1
|
Simovic-Lorenz M, Ernst A. Chromothripsis in cancer. Nat Rev Cancer 2025; 25:79-92. [PMID: 39548283 DOI: 10.1038/s41568-024-00769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Chromothripsis is a mutational phenomenon in which a single catastrophic event generates extensive rearrangements of one or a few chromosomes. This extreme form of genome instability has been detected in 30-50% of cancers. Studies conducted in the past few years have uncovered insights into how chromothripsis arises and deciphered some of the cellular and molecular consequences of chromosome shattering. This Review discusses the defining features of chromothripsis and describes its prevalence across different cancer types as indicated by the manifestations of chromothripsis detected in human cancer samples. The different mechanistic models of chromothripsis, derived from in vitro systems that enable causal inference through experimental manipulation, are discussed in detail. The contribution of chromothripsis to cancer development, the selective advantages that cancer cells might gain from chromothripsis, the evolutionary trajectories of chromothriptic tumours, and the potential vulnerabilities and therapeutic opportunities presented by chromothriptic cells are also highlighted.
Collapse
Affiliation(s)
- Milena Simovic-Lorenz
- Group Genome Instability in Tumors, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Aurélie Ernst
- Group Genome Instability in Tumors, German Cancer Research Center, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
2
|
Zeng Y, Lv W, Tao H, Li C, Jiang S, Liang Y, Chen C, Yu T, Li Y, Wu S, Cui X, Liang N, Wang P, Xu H, Dong J, Teng H, Chen K, Mu K, Fan T, Cen X, Xu Z, Zhu M, Wang W, Mi J, Xiang X, Dong W, Yang H, Bolund L, Lin L, Song J, Song X, Luo Y, Lin C, Han P. Mapping the chromothripsis landscape in urothelial carcinoma unravels great intratumoral and intertumoral heterogeneity. iScience 2025; 28:111510. [PMID: 39790556 PMCID: PMC11714673 DOI: 10.1016/j.isci.2024.111510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/24/2024] [Accepted: 11/28/2024] [Indexed: 01/12/2025] Open
Abstract
Chromothripsis, a hallmark of cancer, is characterized by extensive and localized DNA rearrangements involving one or a few chromosomes. However, its genome-wide frequency and characteristics in urothelial carcinoma (UC) remain largely unknown. Here, by analyzing single-regional and multi-regional whole-genome sequencing (WGS), we present the chromothripsis blueprint in 488 UC patients. Chromothripsis events exhibit significant intertumoral heterogeneity, being detected in 41% of UC patients, with an increase from 30% in non-muscle-invasive disease (Ta/1) to 53% in muscle-invasive disease (T2-4). The presence of chromothripsis correlates with an unstable cancer genome and poor clinical outcomes. Analysis of multi-regional WGS data from 52 patients revealed pronounced intratumoral heterogeneity with chromothripsis events detectable only in specific tumor regions rather than uniformly across all areas. Chromothripsis events evolve under positive selection and contribute to tumor dissemination. This study presents a comprehensive genome-wide chromothripsis landscape in UC, highlighting the significance of chromothripsis in UC development.
Collapse
Affiliation(s)
- Yuchen Zeng
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Wei Lv
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
| | - Huiying Tao
- The 2nd Medical College of Binzhou Medical University, Yantai, Shandong 264003, China
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Conghui Li
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Shiqi Jiang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yuan Liang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Chen Chen
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Tianxi Yu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Yue Li
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Shuang Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Xin Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Ning Liang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Ping Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Huixin Xu
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
| | - Jingjing Dong
- Department of General Medicine, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Huajing Teng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Kai Mu
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250033, China
| | - Tianda Fan
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xiaoping Cen
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
| | - Zhe Xu
- College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
| | - Ming Zhu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenting Wang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Xi Xiang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
| | - Wei Dong
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Huanming Yang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Lars Bolund
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Lin Lin
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jinzhao Song
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Peng Han
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
| |
Collapse
|
3
|
Smirnov P, Przybilla MJ, Simovic-Lorenz M, Parra RG, Susak H, Ratnaparkhe M, Wong JK, Körber V, Mallm JP, Philippos G, Sill M, Kolb T, Kumar R, Casiraghi N, Okonechnikov K, Ghasemi DR, Maaß KK, Pajtler KW, Jauch A, Korshunov A, Höfer T, Zapatka M, Pfister SM, Huber W, Stegle O, Ernst A. Multi-omic and single-cell profiling of chromothriptic medulloblastoma reveals genomic and transcriptomic consequences of genome instability. Nat Commun 2024; 15:10183. [PMID: 39580568 PMCID: PMC11585558 DOI: 10.1038/s41467-024-54547-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024] Open
Abstract
Chromothripsis is a frequent form of genome instability, whereby a presumably single catastrophic event generates extensive genomic rearrangements of one or multiple chromosome(s). However, little is known about the heterogeneity of chromothripsis across different clones from the same tumour, as well as changes in response to treatment. Here we analyse single-cell genomic and transcriptomic alterations linked with chromothripsis in human p53-deficient medulloblastoma and neural stem cells (n = 9). We reconstruct the order of somatic events, identify early alterations likely linked to chromothripsis and depict the contribution of chromothripsis to malignancy. We characterise subclonal variation of chromothripsis and its effects on extrachromosomal circular DNA, cancer drivers and putatively druggable targets. Furthermore, we highlight the causative role and the fitness consequences of specific rearrangements in neural progenitors.
Collapse
Affiliation(s)
- Petr Smirnov
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Moritz J Przybilla
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Milena Simovic-Lorenz
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - R Gonzalo Parra
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
| | - Hana Susak
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manasi Ratnaparkhe
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - John Kl Wong
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Verena Körber
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan-Philipp Mallm
- Single-cell Open Lab, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - George Philippos
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Martin Sill
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thorsten Kolb
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Rithu Kumar
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Nicola Casiraghi
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstantin Okonechnikov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David R Ghasemi
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kendra Korinna Maaß
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology, DKFZ, Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Zapatka
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Oliver Stegle
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Aurélie Ernst
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
4
|
Nakamura K, Ishii Y, Takasu S, Namiki M, Soma M, Takimoto N, Matsushita K, Shibutani M, Ogawa K. Chromosome aberrations cause tumorigenesis through chromosomal rearrangements in a hepatocarcinogenesis rat model. Cancer Sci 2024; 115:3612-3621. [PMID: 39245467 PMCID: PMC11531951 DOI: 10.1111/cas.16324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Chromosome aberrations (CAs), a genotoxic potential of carcinogens, are believed to contribute to tumorigenesis by chromosomal rearrangements through micronucleus formation. However, there is no direct evidence that proves the involvement of CAs in tumorigenesis in vivo. In the current study, we sought to clarify the involvement of CAs in chemical carcinogenesis using a rat model with a pure CA-inducer hepatocarcinogen, acetamide. Whole-genome analysis indicated that hepatic tumors induced by acetamide treatment for 26-30 weeks showed a broad range of copy number alterations in various chromosomes. In contrast, hepatic tumors induced by a typical mutagen (diethylnitrosamine) followed by a nonmutagen (phenobarbital) did not show such mutational patterns. Additionally, structural alterations such as translocations were observed more frequently in the acetamide-induced tumors. Moreover, most of the acetamide-induced tumors expressed c-Myc and/or MDM2 protein due to the copy number gain of each oncogene. These results suggest the occurrence of chromosomal rearrangements and subsequent oncogene amplification in the acetamide-induced tumors. Taken together, the results indicate that CAs are directly involved in tumorigenesis through chromosomal rearrangements in an acetamide-induced hepatocarcinogenesis rat model.
Collapse
Affiliation(s)
- Kenji Nakamura
- Division of PathologyNational Institute of Health SciencesKawasakiJapan
- Laboratory of Veterinary PathologyTokyo University of Agriculture and TechnologyTokyoJapan
| | - Yuji Ishii
- Division of PathologyNational Institute of Health SciencesKawasakiJapan
| | - Shinji Takasu
- Division of PathologyNational Institute of Health SciencesKawasakiJapan
| | - Moeka Namiki
- Division of PathologyNational Institute of Health SciencesKawasakiJapan
| | - Meili Soma
- Division of PathologyNational Institute of Health SciencesKawasakiJapan
| | - Norifumi Takimoto
- Division of PathologyNational Institute of Health SciencesKawasakiJapan
- Laboratory of Veterinary PathologyTokyo University of Agriculture and TechnologyTokyoJapan
| | - Kohei Matsushita
- Division of PathologyNational Institute of Health SciencesKawasakiJapan
| | - Makoto Shibutani
- Laboratory of Veterinary PathologyTokyo University of Agriculture and TechnologyTokyoJapan
| | - Kumiko Ogawa
- Division of PathologyNational Institute of Health SciencesKawasakiJapan
| |
Collapse
|
5
|
Ganatra H, Tan JK, Simmons A, Bigogno CM, Khurana V, Ghose A, Ghosh A, Mahajan I, Boussios S, Maniam A, Ayodele O. Applying whole-genome and whole-exome sequencing in breast cancer: a review of the landscape. Breast Cancer 2024; 31:999-1009. [PMID: 39190283 PMCID: PMC11489287 DOI: 10.1007/s12282-024-01628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Whole-genome sequencing (WGS) and whole-exome sequencing (WES) are crucial within the context of breast cancer (BC) research. They play a role in the detection of predisposed genes, risk stratification, and identification of rare single nucleotide polymorphisms (SNPs). These technologies aid in the discovery of associations between various syndromes and BC, understanding the tumour microenvironment (TME), and even identifying unknown mutations that could be useful in future for personalised treatments. Genetic analysis can find the associated risk of BC and can be used in early screening, diagnosis, specific treatment plans, and prevention in patients who are at high risk of tumour formation. This article focuses on the application of WES and WGS, and how uncovering novel candidate genes associated with BC can aid in treating and preventing BC.
Collapse
Affiliation(s)
- Hetvi Ganatra
- Barts Cancer Institute, Cancer Research UK City of London, Queen Mary University of London, London, UK
| | - Joecelyn Kirani Tan
- School of Medicine, University of St. Andrews, Fife, Scotland, UK
- Andrews Oncology Society, Scotland, UK
| | - Ana Simmons
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Carola Maria Bigogno
- Department of Medical Oncology, Barts Cancer Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- British Oncology Network for Undergraduate Societies (BONUS), London, UK
| | - Vatsala Khurana
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Aruni Ghose
- Department of Medical Oncology, Barts Cancer Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham, Kent, UK
- Department of Medical Oncology, Mount Vernon Cancer Centre, Mount Vernon and Watford NHS Trust, Watford, UK
| | - Adheesh Ghosh
- UCL Cancer Institute, University College London, London, UK
| | - Ishika Mahajan
- Department of Oncology, Lincoln Oncology Centre, Lincoln County Hospital, United Lincolnshire Hospitals NHS Trust, Lincoln, UK
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham, Kent, UK.
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK.
- Kent and Medway Medical School, University of Kent, Canterbury, Kent, UK.
- Faculty of Medicine, Health, and Social Care, Canterbury Christ Church University, Canterbury, UK.
- AELIA Organization, 9th Km Thessaloniki-hermi, 57001, Thessaloniki, Greece.
| | - Akash Maniam
- Department of Medical Oncology, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
- Faculty of Science and Health, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
- Caribbean Cancer Research Institute, Port of Spain, Trinidad and Tobago
| | - Olubukola Ayodele
- Department of Medical Oncology, University Hospitals of Leicester NHS Trust, Leicester, UK
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
6
|
Nagashima T, Yamaguchi K, Urakami K, Shimoda Y, Ohnami S, Ohshima K, Tanabe T, Naruoka A, Kamada F, Serizawa M, Hatakeyama K, Ohnami S, Maruyama K, Mochizuki T, Mizuguchi M, Shiomi A, Ohde Y, Bando E, Sugiura T, Mukaigawa T, Nishimura S, Hirashima Y, Mitsuya K, Yoshikawa S, Kiyohara Y, Tsubosa Y, Katagiri H, Niwakawa M, Takahashi K, Kashiwagi H, Yasunaga Y, Ishida Y, Sugino T, Kenmotsu H, Terashima M, Takahashi M, Uesaka K, Akiyama Y. Evaluation of whole genome sequencing utility in identifying driver alterations in cancer genome. Sci Rep 2024; 14:23898. [PMID: 39396060 PMCID: PMC11470963 DOI: 10.1038/s41598-024-74272-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024] Open
Abstract
In cancer genome analysis, identifying pathogenic alterations and assessing their effects on oncogenic processes is important. Although whole exome sequencing (WES) can effectively detect such changes, driver alterations could not be identified in 27.8% of the cases, according to a previous study. The objectives of the present study were to evaluate the utility of whole genome sequencing (WGS) and clarify its differences with WES in terms of driver alteration detection. For this purpose, WGS analysis was conducted on 177 driverless WES samples, selected from 5,480 fresh frozen samples derived from 5,140 Japanese patients with cancer. These samples were selected as primary tumor, both WES and transcriptome profiling were performed, estimated tumor content of ≥ 30%, and no driver alterations were identified by WES. WGS identified driver and likely driver alterations in 68.4 and 22.6% of the samples, respectively. The most frequent alteration type was oncogene amplification, followed by tumor suppressor gene deletion and small variants located outside the coding region. In the remaining 9.0% of samples, no such signals were identified; therefore, further investigations are required. The current study clearly demonstrated the role and utility of WGS in identifying genomic alterations that contribute to tumorigenesis.
Collapse
Affiliation(s)
- Takeshi Nagashima
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
- SRL Inc., Tokyo, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan.
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yuji Shimoda
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
- SRL Inc., Tokyo, Japan
| | - Sumiko Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Tomoe Tanabe
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
- SRL Inc., Tokyo, Japan
| | - Akane Naruoka
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Fukumi Kamada
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Masakuni Serizawa
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Keiichi Hatakeyama
- Cancer Multiomics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Shumpei Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Koji Maruyama
- Experimental Animal Facility, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Tohru Mochizuki
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Maki Mizuguchi
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Akio Shiomi
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yasuhisa Ohde
- Division of Thoracic Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Etsuro Bando
- Division of Gastric Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Teiichi Sugiura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Takashi Mukaigawa
- Division of Head and Neck Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Seiichiro Nishimura
- Division of Breast Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yasuyuki Hirashima
- Division of Gynecology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Koichi Mitsuya
- Division of Neurosurgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Shusuke Yoshikawa
- Division of Dermatology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yoshio Kiyohara
- Division of Dermatology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yasuhiro Tsubosa
- Division of Esophageal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Hirohisa Katagiri
- Division of Orthopedic Oncology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Masashi Niwakawa
- Division of Urology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Kaoru Takahashi
- Division of Breast Oncology Center, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Hiroya Kashiwagi
- Division of Ophthalmology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yoshichika Yasunaga
- Division of Plastic and Reconstructive Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yuji Ishida
- Division of Pediatrics, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Hirotsugu Kenmotsu
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | | | | | | | - Yasuto Akiyama
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| |
Collapse
|
7
|
Ejaz U, Dou Z, Yao PY, Wang Z, Liu X, Yao X. Chromothripsis: an emerging crossroad from aberrant mitosis to therapeutic opportunities. J Mol Cell Biol 2024; 16:mjae016. [PMID: 38710586 PMCID: PMC11487160 DOI: 10.1093/jmcb/mjae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/23/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024] Open
Abstract
Chromothripsis, a type of complex chromosomal rearrangement originally known as chromoanagenesis, has been a subject of extensive investigation due to its potential role in various diseases, particularly cancer. Chromothripsis involves the rapid acquisition of tens to hundreds of structural rearrangements within a short period, leading to complex alterations in one or a few chromosomes. This phenomenon is triggered by chromosome mis-segregation during mitosis. Errors in accurate chromosome segregation lead to formation of aberrant structural entities such as micronuclei or chromatin bridges. The association between chromothripsis and cancer has attracted significant interest, with potential implications for tumorigenesis and disease prognosis. This review aims to explore the intricate mechanisms and consequences of chromothripsis, with a specific focus on its association with mitotic perturbations. Herein, we discuss a comprehensive analysis of crucial molecular entities and pathways, exploring the intricate roles of the CIP2A-TOPBP1 complex, micronuclei formation, chromatin bridge processing, DNA damage repair, and mitotic checkpoints. Moreover, the review will highlight recent advancements in identifying potential therapeutic targets and the underlying molecular mechanisms associated with chromothripsis, paving the way for future therapeutic interventions in various diseases.
Collapse
Affiliation(s)
- Umer Ejaz
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Phil Y Yao
- University of California San Diego School of Medicine, San Diego, CA 92103, USA
| | - Zhikai Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| |
Collapse
|
8
|
Shahrouzi P, Forouz F, Mathelier A, Kristensen VN, Duijf PHG. Copy number alterations: a catastrophic orchestration of the breast cancer genome. Trends Mol Med 2024; 30:750-764. [PMID: 38772764 DOI: 10.1016/j.molmed.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/23/2024]
Abstract
Breast cancer (BCa) is a prevalent malignancy that predominantly affects women around the world. Somatic copy number alterations (CNAs) are tumor-specific amplifications or deletions of DNA segments that often drive BCa development and therapy resistance. Hence, the complex patterns of CNAs complement BCa classification systems. In addition, understanding the precise contributions of CNAs is essential for tailoring personalized treatment approaches. This review highlights how tumor evolution drives the acquisition of CNAs, which in turn shape the genomic landscapes of BCas. It also discusses advanced methodologies for identifying recurrent CNAs, studying CNAs in BCa and their clinical impact.
Collapse
Affiliation(s)
- Parastoo Shahrouzi
- Department of Medical Genetics, Institute of Basic Medical Science, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway.
| | - Farzaneh Forouz
- School of Pharmacy, University of Queensland, Woolloongabba, Brisbane, Australia
| | - Anthony Mathelier
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway; Center for Bioinformatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway; Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Vessela N Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway; Division of Medicine, Department of Clinical Molecular Biology and Laboratory Science (EpiGen), Akershus University Hospital, Lørenskog, Norway; Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Pascal H G Duijf
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway; Centre for Cancer Biology, UniSA Clinical and Health Sciences, University of South Australia and SA Pathology, Adelaide, Australia.
| |
Collapse
|
9
|
Hancock GR, Gertz J, Jeselsohn R, Fanning SW. Estrogen Receptor Alpha Mutations, Truncations, Heterodimers, and Therapies. Endocrinology 2024; 165:bqae051. [PMID: 38643482 PMCID: PMC11075793 DOI: 10.1210/endocr/bqae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Annual breast cancer (BCa) deaths have declined since its apex in 1989 concomitant with widespread adoption of hormone therapies that target estrogen receptor alpha (ERα), the prominent nuclear receptor expressed in ∼80% of BCa. However, up to ∼50% of patients who are ER+ with high-risk disease experience post endocrine therapy relapse and metastasis to distant organs. The vast majority of BCa mortality occurs in this setting, highlighting the inadequacy of current therapies. Genomic abnormalities to ESR1, the gene encoding ERα, emerge under prolonged selective pressure to enable endocrine therapy resistance. These genetic lesions include focal gene amplifications, hotspot missense mutations in the ligand binding domain, truncations, fusions, and complex interactions with other nuclear receptors. Tumor cells utilize aberrant ERα activity to proliferate, spread, and evade therapy in BCa as well as other cancers. Cutting edge studies on ERα structural and transcriptional relationships are being harnessed to produce new therapies that have shown benefits in patients with ESR1 hotspot mutations. In this review we discuss the history of ERα, current research unlocking unknown aspects of ERα signaling including the structural basis for receptor antagonism, and future directions of ESR1 investigation. In addition, we discuss the development of endocrine therapies from their inception to present day and survey new avenues of drug development to improve pharmaceutical profiles, targeting, and efficacy.
Collapse
Affiliation(s)
- Govinda R Hancock
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60513, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Sean W Fanning
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60513, USA
| |
Collapse
|
10
|
Shah OS, Chen F, Wedn A, Kashiparekh A, Knapick B, Chen J, Savariau L, Clifford B, Hooda J, Christgen M, Xavier J, Oesterreich S, Lee AV. Multi-omic characterization of ILC and ILC-like cell lines as part of ILC cell line encyclopedia (ICLE) defines new models to study potential biomarkers and explore therapeutic opportunities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559548. [PMID: 37808708 PMCID: PMC10557671 DOI: 10.1101/2023.09.26.559548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Invasive lobular carcinoma (ILC), the most common histological "special type", accounts for ∼10-15% of all BC diagnoses, is characterized by unique features such as E-cadherin loss/deficiency, lower grade, hormone receptor positivity, larger diffuse tumors, and specific metastatic patterns. Despite ILC being acknowledged as a disease with distinct biology that necessitates specialized and precision medicine treatments, the further exploration of its molecular alterations with the goal of discovering new treatments has been hindered due to the scarcity of well-characterized cell line models for studying this disease. To address this, we generated the ILC Cell Line Encyclopedia (ICLE), providing a comprehensive multi-omic characterization of ILC and ILC-like cell lines. Using consensus multi-omic subtyping, we confirmed luminal status of previously established ILC cell lines and uncovered additional ILC/ILC-like cell lines with luminal features for modeling ILC disease. Furthermore, most of these luminal ILC/ILC-like cell lines also showed RNA and copy number similarity to ILC patient tumors. Similarly, ILC/ILC-like cell lines also retained molecular alterations in key ILC genes at similar frequency to both primary and metastatic ILC tumors. Importantly, ILC/ILC-like cell lines recapitulated the CDH1 alteration landscape of ILC patient tumors including enrichment of truncating mutations in and biallelic inactivation of CDH1 gene. Using whole-genome optical mapping, we uncovered novel genomic-rearrangements including novel structural variations in CDH1 and functional gene fusions and characterized breast cancer specific patterns of chromothripsis in chromosomes 8, 11 and 17. In addition, we systematically analyzed aberrant DNAm events and integrative analysis with RNA expression revealed epigenetic activation of TFAP2B - an emerging biomarker of lobular disease that is preferentially expressed in lobular disease. Finally, towards the goal of identifying novel druggable vulnerabilities in ILC, we analyzed publicly available RNAi loss of function breast cancer cell line datasets and revealed numerous putative vulnerabilities cytoskeletal components, focal adhesion and PI3K/AKT pathway in ILC/ILC-like vs NST cell lines. In summary, we addressed the lack of suitable models to study E-cadherin deficient breast cancers by first collecting both established and putative ILC models, then characterizing them comprehensively to show their molecular similarity to patient tumors along with uncovering their novel multi-omic features as well as highlighting putative novel druggable vulnerabilities. Not only we expand the array of suitable E-cadherin deficient cell lines available for modelling human-ILC disease but also employ them for studying epigenetic activation of a putative lobular biomarker as well as identifying potential druggable vulnerabilities for this disease towards enabling precision medicine research for human-ILC.
Collapse
|
11
|
Dai LJ, Ma D, Xu YZ, Li M, Li YW, Xiao Y, Jin X, Wu SY, Zhao YX, Wang H, Yang WT, Jiang YZ, Shao ZM. Molecular features and clinical implications of the heterogeneity in Chinese patients with HER2-low breast cancer. Nat Commun 2023; 14:5112. [PMID: 37607916 PMCID: PMC10444861 DOI: 10.1038/s41467-023-40715-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
The molecular heterogeneity and distinct features of HER2-low breast cancers, particularly in the Chinese population, are not well understood, limiting its precise management in the era of antibody‒drug conjugates. To address this issue, we established a cohort of 434 Chinese patients with HER2-low breast cancer (433 female and one male) and integrated genomic, transcriptomic, proteomic, and metabolomic profiling data. In this cohort, HER2-low tumors are more distinguished from HER2-0 tumors in the hormone receptor-negative subgroup. Within HER2-low tumors, significant interpatient heterogeneity also exists in the hormone receptor-negative subgroup: basal-like tumors resemble HER2-0 disease, and non-basal-like HER2-low tumors mimic HER2-positive disease. These non-basal-like HER2-low tumors are enriched in the HER2-enriched subtype and the luminal androgen receptor subtype and feature PIK3CA mutation, FGFR4/PTK6/ERBB4 overexpression and lipid metabolism activation. Among hormone receptor-positive tumors, HER2-low tumors show less loss/deletion in 17q peaks than HER2-0 tumors. In this work, we reveal the heterogeneity of HER2-low breast cancers and emphasize the need for more precise stratification regarding hormone receptor status and molecular subtype.
Collapse
Affiliation(s)
- Lei-Jie Dai
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ding Ma
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yu-Zheng Xu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ming Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yu-Wei Li
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi Xiao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Song-Yang Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ya-Xin Zhao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Han Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wen-Tao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
12
|
Rane JK, Frankell AM, Weeden CE, Swanton C. Clonal Evolution in Healthy and Premalignant Tissues: Implications for Early Cancer Interception Strategies. Cancer Prev Res (Phila) 2023; 16:369-378. [PMID: 36930945 PMCID: PMC7614725 DOI: 10.1158/1940-6207.capr-22-0469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/17/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Histologically normal human tissues accumulate significant mutational burden with age. The extent and spectra of mutagenesis are comparable both in rapidly proliferating and post-mitotic tissues and in stem cells compared with their differentiated progeny. Some of these mutations provide increased fitness, giving rise to clones which, at times, can replace the entire surface area of tissues. Compared with cancer, somatic mutations in histologically normal tissues are primarily single-nucleotide variations. Interestingly though, the presence of these mutations and positive clonal selection in isolation remains a poor indicator of potential future cancer transformation in solid tissues. Common clonally expanded mutations in histologically normal tissues also do not always represent the most frequent early mutations in cancers of corresponding tissues, indicating differences in selection pressures. Preliminary evidence implies that stroma and immune system co-evolve with age, which may impact selection dynamics. In this review, we will explore the mutational landscape of histologically normal and premalignant human somatic tissues in detail and discuss cell-intrinsic and environmental factors that can determine the fate of positively selected mutations within them. Precisely pinpointing these determinants of cancer transformation would aid development of early cancer interventional and prevention strategies.
Collapse
Affiliation(s)
- Jayant K. Rane
- University College London Cancer Institute, London, UK
- Department of Clinical Oncology, University College London Hospitals, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Alexander M. Frankell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Clare E. Weeden
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Medical Oncology, University College London Hospitals, London, UK
| |
Collapse
|
13
|
Körber V, Stainczyk SA, Kurilov R, Henrich KO, Hero B, Brors B, Westermann F, Höfer T. Neuroblastoma arises in early fetal development and its evolutionary duration predicts outcome. Nat Genet 2023; 55:619-630. [PMID: 36973454 PMCID: PMC10101850 DOI: 10.1038/s41588-023-01332-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023]
Abstract
AbstractNeuroblastoma, the most frequent solid tumor in infants, shows very diverse outcomes from spontaneous regression to fatal disease. When these different tumors originate and how they evolve are not known. Here we quantify the somatic evolution of neuroblastoma by deep whole-genome sequencing, molecular clock analysis and population-genetic modeling in a comprehensive cohort covering all subtypes. We find that tumors across the entire clinical spectrum begin to develop via aberrant mitoses as early as the first trimester of pregnancy. Neuroblastomas with favorable prognosis expand clonally after short evolution, whereas aggressive neuroblastomas show prolonged evolution during which they acquire telomere maintenance mechanisms. The initial aneuploidization events condition subsequent evolution, with aggressive neuroblastoma exhibiting early genomic instability. We find in the discovery cohort (n = 100), and validate in an independent cohort (n = 86), that the duration of evolution is an accurate predictor of outcome. Thus, insight into neuroblastoma evolution may prospectively guide treatment decisions.
Collapse
|
14
|
Winnard PT, Morsberger L, Yonescu R, Jiang L, Zou YS, Raman V. Isogenic Cell Lines Derived from Specific Organ Metastases Exhibit Divergent Cytogenomic Aberrations. Cancers (Basel) 2023; 15:cancers15051420. [PMID: 36900209 PMCID: PMC10000985 DOI: 10.3390/cancers15051420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Aneuploidy, a deviation in chromosome numbers from the normal diploid set, is now recognized as a fundamental characteristic of all cancer types and is found in 70-90% of all solid tumors. The majority of aneuploidies are generated by chromosomal instability (CIN). CIN/aneuploidy is an independent prognostic marker of cancer survival and is a cause of drug resistance. Hence, ongoing research has been directed towards the development of therapeutics aimed at targeting CIN/aneuploidy. However, there are relatively limited reports on the evolution of CIN/aneuploidies within or across metastatic lesions. In this work, we built on our previous studies using a human xenograft model system of metastatic disease in mice that is based on isogenic cell lines derived from the primary tumor and specific metastatic organs (brain, liver, lung, and spine). As such, these studies were aimed at exploring distinctions and commonalities between the karyotypes; biological processes that have been implicated in CIN; single-nucleotide polymorphisms (SNPs); losses, gains, and amplifications of chromosomal regions; and gene mutation variants across these cell lines. Substantial amounts of inter- and intra-heterogeneity were found across karyotypes, along with distinctions between SNP frequencies across each chromosome of each metastatic cell line relative the primary tumor cell line. There were disconnects between chromosomal gains or amplifications and protein levels of the genes in those regions. However, commonalities across all cell lines provide opportunities to select biological processes as druggable targets that could have efficacy against the primary tumor, as well as metastases.
Collapse
Affiliation(s)
- Paul T. Winnard
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Laura Morsberger
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Raluca Yonescu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Liqun Jiang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ying S. Zou
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Correspondence: (Y.S.Z.); (V.R.); Tel.: +1-410-955-7492 (V.R.); Fax: +1-410-955-0484 (V.R.)
| | - Venu Raman
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Correspondence: (Y.S.Z.); (V.R.); Tel.: +1-410-955-7492 (V.R.); Fax: +1-410-955-0484 (V.R.)
| |
Collapse
|
15
|
de Groot D, Spanjaard A, Hogenbirk MA, Jacobs H. Chromosomal Rearrangements and Chromothripsis: The Alternative End Generation Model. Int J Mol Sci 2023; 24:ijms24010794. [PMID: 36614236 PMCID: PMC9821053 DOI: 10.3390/ijms24010794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
Chromothripsis defines a genetic phenomenon where up to hundreds of clustered chromosomal rearrangements can arise in a single catastrophic event. The phenomenon is associated with cancer and congenital diseases. Most current models on the origin of chromothripsis suggest that prior to chromatin reshuffling numerous DNA double-strand breaks (DSBs) have to exist, i.e., chromosomal shattering precedes rearrangements. However, the preference of a DNA end to rearrange in a proximal accessible region led us to propose chromothripsis as the reaction product of successive chromatin rearrangements. We previously coined this process Alternative End Generation (AEG), where a single DSB with a repair-blocking end initiates a domino effect of rearrangements. Accordingly, chromothripsis is the end product of this domino reaction taking place in a single catastrophic event.
Collapse
Affiliation(s)
- Daniel de Groot
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Aldo Spanjaard
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Marc A. Hogenbirk
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Agendia NV, Radarweg 60, 1043 NT Amsterdam, The Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-20-512-2065
| |
Collapse
|
16
|
Gauthier BR, Comaills V. Nuclear Envelope Integrity in Health and Disease: Consequences on Genome Instability and Inflammation. Int J Mol Sci 2021; 22:ijms22147281. [PMID: 34298904 PMCID: PMC8307504 DOI: 10.3390/ijms22147281] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/11/2022] Open
Abstract
The dynamic nature of the nuclear envelope (NE) is often underestimated. The NE protects, regulates, and organizes the eukaryote genome and adapts to epigenetic changes and to its environment. The NE morphology is characterized by a wide range of diversity and abnormality such as invagination and blebbing, and it is a diagnostic factor for pathologies such as cancer. Recently, the micronuclei, a small nucleus that contains a full chromosome or a fragment thereof, has gained much attention. The NE of micronuclei is prone to collapse, leading to DNA release into the cytoplasm with consequences ranging from the activation of the cGAS/STING pathway, an innate immune response, to the creation of chromosomal instability. The discovery of those mechanisms has revolutionized the understanding of some inflammation-related diseases and the origin of complex chromosomal rearrangements, as observed during the initiation of tumorigenesis. Herein, we will highlight the complexity of the NE biology and discuss the clinical symptoms observed in NE-related diseases. The interplay between innate immunity, genomic instability, and nuclear envelope leakage could be a major focus in future years to explain a wide range of diseases and could lead to new classes of therapeutics.
Collapse
Affiliation(s)
- Benoit R. Gauthier
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence: (B.R.G.); (V.C.)
| | - Valentine Comaills
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain
- Correspondence: (B.R.G.); (V.C.)
| |
Collapse
|
17
|
Chromothripsis-Explosion in Genetic Science. Cells 2021; 10:cells10051102. [PMID: 34064429 PMCID: PMC8147837 DOI: 10.3390/cells10051102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022] Open
Abstract
Chromothripsis has been defined as complex patterns of alternating genes copy number changes (normal, gain or loss) along the length of a chromosome or chromosome segment (International System for Human Cytogenomic Nomenclature 2020). The phenomenon of chromothripsis was discovered in 2011 and changed the concept of genome variability, mechanisms of oncogenic transformation, and hereditary diseases. This review describes the phenomenon of chromothripsis, its prevalence in genomes, the mechanisms underlying this phenomenon, and methods of its detection. Due to the fact that most often the phenomenon of chromothripsis occurs in cancer cells, in this review, we will separately discuss the issue of the contribution of chromothripsis to the process of oncogenesis.
Collapse
|
18
|
Simovic M, Ernst A. Chromothripsis, DNA repair and checkpoints defects. Semin Cell Dev Biol 2021; 123:110-114. [PMID: 33589336 DOI: 10.1016/j.semcdb.2021.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/05/2021] [Indexed: 11/28/2022]
Abstract
Chromothripsis is a unique form of genome instability characterized by tens to hundreds of DNA double-strand breaks on one or very few chromosomes, followed by error-prone repair. The derivative chromosome(s) display massive rearrangements, which lead to the loss of tumor suppressor function and to the activation of oncogenes. Chromothripsis plays a major role in cancer as well as in other conditions, such as congenital diseases. In this review, we discuss the repair processes involved in the rejoining of the chromosome fragments, the role of DNA repair and checkpoint defects as a cause for chromothripsis as well as DNA repair defects resulting from chromothripsis. Finally, we consider clinical implications and potential therapeutic vulnerabilities that could be utilized to eliminate tumor cells with chromothripsis.
Collapse
Affiliation(s)
- Milena Simovic
- Group Genome Instability in Tumors, German Cancer Research Centre (DKFZ), Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Germany
| | - Aurélie Ernst
- Group Genome Instability in Tumors, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
| |
Collapse
|
19
|
Ricker CA, Woods AD, Simonson W, Lathara M, Srinivasa G, Rudzinski ER, Mansoor A, Irwin RG, Keller C, Berlow NE. Refractory alveolar rhabdomyosarcoma in an 11-year-old male. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a005983. [PMID: 33436392 PMCID: PMC7903883 DOI: 10.1101/mcs.a005983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/11/2021] [Indexed: 12/29/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a mesenchymal malignancy phenocopying muscle and is among the leading causes of death from childhood cancer. Metastatic alveolar rhabdomyosarcoma is the most aggressive subtype with an 8% 5-yr disease-free survival rate when a chromosomal fusion is present and a 29% 5-yr disease-free survival rate when negative for a fusion event. The underlying biology of PAX-fusion-negative alveolar rhabdomyosarcoma remains largely unexplored and is exceedingly rare in Li–Fraumeni syndrome patients. Here, we present the case of an 11-yr-old male with fusion-negative alveolar rhabdomyosarcoma studied at end of life with a comprehensive functional genomics characterization, resulting in identification of potential therapeutic targets for broader investigation.
Collapse
Affiliation(s)
- Cora A Ricker
- Children's Cancer Therapy Development Institute, Beaverton, Oregon 97005, USA
| | - Andrew D Woods
- Children's Cancer Therapy Development Institute, Beaverton, Oregon 97005, USA
| | | | | | | | - Erin R Rudzinski
- Department of Laboratories, Seattle Children's Hospital, Seattle, Washington 98105, USA
| | - Atiya Mansoor
- Children's Cancer Therapy Development Institute, Beaverton, Oregon 97005, USA
| | | | - Charles Keller
- Children's Cancer Therapy Development Institute, Beaverton, Oregon 97005, USA
| | - Noah E Berlow
- Children's Cancer Therapy Development Institute, Beaverton, Oregon 97005, USA
| |
Collapse
|