1
|
Lin Q, Jin L, Peng R. New Progress in Zebrafish Liver Tumor Models: Techniques and Applications in Hepatocellular Carcinoma Research. Int J Mol Sci 2025; 26:780. [PMID: 39859497 PMCID: PMC11765702 DOI: 10.3390/ijms26020780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Liver tumors represent a serious clinical health problem that threatens human life. Previous studies have demonstrated that the pathogenesis of liver tumors is complex and influenced by various factors, highlighting limitations in both basic pathological research and clinical treatment. Traditional research methods often begin with the discovery of phenomena and gradually progress to the development of animal models and human trials. Among these, liver tumor animal models play a critical role in advancing related research. The zebrafish liver closely resembles the human liver in structure, function, and regenerative capacity. Additionally, the high transparency and rapid development of zebrafish embryos and larvae make them ideal model organisms for studying liver tumors. This review systematically summarizes recent methods for constructing zebrafish liver tumor models, including transplantation, transgenesis, induction, and gene knockout. Furthermore, the present paper explores the applications of these models in the study of liver cancer pathogenesis, metastasis, the tumor microenvironment, drug screening, and other related areas. By comparing the advantages and limitations of various models and integrating their distinct characteristics, this review provides insights for developing a novel liver tumor model that better aligns with clinical needs. This approach will offer valuable reference information for further in-depth studies of the pathological mechanisms of liver tumors and the development of new therapeutic drugs or strategies.
Collapse
Affiliation(s)
| | | | - Renyi Peng
- Institute of Life Sciences, Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Q.L.); (L.J.)
| |
Collapse
|
2
|
You Y, Wang Y, Zhang G, Li Y. The Molecular Mechanisms and Treatment of Cancer-Related Cachexia. J Nutr Sci Vitaminol (Tokyo) 2025; 71:1-15. [PMID: 40024744 DOI: 10.3177/jnsv.71.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Cancer cachexia is a multifactorial syndrome characterized by persistent skeletal muscle loss, with or without fat loss, which cannot be completely reversed by traditional nutritional support and leads to impaired organ function. Cachexia seriously reduces the quality of life of (QOL) patients, affects the therapeutic effect against cancers, increases the incidence of complications, and is an important cause of death for patients with advanced cancers. To date, no effective medical intervention has completely reversed cachexia, and no medication has been agreed upon. Here, we describe recent advances in the diagnosis, molecular mechanism and treatment of cancer-related cachexia.
Collapse
Affiliation(s)
- Yongfei You
- Department of Medical Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University
- Department of Medical Oncology, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, The First Hospital of Nanchang
| | - Yong Wang
- Department of Medical Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University
| | - Guohua Zhang
- Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University
| | - Yong Li
- Department of Medical Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University
| |
Collapse
|
3
|
Li L, Wazir J, Huang Z, Wang Y, Wang H. A comprehensive review of animal models for cancer cachexia: Implications for translational research. Genes Dis 2024; 11:101080. [PMID: 39220755 PMCID: PMC11364047 DOI: 10.1016/j.gendis.2023.101080] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/14/2023] [Accepted: 07/24/2023] [Indexed: 09/04/2024] Open
Abstract
Cancer cachexia is a multifactorial syndrome characterized by progressive weight loss and a disease process that nutritional support cannot reverse. Although progress has been made in preclinical research, there is still a long way to go in translating research findings into clinical practice. One of the main reasons for this is that existing preclinical models do not fully replicate the conditions seen in clinical patients. Therefore, it is important to understand the characteristics of existing preclinical models of cancer cachexia and pay close attention to the latest developments in preclinical models. The main models of cancer cachexia used in current research are allogeneic and xenograft models, genetically engineered mouse models, chemotherapy drug-induced models, Chinese medicine spleen deficiency models, zebrafish and Drosophila models, and cellular models. This review aims to revisit and summarize the commonly used animal models of cancer cachexia by evaluating existing preclinical models, to provide tools and support for translational medicine research.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Junaid Wazir
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zhiqiang Huang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
4
|
Wu Q, Liu Z, Li B, Liu YE, Wang P. Immunoregulation in cancer-associated cachexia. J Adv Res 2024; 58:45-62. [PMID: 37150253 PMCID: PMC10982873 DOI: 10.1016/j.jare.2023.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Cancer-associated cachexia is a multi-organ disorder associated with progressive weight loss due to a variable combination of anorexia, systemic inflammation and excessive energy wasting. Considering the importance of immunoregulation in cachexia, it still lacks a complete understanding of the immunological mechanisms in cachectic progression. AIM OF REVIEW Our aim here is to describe the complex immunoregulatory system in cachexia. We summarize the effects and translational potential of the immune system on the development of cancer-associated cachexia and we attempt to conclude with thoughts on precise and integrated therapeutic strategies under the complex immunological context of cachexia. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three main key concepts. First, we highlight the inflammatory factors and additional mediators that have been identified to modulate this syndrome. Second, we decipher the potential role of immune checkpoints in tissue wasting. Third, we discuss the multilayered insights in cachexia through the immunometabolic axis, immune-gut axis and immune-nerve axis.
Collapse
Affiliation(s)
- Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University.
| | - Zhou Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yu-E Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University.
| |
Collapse
|
5
|
Wang X. Editorial: Synthetic biology in Vertebrate Model system: New clinical and preclinical translational applications. Front Mol Biosci 2023; 10:1117896. [PMID: 36818047 PMCID: PMC9936225 DOI: 10.3389/fmolb.2023.1117896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Affiliation(s)
- Xu Wang
- Cancer Research Institute, Pancreatic Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China,Shanghai Pancreatic Cancer Institute, Shanghai Key Laboratory of Radiation Oncology, Fudan University, Shanghai, China,*Correspondence: Xu Wang,
| |
Collapse
|
6
|
Wu C, Hu B, Wang L, Wu X, Gu H, Dong H, Yan J, Qi Z, Zhang Q, Chen H, Yu B, Hu S, Qian Y, Dong S, Li Q, Wang X, Long J. Assessment of stromal SCD-induced drug resistance of PDAC using 3D-printed zPDX model chips. iScience 2022; 26:105723. [PMID: 36590169 PMCID: PMC9794976 DOI: 10.1016/j.isci.2022.105723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/11/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Lipid metabolism is extensively reprogrammed in pancreatic ductal adenocarcinoma (PDAC). Stearoyl-coenzyme A desaturase (SCD) is a critical lipid regulator that was unexplored in PDAC. Here, we characterized the existence of cancer-associated fibroblasts (CAFs) with high SCD expression, and revealed them as an unfavorable prognostic factor. Therefore, primary CAFs and pancreatic cancer cells were harvested and genetically labeled. The mixture of CAFs and cancer cells were co-injected into scd-/-; prkdc-/-, or hIGF1/INS-expressing zebrafish to generate patient-derived xenograft models (zPDX). The models were aligned in 3D-printed chips for semi-automatic drug administration and high-throughput scanning. The results showed that chaperoning of the SCD-high CAFs significantly improved the drug resistance of pancreatic cancer cells against gemcitabine and cisplatin, while the administration of SCD inhibitors neutralized the protective effect. Our studies revealed the prognostic and therapeutic value of stromal SCD in PDAC, and proposed the application of zPDX model chips for drug testing.
Collapse
Affiliation(s)
- Chuntao Wu
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Beiyuan Hu
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lei Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China,School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xia Wu
- Department of General Practice, Jing’an District Centre Hospital of Shanghai (Huashan Hospital Fudan University Jing’an Branch), Shanghai 200040, China
| | - Haitao Gu
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hanguang Dong
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jiuliang Yan
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zihao Qi
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Qi Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Huan Chen
- National Human Genetic Resources Sharing Service Platform (2005DKA21300), Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Bo Yu
- Department of Pharmacy, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200336, China
| | - Sheng Hu
- Department of Thoracic Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Yu Qian
- Department of Thoracic Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Shuang Dong
- Department of Thoracic Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children’s Hospital of Fudan University, Shanghai 201102, China,Corresponding author
| | - Xu Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China,School of Basic Medical Sciences, Fudan University, Shanghai 200032, China,Corresponding author
| | - Jiang Long
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China,Corresponding author
| |
Collapse
|
7
|
Hildebrandt W, Keck J, Schmich S, Bonaterra GA, Wilhelm B, Schwarzbach H, Eva A, Bertoune M, Slater EP, Fendrich V, Kinscherf R. Inflammation and Wasting of Skeletal Muscles in Kras-p53-Mutant Mice with Intraepithelial Neoplasia and Pancreatic Cancer-When Does Cachexia Start? Cells 2022; 11:1607. [PMID: 35626644 PMCID: PMC9139525 DOI: 10.3390/cells11101607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Skeletal muscle wasting critically impairs the survival and quality of life in patients with pancreatic ductal adenocarcinoma (PDAC). To identify the local factors initiating muscle wasting, we studied inflammation, fiber cross-sectional area (CSA), composition, amino acid metabolism and capillarization, as well as the integrity of neuromuscular junctions (NMJ, pre-/postsynaptic co-staining) and mitochondria (electron microscopy) in the hindlimb muscle of LSL-KrasG12D/+; LSL-TrP53R172H/+; Pdx1-Cre mice with intraepithelial-neoplasia (PanIN) 1-3 and PDAC, compared to wild-type mice (WT). Significant decreases in fiber CSA occurred with PDAC but not with PanIN 1-3, compared to WT: These were found in the gastrocnemius (type 2x: −20.0%) and soleus (type 2a: −21.0%, type 1: −14.2%) muscle with accentuation in the male soleus (type 2a: −24.8%, type 1: −17.4%) and female gastrocnemius muscle (−29.6%). Significantly higher densities of endomysial CD68+ and cyclooxygenase-2+ (COX2+) cells were detected in mice with PDAC, compared to WT mice. Surprisingly, CD68+ and COX2+ cell densities were also higher in mice with PanIN 1-3 in both muscles. Significant positive correlations existed between muscular and hepatic CD68+ or COX2+ cell densities. Moreover, in the gastrocnemius muscle, suppressor-of-cytokine-3 (SOCS3) expressions was upregulated >2.7-fold with PanIN 1A-3 and PDAC. The intracellular pools of proteinogenic amino acids and glutathione significantly increased with PanIN 1A-3 compared to WT. Capillarization, NMJ, and mitochondrial ultrastructure remained unchanged with PanIN or PDAC. In conclusion, the onset of fiber atrophy coincides with the manifestation of PDAC and high-grade local (and hepatic) inflammatory infiltration without compromised microcirculation, innervation or mitochondria. Surprisingly, muscular and hepatic inflammation, SOCS3 upregulation and (proteolytic) increases in free amino acids and glutathione were already detectable in mice with precancerous PanINs. Studies of initial local triggers and defense mechanisms regarding cachexia are warranted for targeted anti-inflammatory prevention.
Collapse
Affiliation(s)
- Wulf Hildebrandt
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Jan Keck
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
- Department of General, Visceral and Pedriatic Surgery, University Clinics, Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| | - Simon Schmich
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Gabriel A. Bonaterra
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Beate Wilhelm
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Hans Schwarzbach
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Anna Eva
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Mirjam Bertoune
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Emily P. Slater
- Department of Visceral, Thoracic and Vascular Surgery, University Clinics of Giessen and Marburg, Baldinger Str., 35043 Marburg, Germany; (E.P.S.); (V.F.)
| | - Volker Fendrich
- Department of Visceral, Thoracic and Vascular Surgery, University Clinics of Giessen and Marburg, Baldinger Str., 35043 Marburg, Germany; (E.P.S.); (V.F.)
- Center for Endocrine Surgery, Schön Klinik Hamburg-Eilbek, Dehnhaide 120, 22081 Hamburg, Germany
| | - Ralf Kinscherf
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| |
Collapse
|
8
|
Identification of Scd5 as a functional regulator of visceral fat deposition and distribution. iScience 2022; 25:103916. [PMID: 35252813 PMCID: PMC8889148 DOI: 10.1016/j.isci.2022.103916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/24/2021] [Accepted: 02/09/2022] [Indexed: 11/20/2022] Open
Abstract
Ectopic deposition of visceral adipose tissue (VAT) in abdomen is usually accompanied with systematic chaos of energy metabolism, a higher risk of cardiovascular diseases and type II diabetes. Here, we identified a previously unexplored gene Scd5 as a master regulator of fat distribution, which alone plays a significant role in determining the VAT accumulation. Firstly, zebrafish scd5 had the highest homology with human SCD5 compared to other SCDs in mouse and rat. We then observed that scd5-homozygous mutant zebrafish displayed a puffy, short and rounded apple-shaped figure. Whole-mount micro-CT scan showed that excessive VAT deposition and short spine are responsible for the abnormal body ratio. And the supplementation of ω3-polyunsaturated fatty acid (ω3-PUFA) in dietary significantly decreased VAT accumulation in scd5−/− zebrafish. Lastly, transcriptional analyses revealed that the Wnt, PPAR, C/EBP, and fat synthesis signaling pathways are significantly affected in the VAT of scd5−/− mutant and restored by ω3-PUFA. Zebrafish scd5 is a better match of homolog to human SCD5 scd5 deficiency induced significant VAT depositions in zebrafish Supplementation of ω3-PUFA significantly reduced the VAT deposition in scd5 mutants
Collapse
|