388-023-02763-x. [PMID: 37391593 DOI: 10.1038/s41388-023-02763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/08/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Splicing factors play a crucial role in the initiation and development of various human cancers. SNRPB, a core spliceosome component, regulates pre-mRNA alternative splicing. However, its function and underlying mechanism in ovarian cancer remain unclear. This study identified SNRPB as a critical driver of ovarian cancer through TCGA and CPTAC database analysis. SNRPB was highly upregulated in fresh frozen ovarian cancer tissues compared with normal fallopian tubes. Immunohistochemistry revealed that SNRPB expression was increased in formalin-fixed, paraffin-embedded ovarian cancer sections and was positively correlated with a poor prognosis for ovarian cancer. Functionally, SNRPB knockdown suppressed ovarian cancer cell proliferation and invasion, and overexpression exerted opposite effects. SNRPB expression increased after cisplatin treatment, and silencing SNRPB sensitized ovarian cancer cells to cisplatin. KEGG pathway analysis revealed that the differentially expressed genes (DEGs) were mainly enriched in DNA replication and homologous recombination, and almost all DEGs related to DNA replication and homologous recombination were downregulated after SNRPB knockdown according to RNA-seq. Exon 3 skipping of the DEGs DNA polymerase alpha 1 (POLA1) and BRCA2 was induced by SNRPB silencing. Exon 3 skipping of POLA1 yielded premature termination codons and led to nonsense-mediated RNA decay (NMD); exon 3 skipping of BRCA2 led to loss of the PALB2 binding domain, which is necessary for homologous recombination, and increased ovarian cancer cell cisplatin sensitivity. POLA1 or BRCA2 knockdown partially impaired the increased malignancy of SNRPB-overexpressing ovarian cancer cells. Moreover, miR-654-5p was found to reduce SNRPB mRNA expression by directly binding to the SNRPB 3'-UTR. Overall, SNRPB was identified as an important oncogenic driver that promotes ovarian cancer progression by repressing exon 3 skipping of POLA1 and BRCA2. Thus, SNRPB is a potential treatment target and prognostic marker for ovarian cancer.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Ji'nan 250012, Shandong Province, China.
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, Shandong Province, China.
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan 250012, Shandong Province, China.
| | - Zhongshao Chen
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Ji'nan 250012, Shandong Province, China
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan 250012, Shandong Province, China
| | - Jiali Peng
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Ji'nan 250012, Shandong Province, China
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan 250012, Shandong Province, China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Ji'nan 250012, Shandong Province, China
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan 250012, Shandong Province, China
| | - Shi Yan
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Ji'nan 250012, Shandong Province, China
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan 250012, Shandong Province, China
| | - Ning Yang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Ji'nan 250012, Shandong Province, China
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan 250012, Shandong Province, China
| | - Peng Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Ji'nan 250012, Shandong Province, China
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan 250012, Shandong Province, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Ji'nan 250012, Shandong Province, China.
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan 250012, Shandong Province, China.
| |
Collapse
|
8
|
Jasiak A, Koczkowska M, Stukan M, Wydra D, Biernat W, Izycka-Swieszewska E, Buczkowski K, Eccles MR, Walker L, Wasag B, Ratajska M. Analysis of BRCA1 and BRCA2 alternative splicing in predisposition to ovarian cancer. Exp Mol Pathol 2023; 130:104856. [PMID: 36791903 DOI: 10.1016/j.yexmp.2023.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND The mRNA splicing is regulated on multiple levels, resulting in the proper distribution of genes' transcripts in each cell and maintaining cell homeostasis. At the same time, the expression of alternative transcripts can change in response to underlying genetic variants, often missed during routine diagnostics. AIM The main aim of this study was to define the frequency of aberrant splicing in BRCA1 and BRCA2 genes in blood RNA extracted from ovarian cancer patients who were previously found negative for the presence of pathogenic alterations in the 25 most commonly analysed ovarian cancer genes, including BRCA1 and BRCA2. MATERIAL AND METHODS Frequency and spectrum of splicing alterations in BRCA1 and BRCA2 genes were analysed in blood RNA from 101 ovarian cancer patients and healthy controls (80 healthy women) using PCR followed by gel electrophoresis and Sanger sequencing. The expression of splicing events was examined using RT-qPCR. RESULTS We did not identify any novel, potentially pathogenic splicing alterations. Nevertheless, we detected six naturally occurring transcripts, named BRCA1ΔE9-10, BRCA1ΔE11, BRCA1ΔE11q, and BRCA2ΔE3, BRCA2ΔE12 and BRCA2ΔE17-18 of which three (BRCA1ΔE11q, BRCA1ΔE11 and BRCA2ΔE3) were significantly higher expressed in the ovarian cancer cohort than in healthy controls (p ≤ 0.0001). CONCLUSIONS This observation indicates that the upregulation of selected naturally occurring transcripts can be stimulated by non-genetic mechanisms and be a potential systemic response to disease progression and/or treatment. However, this hypothesis requires further examination.
Collapse
Affiliation(s)
- Anna Jasiak
- Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland.
| | - Magdalena Koczkowska
- 3P Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland; Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Maciej Stukan
- Department of Gynecologic Oncology, Gdynia Oncology Center, Pomeranian Hospitals, Gdynia, Poland; Department Oncological Propedeutics, Medical University of Gdansk, Gdansk, Poland
| | - Dariusz Wydra
- Department of Gynaecology, Gynaecological Oncology and Gynaecological Endocrinology, Medical University of Gdansk, Gdansk, Poland
| | - Wojciech Biernat
- Department of Pathology, Medical University of Gdansk, Gdansk, Poland
| | | | - Kamil Buczkowski
- Department of Pathology & Neuropathology, Medical University of Gdansk, Gdansk, Poland
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Logan Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Bartosz Wasag
- Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland; Laboratory of Clinical Genetics, University Clinical Centre, Gdansk, Poland
| | - Magdalena Ratajska
- Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland; Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
9
|
Thomassen M, Mesman RLS, Hansen TVO, Menendez M, Rossing M, Esteban‐Sánchez A, Tudini E, Törngren T, Parsons MT, Pedersen IS, Teo SH, Kruse TA, Møller P, Borg Å, Jensen UB, Christensen LL, Singer CF, Muhr D, Santamarina M, Brandao R, Andresen BS, Feng B, Canson D, Richardson ME, Karam R, Pesaran T, LaDuca H, Conner BR, Abualkheir N, Hoang L, Calléja FMGR, Andrews L, James PA, Bunyan D, Hamblett A, Radice P, Goldgar DE, Walker LC, Engel C, Claes KBM, Macháčková E, Baralle D, Viel A, Wappenschmidt B, Lazaro C, Vega A, Vreeswijk MPG, de la Hoya M, Spurdle AB. Clinical, splicing, and functional analysis to classify BRCA2 exon 3 variants: Application of a points-based ACMG/AMP approach. Hum Mutat 2022; 43:1921-1944. [PMID: 35979650 PMCID: PMC10946542 DOI: 10.1002/humu.24449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 01/25/2023]
Abstract
Skipping of BRCA2 exon 3 (∆E3) is a naturally occurring splicing event, complicating clinical classification of variants that may alter ∆E3 expression. This study used multiple evidence types to assess pathogenicity of 85 variants in/near BRCA2 exon 3. Bioinformatically predicted spliceogenic variants underwent mRNA splicing analysis using minigenes and/or patient samples. ∆E3 was measured using quantitative analysis. A mouse embryonic stem cell (mESC) based assay was used to determine the impact of 18 variants on mRNA splicing and protein function. For each variant, population frequency, bioinformatic predictions, clinical data, and existing mRNA splicing and functional results were collated. Variant class was assigned using a gene-specific adaptation of ACMG/AMP guidelines, following a recently proposed points-based system. mRNA and mESC analysis combined identified six variants with transcript and/or functional profiles interpreted as loss of function. Cryptic splice site use for acceptor site variants generated a transcript encoding a shorter protein that retains activity. Overall, 69/85 (81%) variants were classified using the points-based approach. Our analysis shows the value of applying gene-specific ACMG/AMP guidelines using a points-based approach and highlights the consideration of cryptic splice site usage to appropriately assign PVS1 code strength.
Collapse
Affiliation(s)
- Mads Thomassen
- Department of Clinical GeneticsOdense University HospitalOdence CDenmark
| | - Romy L. S. Mesman
- Department of Human GeneticsLeiden University Medical CenterLeidenthe Netherlands
| | - Thomas V. O. Hansen
- Department of Clinical Genetics, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Mireia Menendez
- Hereditary Cancer ProgramCatalan Institute of Oncology, ONCOBELL‐IDIBELL‐IDTP, CIBERONCHospitalet de LlobregatSpain
| | - Maria Rossing
- Center for Genomic Medicine, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Ada Esteban‐Sánchez
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Emma Tudini
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Therese Törngren
- Division of Oncology, Department of Clinical Sciences LundLund UniversityLundSweden
| | - Michael T. Parsons
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Inge S. Pedersen
- Molecular Diagnostics, Aalborg University HospitalAalborgDenmark
- Clinical Cancer Research CenterAalborg University HospitalAalborgDenmark
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
| | - Soo H. Teo
- Breast Cancer Research ProgrammeCancer Research MalaysiaSubang JayaSelangorMalaysia
- Department of Surgery, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Torben A. Kruse
- Department of Clinical GeneticsOdense University HospitalOdence CDenmark
| | - Pål Møller
- Department of Tumour BiologyThe Norwegian Radium Hospital, Oslo University HospitalOsloNorway
| | - Åke Borg
- Division of Oncology, Department of Clinical Sciences LundLund UniversityLundSweden
| | - Uffe B. Jensen
- Department of Clinical GeneticsAarhus University HospitalAarhus NDenmark
| | | | - Christian F. Singer
- Department of OB/GYN and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Daniela Muhr
- Department of OB/GYN and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Marta Santamarina
- Fundación Pública Galega de Medicina XenómicaSantiago de CompostelaSpain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGASSantiago de CompostelaSpain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER)MadridSpain
| | - Rita Brandao
- Department of Clinical GeneticsMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Brage S. Andresen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Bing‐Jian Feng
- Department of DermatologyHuntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUtahUSA
| | - Daffodil Canson
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | | | | | | | | | | | | | | | | | - Lesley Andrews
- Hereditary Cancer Clinic, Nelune Comprehensive Cancer Care CentreSydneyNew South WalesAustralia
| | - Paul A. James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer CenterMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Dave Bunyan
- Human Development and Health, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Amanda Hamblett
- Middlesex Health Shoreline Cancer CenterWestbrookConnecticutUSA
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of ResearchFondazione IRCCS Istituto Nazionale dei Tumori (INT)MilanItaly
| | - David E. Goldgar
- Department of DermatologyHuntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUtahUSA
| | - Logan C. Walker
- Department of Pathology and Biomedical ScienceUniversity of OtagoChristchurchNew Zealand
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and EpidemiologyUniversity of LeipzigLeipzigGermany
| | | | - Eva Macháčková
- Department of Cancer Epidemiology and GeneticsMasaryk Memorial Cancer InstituteBrnoCzech Republic
| | - Diana Baralle
- Human Development and Health, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Alessandra Viel
- Division of Functional Onco‐genomics and GeneticsCentro di Riferimento Oncologico di Aviano (CRO), IRCCSAvianoItaly
| | - Barbara Wappenschmidt
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Conxi Lazaro
- Hereditary Cancer ProgramCatalan Institute of Oncology, ONCOBELL‐IDIBELL‐IDTP, CIBERONCHospitalet de LlobregatSpain
| | - Ana Vega
- Fundación Pública Galega de Medicina XenómicaSantiago de CompostelaSpain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGASSantiago de CompostelaSpain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER)MadridSpain
| | - ENIGMA Consortium
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Amanda B. Spurdle
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| |
Collapse
|
10
|
Dragoš VŠ, Strojnik K, Klančar G, Škerl P, Stegel V, Blatnik A, Banjac M, Krajc M, Novaković S. Identification of Spliceogenic Variants beyond Canonical GT-AG Splice Sites in Hereditary Cancer Genes. Int J Mol Sci 2022; 23:7446. [PMID: 35806449 PMCID: PMC9267136 DOI: 10.3390/ijms23137446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023] Open
Abstract
Pathogenic/likely pathogenic variants in susceptibility genes that interrupt RNA splicing are a well-documented mechanism of hereditary cancer syndromes development. However, if RNA studies are not performed, most of the variants beyond the canonical GT-AG splice site are characterized as variants of uncertain significance (VUS). To decrease the VUS burden, we have bioinformatically evaluated all novel VUS detected in 732 consecutive patients tested in the routine genetic counseling process. Twelve VUS that were predicted to cause splicing defects were selected for mRNA analysis. Here, we report a functional characterization of 12 variants located beyond the first two intronic nucleotides using RNAseq in APC, ATM, FH, LZTR1, MSH6, PALB2, RAD51C, and TP53 genes. Based on the analysis of mRNA, we have successfully reclassified 50% of investigated variants. 25% of variants were downgraded to likely benign, whereas 25% were upgraded to likely pathogenic leading to improved clinical management of the patient and the family members.
Collapse
Affiliation(s)
- Vita Šetrajčič Dragoš
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (V.Š.D.); (G.K.); (P.Š.); (V.S.)
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Ksenija Strojnik
- Cancer Genetics Clinic, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (K.S.); (M.B.); (M.K.)
| | - Gašper Klančar
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (V.Š.D.); (G.K.); (P.Š.); (V.S.)
| | - Petra Škerl
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (V.Š.D.); (G.K.); (P.Š.); (V.S.)
| | - Vida Stegel
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (V.Š.D.); (G.K.); (P.Š.); (V.S.)
| | - Ana Blatnik
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
- Cancer Genetics Clinic, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (K.S.); (M.B.); (M.K.)
| | - Marta Banjac
- Cancer Genetics Clinic, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (K.S.); (M.B.); (M.K.)
| | - Mateja Krajc
- Cancer Genetics Clinic, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (K.S.); (M.B.); (M.K.)
| | - Srdjan Novaković
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (V.Š.D.); (G.K.); (P.Š.); (V.S.)
- Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Holm LL, Doktor TK, Hansen MB, Petersen USS, Andresen BS. Vulnerable exons, like ACADM exon 5, are highly dependent on maintaining a correct balance between splicing enhancers and silencers. Hum Mutat 2021; 43:253-265. [PMID: 34923709 DOI: 10.1002/humu.24321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/08/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022]
Abstract
It is now widely accepted that aberrant splicing of constitutive exons is often caused by mutations affecting cis-acting splicing regulatory elements, but there is a misconception that all exons have an equal dependency on splicing regulatory elements and thus a similar susceptibility to aberrant splicing. We investigated exonic mutations in ACADM exon 5 to experimentally examine their effect on splicing and found that 7 out of 11 tested mutations affected exon inclusion, demonstrating that this constitutive exon is particularly vulnerable to exonic splicing mutations. Employing ACADM exon 5 and 6 as models, we demonstrate that the balance between splicing enhancers and silencers, flanking intron length, and flanking splice site strength are important factors that determine exon definition and splicing efficiency of the exon in question. Our study shows that two constitutive exons in ACADM have different inherent vulnerabilities to exonic splicing mutations. This suggests that in silico prediction of potential pathogenic effects on splicing from exonic mutations may be improved by also considering the inherent vulnerability of the exon. Moreover, we show that single nucleotide polymorphism that affect either of two different exonic splicing silencers, located far apart in exon 5, all protect against both immediately flanking and more distant exonic splicing mutations.
Collapse
Affiliation(s)
- Lise L Holm
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M., Denmark.,Department of Molecular Biology and Biochemistry, The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Thomas K Doktor
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M., Denmark.,Department of Molecular Biology and Biochemistry, The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Michael B Hansen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M., Denmark.,Department of Molecular Biology and Biochemistry, The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Ulrika S S Petersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M., Denmark.,Department of Molecular Biology and Biochemistry, The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M., Denmark.,Department of Molecular Biology and Biochemistry, The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
12
|
Billaud A, Chevalier LM, Augereau P, Frenel JS, Passot C, Campone M, Morel A. Functional pre-therapeutic evaluation by genome editing of variants of uncertain significance of essential tumor suppressor genes. Genome Med 2021; 13:174. [PMID: 34749799 PMCID: PMC8576946 DOI: 10.1186/s13073-021-00976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Targeted therapies in oncology are promising but variants of uncertain significance (VUS) limit their use for clinical management and necessitate functional testing in vitro. Using BRCA1 and BRCA2 variants, which have consequences on PARP inhibitor sensitivity, and POLE variants, potential biomarkers of immunotherapy response, we developed a rapid functional assay based on CRISPR-Cas9 genome editing to determine the functional consequences of these variants having potentially direct implications on patients' access to targeted therapies. METHODS We first evaluated the functional impact of 26 BRCA1 and 7 BRCA2 variants by editing and comparing NGS results between the variant of interest and a silent control variant. Ten of these variants had already been classified as benign or pathogenic and were used as controls. Finally, we extended this method to the characterization of POLE VUS. RESULTS For the 23 variants that were unclassified or for which conflicting interpretations had been reported, 15 were classified as functionally normal and 6 as functionally abnormal. Another two variants were found to have intermediate consequences, both with potential impacts on splicing. We then compared these scores to the patients' responses to PARP inhibitors when possible. Finally, to prove the application of our method to the classification of variants from other tumor suppressor genes, we exemplified with three POLE VUS. Among them, two were classified with an intermediate functional impact and one was functionally abnormal. Eventually, four POLE variants previously classified in databases were also evaluated. However, we found evidence of a discordance with the classification, variant p.Leu424Val being found here functionally normal. CONCLUSIONS Our new rapid functional assay can be used to characterize the functional implication of BRCA1 and BRCA2 variants, giving patients whose variants were evaluated as functionally abnormal access to PARP inhibitor treatment. Retrospective analysis of patients' responses to PARP inhibitors, where accessible, was consistent with our functional score evaluation and confirmed the accuracy of our protocol. This method could potentially be extended to the classification of VUS from all essential tumor suppressor genes and can be performed within a timeframe compatible with clinical applications, thereby having a direct theranostic impact.
Collapse
Affiliation(s)
- Amandine Billaud
- Université d'Angers, Inserm, CRCINA, SFR ICAT, F-49000, Angers, France
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France
| | - Louise-Marie Chevalier
- Université d'Angers, Inserm, CRCINA, SFR ICAT, F-49000, Angers, France
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France
| | - Paule Augereau
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France
| | - Jean-Sebastien Frenel
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France
- Université de Nantes, Inserm, CRCINA, F-44000, Nantes, France
| | - Christophe Passot
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France
| | - Mario Campone
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France
- Université de Nantes, Inserm, CRCINA, F-44000, Nantes, France
| | - Alain Morel
- Université d'Angers, Inserm, CRCINA, SFR ICAT, F-49000, Angers, France.
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France.
| |
Collapse
|
13
|
Caputo SM, Golmard L, Léone M, Damiola F, Guillaud-Bataille M, Revillion F, Rouleau E, Derive N, Buisson A, Basset N, Schwartz M, Vilquin P, Garrec C, Privat M, Gay-Bellile M, Abadie C, Abidallah K, Airaud F, Allary AS, Barouk-Simonet E, Belotti M, Benigni C, Benusiglio PR, Berthemin C, Berthet P, Bertrand O, Bézieau S, Bidart M, Bignon YJ, Birot AM, Blanluet M, Bloucard A, Bombled J, Bonadona V, Bonnet F, Bonnet-Dupeyron MN, Boulaire M, Boulouard F, Bouras A, Bourdon V, Brahimi A, Brayotel F, Bressac de Paillerets B, Bronnec N, Bubien V, Buecher B, Cabaret O, Carriere J, Chiesa J, Chieze-Valéro S, Cohen C, Cohen-Haguenauer O, Colas C, Collonge-Rame MA, Conoy AL, Coulet F, Coupier I, Crivelli L, Cusin V, De Pauw A, Dehainault C, Delhomelle H, Delnatte C, Demontety S, Denizeau P, Devulder P, Dreyfus H, d’Enghein CD, Dupré A, Durlach A, Dussart S, Fajac A, Fekairi S, Fert-Ferrer S, Fiévet A, Fouillet R, Mouret-Fourme E, Gauthier-Villars M, Gesta P, Giraud S, Gladieff L, Goldbarg V, Goussot V, Guibert V, Guillerm E, Guy C, Hardouin A, Heude C, Houdayer C, Ingster O, Jacquot-Sawka C, Jones N, Krieger S, Lacoste S, Lallaoui H, Larbre H, Laugé A, Le Guyadec G, Le Mentec M, Lecerf C, et alCaputo SM, Golmard L, Léone M, Damiola F, Guillaud-Bataille M, Revillion F, Rouleau E, Derive N, Buisson A, Basset N, Schwartz M, Vilquin P, Garrec C, Privat M, Gay-Bellile M, Abadie C, Abidallah K, Airaud F, Allary AS, Barouk-Simonet E, Belotti M, Benigni C, Benusiglio PR, Berthemin C, Berthet P, Bertrand O, Bézieau S, Bidart M, Bignon YJ, Birot AM, Blanluet M, Bloucard A, Bombled J, Bonadona V, Bonnet F, Bonnet-Dupeyron MN, Boulaire M, Boulouard F, Bouras A, Bourdon V, Brahimi A, Brayotel F, Bressac de Paillerets B, Bronnec N, Bubien V, Buecher B, Cabaret O, Carriere J, Chiesa J, Chieze-Valéro S, Cohen C, Cohen-Haguenauer O, Colas C, Collonge-Rame MA, Conoy AL, Coulet F, Coupier I, Crivelli L, Cusin V, De Pauw A, Dehainault C, Delhomelle H, Delnatte C, Demontety S, Denizeau P, Devulder P, Dreyfus H, d’Enghein CD, Dupré A, Durlach A, Dussart S, Fajac A, Fekairi S, Fert-Ferrer S, Fiévet A, Fouillet R, Mouret-Fourme E, Gauthier-Villars M, Gesta P, Giraud S, Gladieff L, Goldbarg V, Goussot V, Guibert V, Guillerm E, Guy C, Hardouin A, Heude C, Houdayer C, Ingster O, Jacquot-Sawka C, Jones N, Krieger S, Lacoste S, Lallaoui H, Larbre H, Laugé A, Le Guyadec G, Le Mentec M, Lecerf C, Le Gall J, Legendre B, Legrand C, Legros A, Lejeune S, Lidereau R, Lignon N, Limacher JM, Doriane Livon, Lizard S, Longy M, Lortholary A, Macquere P, Mailliez A, Malsa S, Margot H, Mari V, Maugard C, Meira C, Menjard J, Molière D, Moncoutier V, Moretta-Serra J, Muller E, Nevière Z, Nguyen Minh Tuan TV, Noguchi T, Noguès C, Oca F, Popovici C, Prieur F, Raad S, Rey JM, Ricou A, Salle L, Saule C, Sevenet N, Simaga F, Sobol H, Suybeng V, Tennevet I, Tenreiro H, Tinat J, Toulas C, Turbiez I, Uhrhammer N, Vande Perre P, Vaur D, Venat L, Viellard N, Villy MC, Warcoin M, Yvard A, Zattara H, Caron O, Lasset C, Remenieras A, Boutry-Kryza N, Castéra L, Stoppa-Lyonnet D. Classification of 101 BRCA1 and BRCA2 variants of uncertain significance by cosegregation study: A powerful approach. Am J Hum Genet 2021; 108:1907-1923. [PMID: 34597585 DOI: 10.1016/j.ajhg.2021.09.003] [Show More Authors] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
Up to 80% of BRCA1 and BRCA2 genetic variants remain of uncertain clinical significance (VUSs). Only variants classified as pathogenic or likely pathogenic can guide breast and ovarian cancer prevention measures and treatment by PARP inhibitors. We report the first results of the ongoing French national COVAR (cosegregation variant) study, the aim of which is to classify BRCA1/2 VUSs. The classification method was a multifactorial model combining different associations between VUSs and cancer, including cosegregation data. At this time, among the 653 variants selected, 101 (15%) distinct variants shared by 1,624 families were classified as pathogenic/likely pathogenic or benign/likely benign by the COVAR study. Sixty-six of the 101 (65%) variants classified by COVAR would have remained VUSs without cosegregation data. Of note, among the 34 variants classified as pathogenic by COVAR, 16 remained VUSs or likely pathogenic when following the ACMG/AMP variant classification guidelines. Although the initiation and organization of cosegregation analyses require a considerable effort, the growing number of available genetic tests results in an increasing number of families sharing a particular variant, and thereby increases the power of such analyses. Here we demonstrate that variant cosegregation analyses are a powerful tool for the classification of variants in the BRCA1/2 breast-ovarian cancer predisposition genes.
Collapse
|
14
|
Lin JH, Wu H, Zou WB, Masson E, Fichou Y, Le Gac G, Cooper DN, Férec C, Liao Z, Chen JM. Splicing Outcomes of 5' Splice Site GT>GC Variants That Generate Wild-Type Transcripts Differ Significantly Between Full-Length and Minigene Splicing Assays. Front Genet 2021; 12:701652. [PMID: 34422003 PMCID: PMC8375439 DOI: 10.3389/fgene.2021.701652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
Combining data derived from a meta-analysis of human disease-associated 5' splice site GT>GC (i.e., +2T>C) variants and a cell culture-based full-length gene splicing assay (FLGSA) of forward engineered +2T>C substitutions, we recently estimated that ∼15-18% of +2T>C variants can generate up to 84% wild-type transcripts relative to their wild-type counterparts. Herein, we analyzed the splicing outcomes of 20 +2T>C variants that generate some wild-type transcripts in two minigene assays. We found a high discordance rate in terms of the generation of wild-type transcripts, not only between FLGSA and the minigene assays but also between the different minigene assays. In the pET01 context, all 20 wild-type minigene constructs generated the expected wild-type transcripts; of the 20 corresponding variant minigene constructs, 14 (70%) generated wild-type transcripts. In the pSPL3 context, only 18 of the 20 wild-type minigene constructs generated the expected wild-type transcripts whereas 8 of the 18 (44%) corresponding variant minigene constructs generated wild-type transcripts. Thus, in the context of a particular type of variant, we raise awareness of the limitations of minigene splicing assays and emphasize the importance of sequence context in regulating splicing. Whether or not our findings apply to other types of splice-altering variant remains to be investigated.
Collapse
Affiliation(s)
- Jin-Huan Lin
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Hao Wu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Emmanuelle Masson
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, Brest, France
| | - Yann Fichou
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Gerald Le Gac
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, Brest, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, Brest, France
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| |
Collapse
|
15
|
Julien M, Ghouil R, Petitalot A, Caputo SM, Carreira A, Zinn-Justin S. Intrinsic Disorder and Phosphorylation in BRCA2 Facilitate Tight Regulation of Multiple Conserved Binding Events. Biomolecules 2021; 11:1060. [PMID: 34356684 PMCID: PMC8301801 DOI: 10.3390/biom11071060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
The maintenance of genome integrity in the cell is an essential process for the accurate transmission of the genetic material. BRCA2 participates in this process at several levels, including DNA repair by homologous recombination, protection of stalled replication forks, and cell division. These activities are regulated and coordinated via cell-cycle dependent modifications. Pathogenic variants in BRCA2 cause genome instability and are associated with breast and/or ovarian cancers. BRCA2 is a very large protein of 3418 amino acids. Most well-characterized variants causing a strong predisposition to cancer are mutated in the C-terminal 700 residues DNA binding domain of BRCA2. The rest of the BRCA2 protein is predicted to be disordered. Interactions involving intrinsically disordered regions (IDRs) remain difficult to identify both using bioinformatics tools and performing experimental assays. However, the lack of well-structured binding sites provides unique functional opportunities for BRCA2 to bind to a large set of partners in a tightly regulated manner. We here summarize the predictive and experimental arguments that support the presence of disorder in BRCA2. We describe how BRCA2 IDRs mediate self-assembly and binding to partners during DNA double-strand break repair, mitosis, and meiosis. We highlight how phosphorylation by DNA repair and cell-cycle kinases regulate these interactions. We finally discuss the impact of cancer-associated variants on the function of BRCA2 IDRs and more generally on genome stability and cancer risk.
Collapse
Affiliation(s)
- Manon Julien
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91190 Gif-sur-Yvette, France; (M.J.); (R.G.)
- L’Institut de Biologie Intégrative de la Cellule (I2BC), UMR 9198, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
| | - Rania Ghouil
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91190 Gif-sur-Yvette, France; (M.J.); (R.G.)
- L’Institut de Biologie Intégrative de la Cellule (I2BC), UMR 9198, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
| | - Ambre Petitalot
- Service de Génétique, Unité de Génétique Constitutionnelle, Institut Curie, 75005 Paris, France; (A.P.); (S.M.C.)
- Institut Curie, Paris Sciences Lettres Research University, 75005 Paris, France
| | - Sandrine M. Caputo
- Service de Génétique, Unité de Génétique Constitutionnelle, Institut Curie, 75005 Paris, France; (A.P.); (S.M.C.)
- Institut Curie, Paris Sciences Lettres Research University, 75005 Paris, France
| | - Aura Carreira
- L’Institut de Biologie Intégrative de la Cellule (I2BC), UMR 9198, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
- Institut Curie, Paris Sciences Lettres Research University, 75005 Paris, France
- Unité Intégrité du Génome, ARN et Cancer, Institut Curie, CNRS UMR3348, 91405 Orsay, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91190 Gif-sur-Yvette, France; (M.J.); (R.G.)
- L’Institut de Biologie Intégrative de la Cellule (I2BC), UMR 9198, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
| |
Collapse
|
16
|
Caputo SM, Telly D, Briaux A, Sesen J, Ceppi M, Bonnet F, Bourdon V, Coulet F, Castera L, Delnatte C, Hardouin A, Mazoyer S, Schultz I, Sevenet N, Uhrhammer N, Bonnet C, Tilkin-Mariamé AF, Houdayer C, Moncoutier V, Andrieu C, Bièche I, Stern MH, Stoppa-Lyonnet D, Lidereau R, Toulas C, Rouleau E. 5' Region Large Genomic Rearrangements in the BRCA1 Gene in French Families: Identification of a Tandem Triplication and Nine Distinct Deletions with Five Recurrent Breakpoints. Cancers (Basel) 2021; 13:cancers13133171. [PMID: 34202044 PMCID: PMC8268747 DOI: 10.3390/cancers13133171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Large genomic rearrangements in BRCA1 consisting of deletions/duplications of one or several exons are complex events, often occurring in the 5′ region. We characterized 10 events in 20 families: one large triplication classified as benign and nine large deletions classified as pathogenic. The breakpoint localization will certainly help to further understand the chromatin structure in regions sensitive to rearrangement. Abstract Background: Large genomic rearrangements (LGR) in BRCA1 consisting of deletions/duplications of one or several exons have been found throughout the gene with a large proportion occurring in the 5′ region from the promoter to exon 2. The aim of this study was to better characterize those LGR in French high-risk breast/ovarian cancer families. Methods: DNA from 20 families with one apparent duplication and nine deletions was analyzed with a dedicated comparative genomic hybridization (CGH) array, high-resolution BRCA1 Genomic Morse Codes analysis and Sanger sequencing. Results: The apparent duplication was in fact a tandem triplication of exons 1 and 2 and part of intron 2 of BRCA1, fully characterized here for the first time. We calculated a causality score with the multifactorial model from data obtained from six families, classifying this variant as benign. Among the nine deletions detected in this region, eight have never been identified. The breakpoints fell in six recurrent regions and could confirm some specific conformation of the chromatin. Conclusions: Taken together, our results firmly establish that the BRCA1 5′ region is a frequent site of different LGRs and highlight the importance of the segmental duplication and Alu sequences, particularly the very high homologous region, in the mechanism of a recombination event. This also confirmed that those events are not systematically deleterious.
Collapse
Affiliation(s)
- Sandrine M. Caputo
- Department of Genetics, Institut Curie, F-75248 Paris, France; (S.M.C.); (A.B.); (V.M.); (C.A.); (I.B.); (M.-H.S.); (D.S.-L.); (R.L.)
- Institut Curie, PSL Research University, F-75005 Paris, France
| | - Dominique Telly
- Laboratoire d’Oncogénétique, Institut Claudius Regaud, IUCT-O, F-31059 Toulouse, France;
| | - Adrien Briaux
- Department of Genetics, Institut Curie, F-75248 Paris, France; (S.M.C.); (A.B.); (V.M.); (C.A.); (I.B.); (M.-H.S.); (D.S.-L.); (R.L.)
- Institut Curie, PSL Research University, F-75005 Paris, France
| | - Julie Sesen
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA;
| | - Maurizio Ceppi
- Roche Innovation Center Basel (RICB), Roche Pharma Research and Early Development, CH-4052 Basel, Switzerland;
| | - Françoise Bonnet
- Laboratoire de Génétique Constitutionnelle et INSERM U916 VINCO, Institut Bergonié, CEDEX, F-33076 Bordeaux, France; (F.B.); (N.S.)
| | - Violaine Bourdon
- Laboratoire d’Oncogénétique Moléculaire, Département de Biologie du Cancer, Institut Paoli-Calmettes, F-13273 Marseille, France;
| | - Florence Coulet
- Department of Genetics, Pitié-Salpêtriere Hospital, Assistance Publique-Hopitaux de Paris, Sorbonne University, F-75013 Paris, France;
| | - Laurent Castera
- Laboratoire de Biologie et de Génétique du Cancer, CLCC François Baclesse, INSERM 1079 Centre Normand de Génomique et de Médecine Personnalisée, F-14076 Caen, France; (L.C.); (A.H.)
| | - Capucine Delnatte
- Service de Génétique Médicale, Unité de Génétique Moléculaire, CHU Nantes, F-44093 Nantes, France;
| | - Agnès Hardouin
- Laboratoire de Biologie et de Génétique du Cancer, CLCC François Baclesse, INSERM 1079 Centre Normand de Génomique et de Médecine Personnalisée, F-14076 Caen, France; (L.C.); (A.H.)
| | - Sylvie Mazoyer
- Centre de Recherche en Neurosciences de Lyon, INSERM, U1028, CNRS, UMR5292, Université de Lyon, F-69008 Lyon, France;
| | - Inès Schultz
- Centre Paul Strauss, Laboratoire de Biologie Tumorale—Oncogénétique, F-67000 Strasbourg, France;
| | - Nicolas Sevenet
- Laboratoire de Génétique Constitutionnelle et INSERM U916 VINCO, Institut Bergonié, CEDEX, F-33076 Bordeaux, France; (F.B.); (N.S.)
| | - Nancy Uhrhammer
- Biologie Clinique et Oncologique, Biologie Moléculaire—Centre Jean Perrin, F-63000 Clermont-Ferrand, France;
| | - Céline Bonnet
- Institut de Cancérologie, 6 Avenue de Bourgogne, F-54519 Vandœuvre-lès-Nancy, France;
| | - Anne-Françoise Tilkin-Mariamé
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, F-31000 Toulouse, France;
| | - Claude Houdayer
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, F-76183 Rouen, France;
- Normandy Centre for Genomic and 41 Personalized Medicine, Department of Genetics, University Hospital, F-76183 Rouen, France
| | - Virginie Moncoutier
- Department of Genetics, Institut Curie, F-75248 Paris, France; (S.M.C.); (A.B.); (V.M.); (C.A.); (I.B.); (M.-H.S.); (D.S.-L.); (R.L.)
- Institut Curie, PSL Research University, F-75005 Paris, France
| | - Catherine Andrieu
- Department of Genetics, Institut Curie, F-75248 Paris, France; (S.M.C.); (A.B.); (V.M.); (C.A.); (I.B.); (M.-H.S.); (D.S.-L.); (R.L.)
- Institut Curie, PSL Research University, F-75005 Paris, France
| | | | - Ivan Bièche
- Department of Genetics, Institut Curie, F-75248 Paris, France; (S.M.C.); (A.B.); (V.M.); (C.A.); (I.B.); (M.-H.S.); (D.S.-L.); (R.L.)
- Faculty of Pharmaceutical and Biological Sciences, University of Paris, F-75006 Paris, France
| | - Marc-Henri Stern
- Department of Genetics, Institut Curie, F-75248 Paris, France; (S.M.C.); (A.B.); (V.M.); (C.A.); (I.B.); (M.-H.S.); (D.S.-L.); (R.L.)
- Institut Curie, INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), PSL Research University, F-75005 Paris, France
| | - Dominique Stoppa-Lyonnet
- Department of Genetics, Institut Curie, F-75248 Paris, France; (S.M.C.); (A.B.); (V.M.); (C.A.); (I.B.); (M.-H.S.); (D.S.-L.); (R.L.)
- Institut Curie, INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), PSL Research University, F-75005 Paris, France
- Faculty of Medicine, University of Paris, F-75005 Paris, France
| | - Rosette Lidereau
- Department of Genetics, Institut Curie, F-75248 Paris, France; (S.M.C.); (A.B.); (V.M.); (C.A.); (I.B.); (M.-H.S.); (D.S.-L.); (R.L.)
- Institut Curie, PSL Research University, F-75005 Paris, France
| | - Christine Toulas
- Laboratoire d’Oncogénétique, Institut Claudius Regaud, IUCT-O, F-31059 Toulouse, France;
- Correspondence: (C.T.); (E.R.)
| | - Etienne Rouleau
- Department of Biology, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France
- Correspondence: (C.T.); (E.R.)
| |
Collapse
|
17
|
Morbidoni V, Baschiera E, Forzan M, Fumini V, Ali DS, Giorgi G, Buson L, Desbats MA, Cassina M, Clementi M, Salviati L, Trevisson E. Hybrid Minigene Assay: An Efficient Tool to Characterize mRNA Splicing Profiles of NF1 Variants. Cancers (Basel) 2021; 13:cancers13050999. [PMID: 33673681 PMCID: PMC7957615 DOI: 10.3390/cancers13050999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 02/08/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is caused by heterozygous loss of function mutations in the NF1 gene. Although patients are diagnosed according to clinical criteria and few genotype-phenotype correlations are known, molecular analysis remains important. NF1 displays allelic heterogeneity, with a high proportion of variants affecting splicing, including deep intronic alleles and changes outside the canonical splice sites, making validation problematic. Next Generation Sequencing (NGS) technologies integrated with multiplex ligation-dependent probe amplification (MLPA) have largely overcome RNA-based techniques but do not detect splicing defects. A rapid minigene-based system was set up to test the effects of NF1 variants on splicing. We investigated 29 intronic and exonic NF1 variants identified in patients during the diagnostic process. The minigene assay showed the coexistence of multiple mechanisms of splicing alterations for seven variants. A leaky effect on splicing was documented in one de novo substitution detected in a sporadic patient with a specific phenotype without neurofibromas. Our splicing assay proved to be a reliable and fast method to validate novel NF1 variants potentially affecting splicing and to detect hypomorphic effects that might have phenotypic consequences, avoiding the requirement of patient's RNA.
Collapse
Affiliation(s)
- Valeria Morbidoni
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
- Istituto di Ricerca Pediatrica—IRP, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Elisa Baschiera
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
- Istituto di Ricerca Pediatrica—IRP, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Monica Forzan
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
| | - Valentina Fumini
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
| | - Dario Seif Ali
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
| | - Gianpietro Giorgi
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
| | - Lisa Buson
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
- Istituto di Ricerca Pediatrica—IRP, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
- Istituto di Ricerca Pediatrica—IRP, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Matteo Cassina
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
| | - Maurizio Clementi
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
- Istituto di Ricerca Pediatrica—IRP, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Eva Trevisson
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
- Istituto di Ricerca Pediatrica—IRP, Fondazione Città della Speranza, 35127 Padova, Italy
- Correspondence: ; Tel.: + 39-(04)-9821-1402
| |
Collapse
|
18
|
Nix P, Mundt E, Coffee B, Goossen E, Warf BM, Brown K, Bowles K, Roa B. Interpretation of BRCA2 Splicing Variants: A Case Series of Challenging Variant Interpretations and the Importance of Functional RNA Analysis. Fam Cancer 2021; 21:7-19. [PMID: 33469799 PMCID: PMC8799590 DOI: 10.1007/s10689-020-00224-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022]
Abstract
A substantial proportion of pathogenic variants associated with an increased risk of hereditary cancer are sequence variants affecting RNA splicing. The classification of these variants can be complex when both non-functional and functional transcripts are produced from the variant allele. We present four BRCA2 splice site variants with complex variant interpretations (BRCA2 c.68-3T>G, c.68-2A>G, c.425G>T, c.8331+2T>C). Evidence supporting a pathogenic classification is available for each variant, including in silico models, absence in population databases, and published functional data. However, comprehensive RNA analysis showed that some functional transcript may be produced by each variant. BRCA2 c.68-3T>G results in a partial splice defect. For BRCA2 c.68-2A>G and c.425G>T, aberrant splicing was shown to produce a potentially functional, in-frame transcript. BRCA2 c.8331+2T>C may utilize a functional GC donor in place of the wild-type GT donor. The severity of cancer history for carriers of these variants was also assessed using a history weighting algorithm and was not consistent with pathogenic controls (carriers of known pathogenic variants in BRCA2). Due to the conflicting evidence, our laboratory classifies these BRCA2 variants as variants of uncertain significance. This highlights the importance of evaluating new and existing evidence to ensure accurate variant classification and appropriate patient care.
Collapse
Affiliation(s)
- Paola Nix
- Myriad Genetics, Inc., 320 Wakara Way, Salt Lake City, UT, USA.
| | - Erin Mundt
- Myriad Genetics, Inc., 320 Wakara Way, Salt Lake City, UT, USA
| | - Bradford Coffee
- Myriad Genetics, Inc., 320 Wakara Way, Salt Lake City, UT, USA
| | | | - Bryan M Warf
- Myriad Genetics, Inc., 320 Wakara Way, Salt Lake City, UT, USA.,Third Wave Analytics, Inc., San Francisco, CA, USA
| | - Krystal Brown
- Myriad Genetics, Inc., 320 Wakara Way, Salt Lake City, UT, USA
| | - Karla Bowles
- Myriad Genetics, Inc., 320 Wakara Way, Salt Lake City, UT, USA
| | - Benjamin Roa
- Myriad Genetics, Inc., 320 Wakara Way, Salt Lake City, UT, USA
| |
Collapse
|
19
|
Miller RE, Leary A, Scott CL, Serra V, Lord CJ, Bowtell D, Chang DK, Garsed DW, Jonkers J, Ledermann JA, Nik-Zainal S, Ray-Coquard I, Shah SP, Matias-Guiu X, Swisher EM, Yates LR. ESMO recommendations on predictive biomarker testing for homologous recombination deficiency and PARP inhibitor benefit in ovarian cancer. Ann Oncol 2020; 31:1606-1622. [PMID: 33004253 DOI: 10.1016/j.annonc.2020.08.2102] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Homologous recombination repair deficiency (HRD) is a frequent feature of high-grade serous ovarian, fallopian tube and peritoneal carcinoma (HGSC) and is associated with sensitivity to PARP inhibitor (PARPi) therapy. HRD testing provides an opportunity to optimise PARPi use in HGSC but methodologies are diverse and clinical application remains controversial. MATERIALS AND METHODS To define best practice for HRD testing in HGSC the ESMO Translational Research and Precision Medicine Working Group launched a collaborative project that incorporated a systematic review approach. The main aims were to (i) define the term 'HRD test'; (ii) provide an overview of the biological rationale and the level of evidence supporting currently available HRD tests; (iii) provide recommendations on the clinical utility of HRD tests in clinical management of HGSC. RESULTS A broad range of repair genes, genomic scars, mutational signatures and functional assays are associated with a history of HRD. Currently, the clinical validity of HRD tests in ovarian cancer is best assessed, not in terms of biological HRD status per se, but in terms of PARPi benefit. Clinical trials evidence supports the use of BRCA mutation testing and two commercially available assays that also incorporate genomic instability for identifying subgroups of HGSCs that derive different magnitudes of benefit from PARPi therapy, albeit with some variation by clinical scenario. These tests can be used to inform treatment selection and scheduling but their use is limited by a failure to consistently identify a subgroup of patients who derive no benefit from PARPis in most studies. Existing tests lack negative predictive value and inadequately address the complex and dynamic nature of the HRD phenotype. CONCLUSIONS Currently available HRD tests are useful for predicting likely magnitude of benefit from PARPis but better biomarkers are urgently needed to better identify current homologous recombination proficiency status and stratify HGSC management.
Collapse
Affiliation(s)
- R E Miller
- Department of Medical Oncology, University College London, London, UK; Department of Medical Oncology, St Bartholomew's Hospital, London, UK
| | - A Leary
- Department of Medicine and INSERM U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Paris, France
| | - C L Scott
- Peter MacCallum Cancer Centre, Melbourne, Australia; The University of Melbourne, Melbourne, Australia
| | - V Serra
- Experimental Therapeutics Group Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - C J Lord
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK; CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
| | - D Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Australia; The University of Melbourne, Melbourne, Australia
| | - D K Chang
- Glasgow Precision Oncology Laboratory, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - D W Garsed
- Peter MacCallum Cancer Centre, Melbourne, Australia; The University of Melbourne, Melbourne, Australia
| | - J Jonkers
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J A Ledermann
- UCL Cancer Institute, University College London, London, UK
| | - S Nik-Zainal
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK; MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - I Ray-Coquard
- Centre Leon Berard, Lyon, France; University Claude Bernard Groupe University of Lyon, France
| | - S P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - X Matias-Guiu
- Departments of Pathology, Hospital U Arnau de Vilanova and Hospital U de Bellvitge, Universities of Lleida and Barcelona, Irblleida, Idibell, Ciberonc, Barcelona, Spain
| | - E M Swisher
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA
| | - L R Yates
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge; Guy's Cancer Centre, Guys and St Thomas' NHS Foundation Trust, London, UK.
| |
Collapse
|